MODELING, IDENTIFICATION AND CONTROL, 2002, voL. 23, NO. 4, 275-298
doi:10.4173/mic.2002.4.3

Tutorial on Feedback Control of Flows, Part II:
Diagnostics and Feedback Control of Mixing*
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Control of fluid flows span a wide variety of specialities. In Part II of this tutorial,
we focus on diagnostics of mixing and the problem of enhancing mixing by
boundary feedback control. Diagnostic tools from dynamical systems theory
are presented that enable detection and quantification of chaotic transport in
periodically perturbed systems. However, real systems are generally not periodic,
and available measurements or simulations are finite in time. A method for
quantifying mixing in finite-time velocity fields is discussed, and applied to
data obtained from simulations of the 2D controlled channel flow. Mixing has
traditionally been brought on by open-loop control strategies, such as stirring, jet
injection or mixing valves. Applications of active feedback to mixing problems
are scarce in the literature, but the idea is currently drawing attention from various
research groups. Feedback laws for the purpose of mixing enhancement in 2D
and 3D pipe flow are presented, and simulations show that they induce strong
mixing.

1. Introduction

In many engineering applications, the mixing of two or more fluids is essential to
obtaining good performance in some downstream process (a prime example is the
mixing of air and fuel in combustion engines (Ghoniem and Ng, 1987, Annaswamy
and Ghoniem, 1995). As a consequence, mixing has been the focus of much research,
but without reaching a unified theory, either for the generation of flows that mix well
duc to external forcing, or for the quantification of mixing in such flows, see Ottino
(1989) for a review. Approaches range from experimental design and testing to
modern applications of dynamical systems theory. The latter was initiated by Aref
(1984), who studied chaotic advection in the setting of an incompressible, inviscid
fluid contained in a (2D) circular domain, and agitated by a point vortex. This flow
is commonly called the blinking vortex fiow. Ottino and coworkers studied a number
of various flows, examining mixing properties based on dynamical systems techniques
(Chien et al., 1986, Khakhar et al., 1986, Leong and Ottino, 1989, Swanson and
Ottino, 1990). Later Rom-Kedar ef al. (1990) applied Melnikov’s method and KAM
(Kolmogorov-Arnold-Moser) theory to quantify transport in a flow governed by an
oscillating vortex pair. For a general treatment of dynamical systems theory, see, for
instance, Guckenheimer and Holmes (1983), Wiggins (1990), and for background
material related to transport in dynamical systems, see Wiggins (1992). An obvious
shortcoming of this theory is the requirement that the flow must be periodic, as such
methods rely on the existence of a Poincaré map for which some periodic orbit of
the flow induces a hyperbolic fixed point. Another shortcoming is that they can only
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handle small perturbations from integrability, whereas effective mixing usually occurs
for large perturbations (Ottino, 1990). A third shortcoming is that traditional
dynamical systems theory is concerned with asymptotic, or long-time, behavior,
rather than quantifying rate processes which are of interest in mixing applications.
In order to overcome some of these shortcomings, recent advances in dynamical
systems theory have focused on finding coherent structures and invariant manifolds
in experimental datasets, which are finite in time and generally aperiodic. This has
led to the notions of finite-time hyperbolic trajectories with corresponding finite-time
stable and unstable manifolds (Haller and Poje, 1998, Haller, 2000, Haller and Yuan,
2000, Haller, 2001). The results include estimates for the transport of initial conditions
across the boundaries of coherent structures. In Poje and Haller (1999) these concepts
were applied to a time-dependent velocity field generated by a double-gyre ocean
model, in order to study the fluid transport between dynamic eddies and a jet stream.
An application to meandering jets was described in Miller et al. (1997). Another
method for identifying regions in a flow that have similar finite-time statistical
properties based on ergodic theory was developed and applied in Mezi¢ (1994),
Malhotra et al. (1998), Mezi¢ and Wiggins (1999). The relationship between the two
methods mentioned, focusing on geometrical and statistical properties of particle
motion, respectively, was examined in Poje ez al. (1999).

As these developments have partly been motivated by applications in geophysical
flows, they are diagnostic in nature and lend little help to the problem of generating
a fluid flow that mixes well. The problem of generating effective mixing in a fluid
flow 1s usually approached by trial and error using various ‘brute force’ open-loop
controls, such as mechanical stirring, jet injection or mixing valves. However, in the
recent papers (D’Allessandro et al., 1998, D’Allessandro et al., 1999), control systems
theory was used to rigorously derive the mixing protocol that maximizes entropy
among all the possible periodic sequences composed of two shear flows orthogonal
to each other. In Noack er al. (2000), the optimal vortex trajectory in the flow
induced by a single vortex in a corner subject to a controlled external strain field is
found using tools from dynamical systems theory. The resulting trajectory is stabilized
using control theory.

