MODELING, IDENTIFICATION AND CONTROL, 2003, VOL. 24 wNo. 1, 27-35
doi:10.4173/mic.2003.1.3

Modeling Logic Systems with Structured Array-based Logict

REGGIE DAVIDRAJUH* and BASSAM HUSSEINY

Keywords: Arruy-based logic, logic modeling, logic programming

First this paper introduces an efficient tool called array-based logic for modeling
complex logic systems. The main concepts of array-based logic are explamed.
Second, the logic functions of this tool are presented with the help of six definitions.
Finally, an application example on manufacturing system is worked out.

1. Introduction

Structured Array-Based Logic is a toolbox of logic functions for modeling logic
systems. In the fields like manufacturing, mechatronic, control systems, and for
embedded processors, there is a need for a logic programming tool that gives complete
solutions, compact code, as well as fast computation (for real-time applications).
Structured array-based logic is such as logic programming tool written in MATLAB
language, that guarantees the requirements mentioned above, namely complete
solutions, compact, and fast.

1.1. Propositional logic

Modeling a logic system can be done exactly like modeling a physical system
(Bjorke, 1995). First, the fundamental logic variables (also called primitive logic
elements) are identified and each logic variable is assigned an axis; thus the logic
variables span the whole universe of discourse (total space), see Figure la. Then the
logic variables are connected into premises, thus creating a subspace of the total
space, see Figure 1b. Finally, the premises are combined to form the logic system,
connecting subspaces spanned by the premises. There are some differences between
the space span by the physical systems and logical systems; logical spaces are always
linear and discrete.

By connection, spaces that do not satisfy the constraints are removed, leaving a
smaller space that represents the feasible solution (Figure 1); this is after Lagrange,
who in analytical mechanics developed the free variational method. Thus Lagrange
developed the mathematical foundation for the basic procedures for logic modeling
discussed in this paper, and it was Pierce who applied these procedures (constraint
satisfaction) to logical problems (Maoller, 1995).

1.2 Array-based logic
By the mathematical approach for modeling logic systems, a Cartesian axis is
assigned to each logic variable in the system, generating subspaces spanning all

* Department of Electrical and Computer Engineering, Stavanger University College, Post
Box 8002, 4068 Stavanger, Norway. Email: Davidrajuh@hotmail.com

¥ Department of Production and Quality Engineering, Norwegian University of Science
and Technology (NTNU), Valgrinda, N-7491 Trondheim, Norway. Email: Bassam.Hussein@
ipk.ntnu.no

 An early version of this article was presented at Nordic Matlab Conference 2001, October
2001, Oslo, Norway.

27

28 Reggie Davidrajuh and Bassam Hussein

Lets say that « logic systen consists of three primitive logic variables, Temperature (with domain values
Tow', high'), Alarm ('off', ‘on’), and Power ¢ ‘off’, ‘on')

Power

Power

Temperature

'high'

Alarm Alarm
‘o’ 'off" ‘on'
Figure-la: Figure-1b:
The space spanned by the primitive logic The subspace spamned by the combination
variables Power, Alarm, and Temperature HTemp is low) AND (Alarm is ‘off)) OR (Power is 'on'))

=> (Power is 'on)) AND
(((Alarm is "on'y OR (Power is 'off')) => (Power is 'off'y)

Figure 1. Configuration space spanned by the logic variables.

possible states of all the variables, thus providing a complete representation. Though
complete, this representation is huge; this means, for M multi-valued logic variables
with a domain of N values, the resulting space will contain MY subspaces. This
exponential growth of the subspaces with increasing number of variables makes the
modeling and simulation slower. Array-Based Logic developed by O. I. Franksen
and G. L. Moller avoids this exponential problem by compressing M" subspaces into
M x N liner representation {Maeller, 1995: Franksen, 1979). Array-based logic also
provides operations, which operates on the compressed representation in linear time.

Array-based logic was written in APL language; we ported array-based logic to
MATLAB environment with some additional functions, and named structured array-
based logic.

2. The Toolbox Function

Propositional logic functions are for basic mathematical treatment of the logic
system after Lagrange and Pierce. By using the propositional logic functions, though
the configuration spaces will be large (exponential growth with increasing number of
variables), it will be complete; that is, the configuration space includes all possible
combinations of the logic variables. Array-based logic functions are enhanced logic
functions for modeling and simulation of logic systems using a compression tech-
nology that provides compact representation of configuration space and faster
simulation, without loosing completeness.

