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State space based nonlinear model predictive control (NMPC) needs the state for
the prediction of the system behaviour. Unfortunately, for most applications, not
all states are directly measurable. To recover the unmeasured states, typically a
stable state observer is used. However, this implies that the stability of the closed-
loop should be examined carefully, since no general nonlinear separation principle
exists. Recently semi-global practical stability results for output feedback NMPC
using a high-gain observer for state estimation have been established. One draw-
back of this result is that (in general) the observer gain must be increased, if the
desired set the state should converge to is made smaller. We show that under
slightly stronger assumptions, not only practical stability, but also convergence of
the system states and observer error to the origin for a sufficiently large but
bounded observer gain can be achieved.

Introduction

Nonlinear model predictive control (NMPC) based on state space models is
inherently a state feedback approach. Therefore, if not all states can be measured it
is necessary to obtain state information from the output measurements using a state
observer. While for linear systems, the separation principle implies that the stability
of the closed-loop follows from the individual stability of the controller and the
observer, a general separation principle for nonlinear systems does not exist. Thus,
the stability of the closed-loop must be either enforced by design or checked
afterwards. Checking the stability of the closed loop afterwards is often not possible,
since it does involve, for example, finding a suitable Lyapunov function for the closed
loop system.

In the area of NMPC several researchers have addressed the output feedback
problem. The approach in de Oliveira Kothare and Morari (2000) derives local
uniform asymptotic stability of contractive NMPC in combination with a ‘sampled’
state estimator. In Magni et al. (1998, 2000), see also Scokaert et al. (1997), asymptotic
stability results for observer based discrete-time NMPC for ‘weakly detectable’
systems are given. The results allow, in principle, to estimate a (local) region of
attraction of the output feedback controller from Lipschitz constants. However, it is
in general not clear which parameters in the state feedback controller and observer
should be changed to increase the region of attraction, or how to recover (in the
limit) the region of attraction of the state feedback controller. In contrast to these
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approaches, the control strategies derived in Michalska & Mayne (1995), Findeisen
et al. (2002), Imsland et al. (2003); Findeisen et al. (2003a) establish semi-global
stability results, delivering direct tuning knobs to increase the resulting region of
attraction of the closed-loop. The approach presented in Michalska & Mayne (1995)
consist of an optimization based moving horizon observer combined with the so
called dual-mode NMPC scheme proposed in Michalska & Mayne (1993). Adding a
contraction constraint to the moving horizon observer it is shown that the closed-
loop is (semi-globally) asymptotically stable. However, for the results to hold, it is
assumed that no model-plant mismatch and no disturbances are present, and a global
optimization problem for the moving horizon observer must be solved.

In Imsland er al. (2003) asymptotic stability for instantaneous NMPC using high-
gain observers for state recovery is obtained. Instantaneous NMPC means that the
open-loop optimal control problem appearing in the NMPC controller must be
solved at every time instant, leading to instantaneous feedback. Since in general no
closed/analytic solution to an open-loop optimal control problem can be found, the
approach is not applicable in practice. For this reason the results have been expanded
in Findeisen et al. (2002, 2003a) to the general sampled-data NMPC case. In sampled-
data NMPC the open-loop optimal control problem is only solved at discrete
sampling instants and the resulting optimal input signal is applied open-loop in
between. The key result obtained in Findeisen er al. (2002, 2003a) establishes that
the closed-loop is semi-globally practically stable. Semi-global practical stability in
this context means, that for state initial conditions in any compact set contained in
the region of attraction of the NMPC state feedback controller and for any size of
the target set (containing the origin), there exists a minimum observer gain and a
maximum sampling time such that the system and observer states will enter the
desired target set in finite time. However, only practical stability is achieved. If the
desired target set is decreased, the result says that it is necessary to increase the
observer gain and thus the observer speed further.