In Aamo et al. (2001), active feedback control was applied in order to enhance
existing instability mechanisms in a 2D model of plane channel flow. By applying
boundary control intelligently in a feedback loop, mixing was considerably enhanced
with relatively small control effort. The control law was decentralized and designed
using Lyapunov stability analysis. These efforts have recently been extended success-
fully to 3D pipe flow (Balogh et al., 2001), where it is also shown that the control
law has certain optimality properties.

In a recent paper by Bamieh ez al. (2001), the authors present a framework for
destabilization, in an optimal manner, of linear time-invariant systems for the purpose
of achieving mixing enhancement.

The remainder of this paper presents selected works in detail, with particular
emphasis on those using active feedback control for mixing enhancement.

2. What is Mixing?
A number of inherently different processes constitute what is called mixing. Ottino

(1989) distinguishes between three sub-problems of mixing: (i} mixing of a single
fluid (or similiar fluids) governed by the stretching and folding of material elements;
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(1) mixing governed by diffusion or chemical reactions; and (iii) mixing of different
fluids governed by the breakup and coalescence of material elements. Of course, all
processes may be present simultaneously. In the first sub-problem, the interfaces
between the fluids are passive (Aref and Tryggvason, 1984), and the mixing may be
determined by studying the movement of a passive tracer, or dye, in a homogeneous
fluid flow. This is the problem we are interested in here.

3. Diagnostics of Mixing
3.1. Chaotic advection in the blinking vortex flow

The application of dynamical systems theory to problems in mixing was initiated
by Aref (1984), who studied advection of passive tracer particles in the setting of an
incompressible, inviscid fluid, contained in a 2D circular domain. It was shown in
that reference, that a simple-looking, deterministic Eulerian velocity field may produce
an essentially stochastic response in the Lagrangian advection characteristics of a
passive tracer. This behavior is referred to as chaotic advection. The flow is driven by
a point vortex, whose motion in a circular domain of radius g, is denoted z(z), and
it’s strength is denoted I'. The function z(¢) is referred to as the stirring protocol. A
point in the domain is denoted {, so that { =x +iy. The flow is represented by a
complex valued function f{({), such that

w=f)=¢+iy

where ¢ is the potential function and y is the stream function. A point vortex at the
origin with strength I is given by

[f the point vortex is allowed to move according to z(7), we get
I
pe= i (=
W g €-2

For a circular domain with radius a, we superpose the image of the point vortex at
=(#) to obtain
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Consider a particle p, placed into the domain. We denote it’s position by
Cp =X+ l:}‘
The velocity of the particle is given by
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By solving equation (1) for an array of particles, we can now visualize the mixing
properties of the flow for various stirring protocols. In Aref (1984), the particular
case when

b fornT<i(n+ LT
(1) = n=0,1,2.3,... (2)

—b for(n+LHT<tn+ DT~

is studied in detail. b is a constant (possibly complex) contained in the domain, and
T is a positive real constant specifying the period of z(¢). The flow resulting from the
stirring protocol equation (2) is called the blinking vortex flow. The evolution
governed by equation (1) induces a mapping of the disk |{| <a onto itself, defined
by M:{(1) = {(t + 7). The mapping M is referred to as a Poincaré map. Denoting an
mitial set of points as P,, and applying the map iteratively to obtain the sets

P=MP, ),n=12,73,...
we define the set of visited points after N iterations as
'@N = U Pn

0€nsN

Figure 1 shows %, for 5=0.5, P,=[—0.35, —0.2, —0.05,0.17,0.2;,...,0.87,0.9i,
0.05,0.2,0.35], and for 9 different periods (7°€[0.05, 0.1, 0.125, 0.15, 0.20, 0.35, 0.5,
1, 1.5]). For T=0.05, %40 appears very regular, and the points visit a very small
area of the total domain. This suggests that a blob of tracer material put into this
flow, would be contained in a limited area given by the lines in the figure. As 7 is
increased, regions of chaotic behavior appear, and the size of these regions increase
with increasing 7. When 7' = 1.5, no trace of regularity can be seen. Next, we consider
the kind of stirring experiment which would be carried out in a real device. This is
done by introducing a blob of tracer material into the fluid at + =0, and watch it
evolve with time. Figure 2 shows the initial configuration of particles representing a
square blob for the study of the mixing properties of equation (2). 10000 particles
are evenly distributed in the box [—0.125,0.125] x [0, 0.25]. The position of the point
vortex is again chosen as b =0.5. Figure 3 shows the configuration of particles for 4
different time nstances (f€[3,6,9,12]) for 3 different periods (7€[0.1,1,3]). As
anticipated in Figure 1, the blob is contained in a very limited area for 7’=0.1, and
the shape of the area is easily recognized to be formed by the lines appearing in
Figure 1. Thus, it is shown how the study of a dynamical system can be reduced to
the study of a map, for which redundant dynamics are filtered out so that emphasis
is put on the underlying structures that govern mixing and transport.