2.1 Propositional logic functions
All the logic variables (primitive elements) that are used in a system are to be
declared first; it is the function element that is used for declaration. Relevant to

28

Modeling Logic Systems with Structured Array-based Logic 29

the function element is the function assign; this function changes the values of
a logic variable.

E.g. To define a multi-valued logic variable ‘Color’ with a domain of three values
‘red’, ‘green’, and ‘blue’, we use,

5 o(c

Color = element{‘n’ {‘red’ ‘green’, 'blue’}, {‘green’}, ‘Color’);
t i f

The first argument ‘n’ indicates that the variable is multi-valued (or boolean).
The second group of input argument is values (of domain), the third group is the
default values selected at the time of declaration (in this example, default value is
‘green’), and the final input argument is the label or name of the variable. After
declaring a logic variable, we could change the values of the variable with the function
assign:

ColorRED = assign({‘red’}, Color);

Definition 1: Basic operations

A logic system can be built by applying the following four basic operations on variables:
disjunction (V), direct-implication (=>), nand, and converse-implication. These four
operations are known as the Kiein four group. Other logic operations can be derived from
these four basic operations. The functions for these four operations are, disjunct,
dimp, nand, and cimp respectively. B

E.g. If Premisel = (ColorRED == AlarmON), then we write,
Premisel = dimp(ColorRED, AlarmON);

Definition 2: Colligation

If the same variable occurs more than once in a premise or in a combination of
premises, then duplicate axes will be found in the configuration space. The process of
removing superfluous axes without losing any information is called Colligation. The
function that performs colligation is fuse. B

E.g. if System = disjunct(Premisel,Premise2), where
Premisel = dimp(ColorRED, AlarmON), and
Premise2 = dimp(ColorGREEN, AlarmOFF)

Then, the System contains two copies of the logic variables Color and Alarm (or
mathematically, two axes each for Color and Alarm). Duplicates of Color and Alarm
must be removed (or the axes are fused together) by,

System = fuse(System);

2.2. Array-based logic functions
The following definitions present the main functions for array-based logic.

Definition 3: Compressed representation

Compressed representation is to keep the relation (premises, subsystems, or system—
see Figure 2) to a minimal size without losing any information. The function used for
compression is compress. B

29

30 Reggie Davidrajuh and Bassam Hussein

SYSTEM

Subsystems ' S1.. 82 L.,
Join{) \
Premise P1 P2 P30
operatio A9 mp(), nand(), etc.
N W
ABC HEFG CHE G

Primitive logic variables

Figure 2. System perspective of modeling a logic system.

In compressed form, functions like join, deduct, etc. make use of the com-
pressed (compact) representation for faster computation. The function join connects
premises together via the common variables they posses; the resulting relation
(subsystem, or system) will be in compressed form. Compression technique is similar
to the Karnaugh map (K-map) reduction done in digital electronics.

In addition to Boolean variables and multi-valued variables, array-based logic
allows also quantitative (intervals, for example) to be treated as logic variables. There
are three types of variables in array-based logic: the nominal logic variables (boolean
and multi-valued), ordinal logic variables (e.g. Coordinate is [2,2], [4,2], or [3,3]) and
intervals (e.g. Cost is between <50 and 100>).

Definition 4: Intervals as logic variables
Array-based logic facilitates intervals 1o be treated as logic variables too. An interval
variable may contain many intervals, each of which may be true or false. B

To create an interval, the function interval is used.
E.g.: LowerInterval = interval(‘ge’, 85, ‘It’, 98).
This means, the LowerInterval is greater than or equal to 85, and less than 98.

An mterval variable is created using the function element.

E.g.: InputPrice = element(‘i’, {LowerInterval, UpperInterval}, ‘Input Price’),
where the first argument I’ indicates that the variable to be created is an interval
variable, and the final argument is a label of the variable.

Definition 5: Deducing conclusions
Deduction (or inference) is to draw conclusion from a connected system. Deduction is
performed by the function deduct, which makes the OR—projection of all the axes

complementary to the variables concerned, on the axes of the variables.]

The final definition is about the state of a system.

30

Modeling Logic Systems with Structured Array-based Logic 31

Definition 6: state of system

The state of a system is the information requived of the system to uniquely determine
an output for an input to the system. The output is a vector of outpul variables that is
computed from the input vector of variables and the sysiem (see Figure 2), using the
function state. =

Allowing quantitative variables to be treated as logic variables facilitates numerous
advantages in modeling complex logic systems. Use of propositional and array-basic
logic functions will become clear in the next section where we model a simple logic
system from manufacturing engineering. See Davidrajuh (2000) for more claborate
explanation of the logic functions. Table 1 shows the main functions.