In this paper we build on the practical stability results derived in Findeisen et al.
(2003a) (see also Findeisen et al. (2003b) for an overview over state and output
feedback NMPC, and a slightly different proof of the practical stability results). We
show that under strengthened assumptions on the system and the observer there exist
a minimum observer gain and a maximum sampling time, such that the system and
observer state actually asymptotically converges to the origin.

The paper is structured as follows: Section 2 introduces the system class and the
observability assumption. In Section 3 we present the NMPC output feedback control
strategy consisting of a high-gain state estimator and a NMPC state feedback
controller. Section 3.3 reviews the semi-global practical stability results obtained in
Findeisen et al. (2003a), while the main result, conditions for asymptotic convergence
of the system and observer state, is presented in Section 4.

2. System class and observability assumption
We consider nonlinear systems given by
x=flxu),  y=h(x) ey

where xe % < R" denotes the system state, ue % cR™ is the system input, yeR? is
the measured output, and 7, % denote the constrained sets of allowed states and
inputs. The sets & and % are such that % = R is compact, 2 = R" is connected and
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(0,0)eZ x 9. With respect to the functions f:R" x # —[R" and h:R" x % - R? we
assume that they are sufficiently smooth. Furthermore, the origin is as stationary
point, i.e. f(0,0) =0 and h(0) =0.

We will consider systems that are uniformly completely observable. Uniform
complete observability is defined in terms of the observability map 3, which is given
by successive differentiation of the output y:

Y=[J’l;.}"l,---s.l’(f"syzs---aJ’p,---,J’g"’]=g%”(x,U)T

Here Y is the vector of output derivatives, and U in general contains the input and
in addition, a number of input derivatives, We will, however, restrict us to systems
where # does not depend on the input, nor the derivatives.

Assumption 1. The system (1) is uniformly completely observable in the sense that
there exists a set of indices {r,,...,r,} such that the mapping Y = #(x) depends only
OR X, is smooth with respect to x and its inverse from Y to x is smooth and onto.

Note that the set of indices {r,...,r,} is not necessarily unique, different
mappings # might exist. The assumption that the observability map does not depend
on the input derivatives is strong. The more general case is treated in Findeisen et al.
(2003a), resorting to practical stability results instead of asymptotic stability.

3. NMPC output feedback controller

The NMPC output feedback controller consists of a high-gain observer for state
estimation and an NMPC state feedback controller. No specific NMPC controller is
specified, rather a set of assumptions is stated that the NMPC scheme must satisfy.
In principle these assumptions can be satisfied by a series of NMPC schemes, such
as quasi-infinite horizon NMPC (Chen & Allgdwer, 1998), zero terminal constraint
NMPC (Mayne & Michalska, 1990) and NMPC schemes utilizing control Lyapunov
functions to obtain stability (Jadbabaie er al., 2001; Primbs et al., 1999).

3.1. NMPC State Feedback

In the framework of predictive control, the input is defined by the solution of an
open-loop optimal control problem that is solved at sampling instants. Between the
sampling instants the optimal input is applied open-loop. For simplicity we denote
the sampling instants by ;, with t; — ;_, = J, J being the sampling time. For a given
time ¢, t; should be taken as the nearest previous sampling instant t; < . The open-
loop optimal control problem solved at any ¢; is given by '

nl_;i_p J@@(-); x(1;)) (2a)
subject to: x=f(x,a), Xz=0)=x(1) (2b)
(1) e. X(r)ed 1€(0,T,] (2c)
xT)eé& (2d)

!Variables with bar (% and #) denote here internal (predicted) controller variables. To save
notation, later on these variables will denote variables resulting from state feedback application
of the NMPC control law. However, note that the predicted variables at time ¢; and the “real’
state feedback variables in general are different after the next sampling instant ¢, , ;.
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The cost functional J is defined over the control horizon T, by the stage cost F and
the terminal penalty E.

TP
J@(); x(1:))= j F(x(z), #(x))dt + E(X(T,))

We assume that the NMPC scheme fits into the given frame and satisfies the following
assumptions.