3.2. Particle transport in the mixing region of the oscillating vortex pair flow

3.2.1. The oscillating vortex pair flow In Rom-Kedar (1990) dynamical systems
theory 1s applied in a mathematically rigorous manner in order to study the mixing
properties in a 2D model flow governed by a vortex pair in the presence of an
oscillating external strain-rate field. The vortices have strength + I, and are mitially
separated by a distance 2d in the y direction. The stream function for the flow in a
frame moving with the average velocity of the vortices is

wo Iy {(x_—ﬁ)Z +O=»)y

; . . y
dr (x _xv)2 s (y _I_yu)z} ¥+ axysm(w )

d]
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Figure 1. lterated-map results (Z5000) for Te[0.05,0.1,0.125,0.15,0.2,0.35,0.5. 1, 1.5].

where (x,(1), y.(¢)) and (x,(f), — y,(#)) are the vortex positions, ¢ is the strain rate and
¥, 1s the average velocity of the vortex pair. For ¢ =0, x,(f) =0, y,(t)=d and V,=
I'/And. Introducing appropriate scaling of the variables, and defining y = I'/2rnowd?
and v, =2ndV,/T", we obtain the dimensionless equations for particle motion

dx _ Y= S A 2. S
dr (J\'. — x,,]z + (J’_Jf'p)z (x_‘xtr)z + (y +yl:)2

) v+ ?sin(ﬂw 3)

dy _ 1 S S B
E_{x_x")((x—xlrjz+(y—y.,)2 {xux..)2+(y+.!’v)2) Tsm(ﬁﬂ @
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Figure 2. Initial configuration of particles for studying the mixing properties of the blinking
vortex flow. The position of the point vortex is indicated by the two crosses ( x ).

The vortex positions are governed by

L rginary)
a "2y, Ty Y

dy &y .
—r = — —%gin(t/
a (thy)
This flow approximates the motion in the vicinity of a vortex pair moving in a wavy-

walled channel. In the perturbation analysis that follows, ¢ is assumed to be small.
The right hand side of equations (3)—(4) can be expanded in powers of ¢ to obtain

x=110x, ) + 89, (x, y, thy; ) + O(E®) (5

Y =f2(x,9) + &g (x, ¥, t1y;y) + O(e?) (6)
where
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Figure 3. Configuration of particles in the blinking vortex flow for 4 different time instances
(r€[3,6,9,12)) for 3 differem periods (T€[0.1, 1, 3]).

The streamlines of the unperturbed flow (¢ = 0) are shown in Figure 4. For this case,
there are two hyperbolic fixed points, p_ and p . , connected by the limiting streamlines
defined by

W W) 0 =0, |x] <4/3, 3 <0
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Figure 4. Streamline of the unperturbed vortex pair flow.
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The particle motions on the interior of the limiting streamlines W, U, up_ Up . are
qualitatively different from those on the exterior. Also, since streamlines cannot cross
(for ¢ =0 ), there is no transport between the interior and the exterior of the limiting
streamlines. We are interested in analysing how this picture changes when the strain
rate field 1s applied (¢ # 0).

3.2.2. The Poincaré map We may rewrite the tune-varying system equations (5)—(6)
as an equivalent time-invariant system by introducing the state 8 = ¢/y mod 2z. Thus,
the system equations (5)+6) can be written as

X =f1(x, ) +eg(x, ,0;7) + O(e*) (7)
y :fZ(xa y) + Egz(xa y’ 99 '}’) + 0(82) (8)
0=1/y 9)

which is now a three-dimensional time-invariant system. A two-dimensional global
cross section of the three-dimensional state space of equations (7)~(9) can be
defined by

Z5={(x,7.0)16 = 6¢[0, 2m)}
on which we define the Poincaré map

T5:X5— 2%

a2 2 = (10)
(x(0), ¥(0)) = (x(6 + 27), (0 + 2m))