Table 1. The main logic functions of the toolbox

A. Propositional logic functions

Al Basic operalions

disjunct OR operator

conjunct AND operator

dimp direct implication

bimp binary implication {(equivalence)

cimp Converse implication

exor Exclusive OR

nand NOT-AND operator

mvert NOT operator

A2. Format change

affirmative to extract valid configuration space from whole space
unpack Opposite of affirmative

A3. Deductions

ared Abductive (AND) reduction

dred Deductive (OR) reduction

fuse to remove superfluous axes (variables)

state to find state of a system (or outputs) for a given inputs

B. Array-based logic functions

BI. Compression technigues

COMpress to make compact model of a system
expand Opposite of compress

comsize Complement sizes of variables in a system
domsize domain sizes of variables in a system

B2. Interval

interval to create an interval
union union (combination) of intervals

complement to complement an interval
intersection Intersection of intervals

B3. Combination
join to combine relations (premises) through common variables

C. Utility functions

element to create a logic variable (or primitive logic element)

assign to assign new values to a multi-valued logic variable

domain to assign new domain to an interval variable

print to print any relation on screen (variables, and their combinations)

31

32 Reggie Davidrajuh and Bassam Hussein

Hydraulic
Actuator Cylinder

Rapid T,
phase S
valve _

i

=

&

Backward (R) Forward (F) ;
— o =
* =

=

Start (&) ; Hydraulic Work picce

pump

Figure 3. Application example-—a manufacturing system.

3. Application Example

In this section, we shall model a manufacturing system as an application example.
This example is taken from Hussein (1999). The example is simple, but the method-
ology given below can be used to model larger logic systems. In the modeling
approach (see Figure 2), first the primitive logic variables are identified. Then these
variables are grouped into premises using the logic operators like disjunct, dimp, etc.
Finally, the premises are joined to make the compete system.

3.1. The manufacturing system example

The manufacturing system is shown in Figure 3. It consists of a boring spindle
operated by a direct current servomotor. The linear motion of the boring spindle is
carried out by means of a hydraulic linear actuator. A constant pressure hydraulic
pump powers the hydraulic actuator. The volumetric flow is the hydraulic circuit is

controlled by a servo valve S, (Lien, 1995).
The operation of the system is governed by three sensors (micro-switches) B, M,

and E. where,

I. Sensor B indicates that the boring spindle is at the rear position,

2. Sensor M indicates that the boring spindle has reached the feeding position,
and

3. Sensor £ indicates that the boring spindle has reached the final destination,
and ready for backward motion.

The spindle is at the rear position initially, and the operator switches on the
system by a very short signal K. The manufacturing system then will go through
three modes of operation:

1. Starting from the initial state, hydraulic circuit will open rapid phase valve 7,
and the spindle will go forward by the opening the valve F

32

Modeling Logic Svstems with Structured Array-based Logic 33

Table 2. The logic variables of the system

Axis Variable Description of True state Description of False state
| F{output) Forward motion is On.

2 K (input) Start Stop

3 E (input) Breaker £ is On Breaker F is Off

4 S (output) Spindle motoer 1s On Spindle motor 1s Off

S M (input) Breaker A is On Breaker M is Off

6 { {output) Rapid motion is On Rapid motion 1s Off

7 R (cutput) Backward motion 1s On

8 B (input) Breaker Bis On Breaker B i1s Off

Table 3. Grouping logic variables 1nto premises

Premises Linguistic description Symbolic description

Pl Precede forward motion if and only if start signal 7= (K OR /) AND (N(iT £
is On or spindle is alrcady moving forward and it
didn’t reach breaker £.

P2 Open rapid motion valve 7if and only if spindle is 7= (# AND NOT M)
moving forward and it has not reached breaker M.

P3 Start spindle motor if and only if spindle 1s Se=(FAND M)
moving forward and it has reached breaker Af.

P4 Start backward motion if and only if breaker Bis R =(NOT F) AND (NOT B)

Off and feed forward 1s Off.

2. At position M, the rapid phase valve I will be switched off to start a controlled
feed forward motion. This motion is regulated manually by the servo valve S,.
At position M, the spindle motor will also be switched on by a signal S.

3. At position E, the backward motion R will begin. Simultaneously, the rapid

phase valve 7 will be switched on.

3.2. Modeling the logic sysiem
The manufacturing system consists of a physical system and a logical system; we
shall model the logical system only.