Assumption 2.  There exists a simply connected region A = & < R" (‘region of attrac-
tion of the state feedback NMPC’) with 0€ X such that:

1. The stage cost F: % x U —R is locally Lipschitz, satisfies F(0,0) =0, and is lower
bounded by a class A function? ap: ap(|| x| + [|u]) < Fx,u) V(x,u)e @ x U.

2. The optimal control @*(t;x) is piecewise continuous and locally Lipschitz in x
in R, uniformly in ©. That is, for a given compact set Q< R|a*(t:x;)—
a*(t;x,) | < L, || %y —x,|| Vzel0,T,), x,, x,€Q, where L, denotes the Lipschitz
constant of #*(z; x) (as a function of x) in Q.

3. The value function, which is defined as the optimal value of the cost for every
xeRV(xy=J(@*(-; x); x) is Lipschitz for all compact subsets of # and V(0) =0,
V(x)>0 for all xe #1{0}.

4. Along solution trajectories starting at a sampling instant t; at x(t;)€ R, the value
Junction satisfies

it

V(x(t; + 7)) — V(1)) < —j Fx(s), @*(s; x(t))ds, 0<t<T,

[

To establish the stability result it is furthermore necessary that for any compact
subset & < % we can find a compact outer approximation Q%) that contains &
and is invariant under the NMPC state feedback.

Assumption 3. For all compact sets & < R there is at least one compact set
QUF) = {xe AV (x) < ¢} such that & < Q).

In the following we will denote level sets of ¥ by Q_, where the index ¢ defines
the level. Assumptions 2.1 and 2.4 are satisfied by many stabilizing NMPC schemes.
In principle Assumptions 2.2, 2.3 and 3 can also be satisfied. However, checking
them is in general difficult, see Findeisen et al. (2003a).

3.2. High Gain State Estimation

The system state is recovered by an high-gain observer. Application of the
coordinate transformation { = #(x), where J# is the observability mapping, to the
system (1) leads to the system in observability normal form in { coordinates

{= AL+ BH(L,u)
y=«a

2A continuous function a: [0,00)—[0,00) is a class #~ function, if it is strictly increasing
and o0y =0.
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The matrices 4, B and C have the following structure

0L 0 .0
00 1 .0
A =blockdiag[4,,...,4,],4;=| : :
0 v o 0 1
[ R ] I

B=blockdiag[B,,...,B,},B;=[0 .. 0 1]',,

C=blockdiag[C,,...,C,),C;i=[1 0 ... 0];«,,

and ¢ :R" x R™— R* is the ‘system nonlinearity’ in observability normal form. The
high-gain observer

{=AC+ H(y— CD) + B, u) 4)

allows recovery of the states (Tornambe, 1992, Atassi & Khalil, 1999) { from
information of y(f) assuming that

Assumption 4. ¢ in (4) is globally bounded.

The function ¢ is the approximation of ¢ that is used in the observer. The
observer gain matrix H, is given by H,=blockdiag[H,,,...,H, ], with
HY =[oe, o /e?, ..., o 1e], where ¢ is the so-called high-gain parameter since
1/& goes to infinity for £é—0. The «{”s are design parameters and must be chosen
such that the polynomials

s+os" Tt s+a’=0. i=1,....p

are Hurwitz,
Note that estimates obtained in { coordinates can be transformed back to the x
coordinates by £ = .~ '({).

3.3. Semi-Global Practical Stability

Before moving to the asymptotic convergence result, we briefly review the results
given in Findeisen et al., (2002, 2003a). Note that by Assumption | the observability
map .# does not depend on the input and its derivatives, thus we do not need the
‘observer resetting’ as used in Findeisen et al., (2003a).