In the unperturbed case, the orbits of the Poincaré map are sequences of discrete
points lying on the streamlines shown in Figure 4. Thus, the streamlines are invariant
manifolds of the map. Orbits starting on Y¥,, ¥, and ¥, are heteroclinic orbits, and
the points p_ and p, are fixed points of the map. Orbits on ¥, and W, approach p,

lir



Diagnostics and Feedback Control of Mixing 283

in positive time, and ¥;u'¥,Up., is therefore the stable manifold of P+, denoted
Wi . Similarly, 'V, ¥, up_ is the unstable manifold of p _, denoted W*. The unstable
manifold of p,, denoted W, is {(x,y)|x <./3,y =0}, and the stable manifold of
p-, denoted W=, is {(x.y)|x> —ﬁ, y=0}. Clearly, W3 and W" intersect along
¥, and ¥,, creating a barrier to transport between the interior and exterior of the
limiting streamlines. For sufficiently small ¢, p, and p_ persist as fixed points of the
Poincaré map equation (10), denoted p, , and p_ ,, respectively. Their stable and
unstable manifols, W5, W5, WY and W* also persist to become the stable and
unstable manifolds of p, , and p_ ,. They are denoted W Yoo WE , WY and WY,
respectively. Due to symmetry about the x-axis, y =0 is an invariant manifold for all
&, which implies that the stable manifold of p_ , and the unstable manifold of P+e
always coincide on the line connecting the two fixed points. W? eand W . on the
other hand. may not coincide in the perturbed case. It is possible for W5, and
W . to intersect at an isolated point, which implies, by invariance of W?* ., and
WY ., that they must also intersect at every iterate of the Poincaré map and it’s
inverse. Thus, Wi ,and W , may intersect at infinitely many discrete points, leading
to a geometry like the one shown in Figure 5. If this is the case, the barrier that is
present in the unperturbed case splits open, and transport of fluid accross it becomes
possible. This behavior of the stable and unstable manifolds is also reminiscent of
chaotic particle motion.

Figure 5. A Poincaré section of the oscillating vortex pair flow, showing the unstable (solid
line) and stable (dashed line) manifolds of the two hyperbolic fixed points. Due to the tangling
of the manifolds, this image is also referred to as the homoclinic tangle.
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3.2.3. Melnikov's method The existence of an isolated point of intersection of W3 ,
and W* , can be established by Melnikov’s method (Wiggins, 1990), which relates
the signed distance between the two manifolds to the so-called Melnikov function
according to

M(to)
(CACEN]

where ¢,(f) is the heteroclinic particle trajectory of the unperturbed velocity field,
coinciding with ‘P, of Figure 4, , parametrizes distance along ¥,, and

1A (@ — toD | = f1 (@l — 2))* + 12(gu(— t0))*
M(t,) is the Melnikov function defined as

d(1o,8) = ¢ + 0(e?)

M(to) = j (£ @u)92(@u(D), £+ 16) — [2(q.(1)9:(q. (),  + 1o) 1 dt

The result of Melnikov states that simple zeros of M(#,) imply simple zeros of d(Zo, €)
(for sufficiently small &). In Rom-Kedar ez al. (1990), the Melnikov function for the
system at hand is computed numerically to obtain
M) =" Dsinroh

with F(y) plotted in Figure 6. For any fixed 7 # y*, M(t,) has an infinite number of
simple zeros, corresponding to transverse intersections of W3 , and W ,. This
confirms the geometry shown in Figure 5. Studying the dynamics associated with the
tangling of the stable and unstable manifolds of p., . and p_ ,, can further quantify

Figure 6. Graph of F(y) appearing in the Melnikov function.



Diagnostics and Feedback Control of Mixing 285

the particle transport taking place. This involves the motion of so-called lobes, and
the area of these lobes quantifies transport. Again, for sufficiently small &, the
Melnikov function is a measure of the area of the lobes. We will not persue this here,
but refer the reader to Rom-Kedar ( 1990) for further details.

3.3. Diagnostic tools for finite-time mixing

In time-periodic advection models, it is enough to know the velocity for finite
times (e.g. for one period) to reproduce its infinite-time history. As a result, transport
can be studied through the lobe dynamics of stable and unstable manifolds of
appropriate Poincaré maps, as was demonstrated in the previous sections. However,
for real flows, which in general are not periodic, one would have to know the velocity
field for infinite times in order to define stable and unstable manifolds. This fact rules
out the study of experimental datasets, both those consisting of measurements of
actual flows, as well as those produced in a computer simulation. In a series of papers
Haller and Poje (1998), Poje et al. (1999), Poje and Haller (1999), Haller (2000),
Haller and Yuan (2000), Haller (2001), Haller and coworkers introduced and applied
the notions of finite-time stable and unstable manifolds. The essentials of this new
theory are outlined below.