Identifying primitive logic variables The behavior of the logic system can be described
by the logic variables shown in Table 2.

Establishing the premises The logic variables are grouped into premises as shown in
Table 3 (Lien, 1995).

3.3. Logic Programming
In this subsection, we shall show how the logic system described above can be
programmed using structured array-basic logic.

Declaring the logic variables First of all, the logic variables must be declared.
MATLAB codes for creating the variables are shown below. MATLAB codes start
with a MATLAB prompt ‘>". In MATLAB, the text that follows the 4" mark is
comments, that is, not executable.

33

34 Reggie Davidrajult and Bossam Flussein

First we create the logic variables for the inputs K and E.

> Sdeclaring input Kwith domain

> % stop/start and default startc

> K=element ('n’, {’stop’, 'start’},
{"start’}, K" ;

$declaring E with domain off /on,

% with default value on

E=element (‘'n’, {'off’, on’},
{"on’}, "E’);

Similarly, other inputs M, B, and the outputs £, S, 7, and R can be declared.

VvV

Grouping the logic variables into premises
Premise Pl is: /7=(K OR F) AND (NOT FE). This is programmed as follows:

> Pl=Dbimp(F, conjunct (disjunct (K, ¥), invert (E}))) ;
Pl contains two copies of variable £ Therefore, a duplicate of F is removed:
> Pl=~Ffuse (P1l) ;
Premise P2 is: I=(F AND NOT M). This is programmed as follows:
> P2=Dbimp (I, conjunct (F, invert (M))) ;
Premise P3 is: S=(/ AND M). The program code:
> P3=bimp (S, conjunct (F, M)) ;
Premise P4 is: R=(NOT F) AND (NOT B). The program code:
> P4=Dbimp (R, conjunct (invert (F), invert (B))) ;
The combined system If we combine the four premises together using AND operator,
there will be 2% values (or ruples) in the truth table, as there are 8 Boolean variables.
Also, fusing the duplicate variables will be time consuming. Instead of AND ing the

variables together, we use the logic function join.
The system as the combination of the four premises,

> SYSTEM=join (P11, P2, P3, P4) ;

When we join the four premises, the function join removes duplicate variables
when combining two premises together, and leaves the combined system in the
compressed form by taking only the valid tuples. The combined system (SYSTEM)
is very compact and complete. This is the core of the inference engine. Because it is
compact, the inferences (deductions) made from it are fast.

3.4. Simulations on the combined system
Let us input some sample values to the inference engine.
> Input K=assign (K, {’start’});
> Input_B=assign (B, {’off’});
> Input M=assign (M, {‘off’});
> Input_E=assign(E, {'off’});

34

Modeling Logic Systems with Structured Array-based Logic 35

> Test Input Vector= [Input_K, Input B, Input_M, Input_E} ;
> output =state (Test_Input_Vector, SYSTEM) ;
> print (output) ;

The output printed on the screen is:
B ON S: OFF I: ON R: OFF **

This means, during the initial phase, when K is pressed, both /" and / will be
switched on for forward rapid movement, while spindle motor (S} and backward
movement (R) will remain switched off.

4, Closing Remark

The core technology of the approach discussed in this paper, the array-based
logic, is already used in many industrial applications, e.g. in TV sets. This paper
presented an efficient logic programming toolbox called structured array-based logic,
developed in MATLAB language with the aim of computing with words, in-addition
to fast, complete solutions, and compact. Computing with words facility greatly
enhances the modeler to concentrate on the logic modeling aspects rather than on
the internal representations.

5. References

Biorkr, ©. (1995) Manufacturing Systems Theory, TAPIR Publishers, ISBN-82-519-1413-2.

Morier, G. L. (1995) On the Technology of Array-Based Logic, Ph.D. thesis, Technical
University of Denmark.

Franksen, O. 1. (1979) Group Representations of Finite Polyvalent Logic—a Case Study Using
APL Notation. In Nimi, A. (ed.): A Link between Science and Applications of
Automatic Control, Pergamon Press, Oxford and New York, 1979.

DavipraJul, R. (2000) An Introduction to SABL, http://www.hin.no/ ~ rd/Projects/SABL.

Hussein, B. (1999) Modeling the Physical and Logical Properties of Mechatronic Systems:
A Manufacturing Theory Approach, Ph.D. thesis, Norwegian Univ. of Science and
Technology, 1999.

Lien, T. K. (1995} Digital Control for Mechatronic (in Norwegian), TAPIR publishers,
Norway, 1995,

35