The overall output feedback control is given by the NMPC state feedback
controller and a high-gain observer. The open-loop input is only calculated at the
sampling instants using the state estimates of the observer. The observer itself
operates continuously. Assuming that x(r;) € %, the input applied to the system is
given by:

u(t): = a*(t — t; X(t))

where @%(-; %(1;)) is the optimal open-loop input signal of the NMPC optimal control
problem equation (2) obtained at time #; using the state estimate £(¢;) for prediction.
The estimated state %(¢;) is obtained by

O EE R (D))
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where f(ti) is the high-gain observer state in observability normal form. Thus, in
between sampling instants #; to ¢, an open-loop input is applied to the system.
Since the observer estimate is not bounded to the feasibility region # of the NMPC
controller, and since the open-loop optimal control problem does not have a solution
outside %, we also have to define a valid input for %(¢;)¢ Z%. For simplicity, we do this
by assigning #*(t; x) = u e ¥ for xe #. Thus @*(-; x) is defined and bounded for all
xeR"
It is convenient to consider in the following the scaled observer error 7,
E= [’Jll !!!! Hirgaeees Hpya=een erg]’ With 'hj = %

Hence { ={— D,y with D,=blockdiag[D, ,, D, ,,...,D, ], D, ;=diag[e" *,...,1].
The closed-loop system in between sampling instants is then given by

(1) = f (2, ult — 13 %(1,)))

en(t) = Aon(t) + eBg(t, x(£), x(t,), n(1), n(2:))
where the matrix A, =eD; (4 — H C)D, is independent of ¢ and where the function
g is defined as the difference between ¢ and ¢,

g(t, x(2), x(t), 7(1), 1(t:)) = SL(D), TH(t — 15 5(1,)) — GEW), ¥t — 1 5(1,)))

Note that due to Assumption 1, 5(r) will be continuous also at sampling instants.

In the following the set 2 < R" is a fixed compact set for the observer initial state
%o, whereas [,:= {neR"|W(n) < pe®} defines a set for the scaled observer error #
that directly depends on z. The quadratic form W(x) is defined by W(n):=n"Fon,
where P, is the solution of the Lyapunov equation P, 4, + A4 P, = — 1. The constant
p is specified such that I, is reached and is invariant after a time 7,(¢), where T,(¢) -0
as £— 0 (see Findeisen et al. (2003a) for details).

With this setup, it is shown in Findeisen et al. (2002, 2003a), that the output
feedback scheme can achieve practical stability: For any small set containing the
origin, there exists an observer gain and a sampling time such that the trajectories
converge to the set in finite time and stay inside the set.

Theorem 1 (Semi-global practical stability). Given arbitrary compact sets 2 = R" and
S < R. Then, for any ¢>0, there exists an € >0 and a 6% >0 such that for all
O<e<el, 0<6<6%, and all (xo,10) €S % 2, the trajectories (x(1), 1(1)) stay bounded,
converge in finite time to the set ||(x,n)| <o, and x(f)e Z NVt = 0.

Note that neither convergence of the states nor the observer error to the origin is
implied. Convergence to the set {(x,#n)||(x,n) || <o} is obtained by showing that the
state and the observer reaches an invariant set Q, x I', = {(x, )| | (x,n) || < a}. For
proving the main result in the next section, we will use Theorem 1 to place ourselves
in such a set.

4. Asymptotic Convergence

The main contribution of this paper is to show that under slightly strengthened
assumptions we can assure asymptotic convergence. To obtain the result we have to
strengthen the assumptions on the observer. to assure convergence of the observer
error to the origin.
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Assumption 5.  For (x(1), (1)) €Q, x I',, there exists a L,>0 such that
| (2, x(0), (1), n(@), (&N | < Ly llm() ||

The above is true if the observer nonlinearity is the same as in the real system?.

The following lemma says that if the observer error is nonzero at a sampling
instant, it will not become zero in the following sample period. This is used to show
that the Lipschitz continuity of the control in the observer error at sample instants
(which follows from Assumption 2) can be replaced with Lipschitz continuity of the
control in the ‘present’ observer error.

Lemma 4.1.  For (x(2,), n(t;)) € Q, x I',, and for t€[t;, t;, ]

(@) | = Ly | n(t:) |
Jor some L, >0.

Proof. By the definition of Py,

ow )
oy Aot =71

Because of this,
ow 1 . OW )
2y 1O == () 17+ 75 Bt x(e), x(e,), m(2), (e )

which by Assumption 5 means that

: 1
Wwz-— (; +2||F | Lg) 1l

1 1
Z—\-+21FIlL, |; W
(E I 2ol g)h P

= —kWn)

fork=(|| P,| &) ' +2L,. By the Comparison Lemma (Khalil, 1996), this implies
that fort>1,,

Wn(1)) = Win(r;)) exp [—k(1—t;)]
Thus, for ze[t;, t;,,],

@ > W)

I Fo ll
P (n(t;)) exp[—k(z—1;)]
‘J"min P

= _||$|ﬁ)” n(e) | expl— k(4 1 —1;)]

3By Assumption 4, this implies that ¢ must be globally bounded. However. this is not a
real limitation. Since Assumption 5 merely has to hold on a compact set, the nonlinearities
only have to be equal on this set, and therefore we can bound the observer nonlinearity
outside a compact set of interest.
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Choosing

_ Fuia(Po)
" R]

completes the proof. |

L exp| — k]

The following lemma holds since we know (due to Theorem 1) that the states and
observer error stay in a bounded set:

Lemma 4.2. Consider the trajectories of system (1) driven by the NMPC open-loop
control law based on the correct state xq (state feedback) and the state estimate
Ro=H — W(H(xo) — D,no) (output feedback)

1) =f(x(2), 7%(1; %)), X(0) =f(F(x), 1*(%; X0))
starting at x(t) = (1) = xo, with (x(1), (7)) e Q, x I, and %(1)eQ, forall t <1<t + T,
for some T<T,. Then, there exist constants L, and L, such that

t+ 7T 1+ T

F(x(), a*(z; £o))dr — F(x (), a*(7; x0))dr

1 H

t+ T
éhj [ ()l de (5)

t+ T
| Vx(t + 1)) = V(x(t + 1)) < LZI In()| dz ©)

The proof can be found in Imsland (2002). Given Lemma 4.1 and the Lipschitz
continuity of the value function (Assumption 2.3), it is very similar to Findeisen
et al. (2003a), Lemma 2, and hence omitted here.

With these results, asymptotic convergence of the closed-loop can be established.

Theorem 2. (Asymptotic Convergence) Given arbitrary compact sets 2 <R" and
& <R, Then there exists an 5 >0 and a 6% >0 such that for all 0<e<e¥, 0<d <o,
and all (xy,40) €S x 2, the trajectories (x(1), (1)) stay bounded, x(t)e &Vt =0 and
(x(2), n(£)) = (0,0) for t - c0.

Proof. Let 0<§&, be such that
LRl _ 1
Vmin(Po) — 4824/ Po |

Let t', £ and &, be given according to Theorem 1 such that for a 0<é < 54, there
exist 0<& < & such that the trajectories are confined to a set Q, < % for 1>1". Set
g¥:=min (&,,8,), and set 6% =8,. Below, we consider the sampling instant f,> ¢’
closest to t'.

The proof consists of three parts. In the first part we establish a bound on the
decrease of the observer error. In the second part we construct a Lyapunov-like
function which is shown to decrease over one sampling interval. Repeatedly applying
this result we obtain in the third part convergence to the origin.

First part (Bounding the observer error decrease)}: First we establish a bound for
the decrease of the observer error in integral form. Inspired by Atassi & Khalil (1999)
it is convenient to express this decrease by the square root of W, It follows that*

L+ L,+

“For brievety, g(1, ) are used for g(t, x(£), x(1;), n(t), n(t;)).
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\)'W{ f)}-' l: Aon(t) + B g(t, ):l

1
2 W)

I Poll l[m)] 1l &, -) Il

1
g —— Nl +
2wl Bl TN e B I
! LI Py
's-. —
21 OV iy O

where both terms on the right hand side are linear in | 5(¢)|| . Integrating we obtain
for any finite 0 <7< 6,

Wt + T)) — W)

L+ T L ” P(]”
@J; ( 28\/“T||'1()||+\ o (P ||}}[t)||)dr

Second part (Decrease over one sampling interval): We use a Lyapunov like argument
considering as a combined ‘Lyapunov function’ ¥(x,n):= V(x) + /W(n) for the
closed loop system. Note that since ¥ and W are continuous, also V 1s continuous.
Let x(z) be the state feedback trajectory, as in Lemma 4.2. Then, for some 0 < T < §,

Px(t, + Tt + T)) — P(x(t,), 1(1,))
= V(1 + 1) — Vixl1:)) + Wt + T) / Win(,)
< V(x(t; + 1) — V(x(t)) + | V(x4 + 1)) — V(x(;+ 1))
+ /Wt + 1)) —  Win()
From Assumption 2.4, it follows that
Vx(t: + 1), m(t;+ 1)) — V(). (1))

4T
< —j F(%(t), ult; x0 )t
+ |VOt; + T)) — VO + T + Wt + T)) —  Win(t))

1 + T
< —-I F(x(1), u(t; %o ))dt

4+ T

L+ T
- I + TF(x(t), u(t; Xo))dt — I F(x(z), u(t; xo))dt

+ IVt + T)) — VG + T+ Wt + T)) —  WAi(t:))

+T

5+ T I t,+ T
< —J. F(x(z), ult; Xo))d + Lnj I n(z) | dr + LzJ | (z) || de

+J. ;ll n@ |+ Ll Pl oy
t 'f” Pl} || f mm(PO)
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where Lemma 4.2 is used in the last transition.
Hence, by the definition of £3, we have that for 0 <e<¢3, 0<T < 9,,

Pt + Tt + T)) — V(x(:), 1(t;))

4+ T
‘ 1

< —J i F(x(t), u(t; X0 ))dt — I [ ()]l dz

4e /|| Po
[n particular this holds for T=4.

Third part (Convergence): Since, by Theorem 1, we will not leave the set Q, x I',, the
above holds for all remaining sample intervals (using the same ¢ and ). This shows
that ¥ is non-increasing. Together with continuity and the fact that ¥ is bounded
from below, this implies that the limit F{x(c0), n(c0)) exists. By adding all sample
intervals together, we obtain in the limit

P(x(00), n(00)) — P(x(1:), n(t:))

< - j F(x(1), u(t; %o ))de —'f 47"ﬁ}’—|| I n(z) | de
t; t o

“ 1
<— | o) x())+-— [ ()| dr
J:i F | ) ) 48\;”1}0” ’ﬂ
This implies that the infinite integral on the right hand side exists and is finite. Noting
the continuity (in time) of the involved functions, convergence of (x(1),5(1)) to (0,0)
follows from Barbalat’s lemma (Khalil, 1996). [ |

The result shows that there exists a finite observer gain such that the state and
the observer asymptotically converge to the origin. Thus, under the assumptions
made, it is not necessary to increase the observer gain to infinity to converge to a
small desired region. Depending on the considered system, even relatively small
observer gains might lead to asymptotic convergence.

5. Conclusions

The question of stability of output feedback NMPC is of practical as well as of
theoretical relevance. In this paper we have extended the results derived in Findeisen
et al. (2002, 2003a). We showed that under certain conditions an output feedback
NMPC controller based on the state estimate of a high-gain observer does lead to
semi-global asymptotic convergence. For any desired compact set of initial conditions
that is a subset of the region of attraction of the NMPC state feedback controller,
there exists a minimum observer gain and a maximum sampling time, such that the
states and the observer error asymptotically converge to the origin. Thus for reaching
the origin, it is not necessary to increase the observer gain to infinity. Depending on
the system considered, even small observer gains might lead to asymptotic conver-
gence. This is of special interest, since a decrease of the error resulting from the state
estimate does in general lead to an increases of robustness margins to other disturb-
ances of the closed-loop.
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