3.3.1. Coherent structures A real flow will contain regions having different dynamical
behavior. These regions are referred to as Lagrangian coherent structures. In Section
3.2 we encountered two fundamentally different dynamical behaviors in the oscillating
vortex pair flow. One was the rotational motion occuring in the interior of the
scparating streamlines ‘¥, and ‘¥, and the other was the translational motion occuring
in the exterior of the separating streamlines. Thus, the regions in the interior and
exterior of the separating streamlines are examples of coherent structures. The stable
and unstable manifolds of the two fixed points coincided on the separating streamlines
in the unperturbed case. In the perturbed case, however, they did not coincide, but
intersected transversally at an infinite number of discrete points, leading to the
formation of lobes whose dynamics is the mechanism by which transport between
the interior and the exterior of the boundaries occurs. Such boundaries between
coherent structures in the flow appear to be the locations in the flow where material
blobs are stretched and folded most extensively. Extensive stretching and folding are
reminiscent of effective mixing. Blobs of particles that travel together in the vicinity
of coherent structure boundaries will in certain cases suddenly depart in opposite
directions leading to local stretching across the boundary, as illustrated in Figure 7.
In other cases the blob will become thinner and thinner as it is stretched along the

Figure 7. Stretching across a coherent structure boundary.
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Figure 8. Stretching along a coherent structure boundary leading to folding.

coherent structure boundary leading, eventually, to folding due to the global geometry
of the boundary, as illustrated in Figure 8. For these reasons, it is of interest to be
able to lecalize the boundaries of coherent structures in a given finite-time dataset.

3.3.2. Material lines and surfaces Consider the two-dimensional velocity field, u(x,?),
with the corresponding particle motion

X=u(x,1) (11)

on some finite-time interval [t_,,¢,]. Given a curve of initial conditions, I} , on the
state space, later images of I;, under the motion (11), denoted I;, are called material
lines. Augmenting the state space with the time variable, the evolving curve, I, spans
a two-dimensional surface in the extended state space (x, #). This surface is called a
material surface, and denoted M (see Figure 9 for a graphical sketch). In order to
study the stability of M, we need to linearize the extended flow map, %, along M.
The extended flow map is given by

Xo x(to + 75 tg, Xo)
Fr >
to to +7

We denote the linearized extended flow map by DF".

3.3.3. Stability properties of material surfaces M is called an unstable material surface
on the time interval I, if there is a positive exponent 1, such that for any sufficiently

Figure 9. A material surface M spanned out by the material line T;.
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Figure 10.  An unstable material surface repelling nearby trajectories.

close initial condition p(t) = (x(t),7) and for any small time step h >0, with tel,
and t + hel,, we have

dist(p(t + h), M) = dist( p(1), M)e*"

So, if .A47(p,7) is a unit normal to M at the point (p, ) in the extended state space,
then M is an unstable material surface over I, if for all 7,7 + he I, and for all initial
conditions (x,, 7)€ M, we have

[ AT + h), 1+ h) - DFM(x)A (0, T)] = ™" (12)

where (x(t + /), T+ A1) is the trajectory passing through (x,,7) in the extended state
space. Figure 10 shows a sketch of an unstable material surface over the time interval
I,. N is called a stable material surface if it is an unstable material surface in the
sense of equation (12) backwards in time. An unstable (respectively, stable) material
line with instability interval I, (respectively, stability interval I,) is a curve T, which
generates an unstable (respectively, stable) material surface in the extended state
space. Unstable and stable material lines and surfaces are referred to as hyperbolic
material lines and hyperbolic material surfaces, respectively. Their associated intervals
I, and I, are referred to as hyperbolicity intervals. Hyperbolic material surfaces are
never unique on a finite-time interval. However, if they are unstable for a sufficiently
long time interval, they will appear unique up to numerically unresolvable errors.
Thus, stable and unstable material surfaces will be used in the definition of coherent
structure boundaries. The results outlined above have also been extended to the 3D
setting (Haller, 2001).

3.3.4. Detecting coherent structure boundaries For any initial condition x, at time
fo€[f_4,1,], consider the maximal open set, .%,(x,), within [f,,,] on which the
instability condition equation (12) is satisfied. The instability time 7,(x,, t,) associated
with x, over the time interval [1,, t,] is defined as

|
Lxp.tp)= -~ dt
h—1o Fulxp)
e TR Ed 1]
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That is, T, 1s the fraction of the time ¢; —¢,, for which the instability condition
equation (12) holds. Similarly, the maximal open set, .#(x,), within [¢,,7_,], on
which the instability condition equation (12) is satisfied in backward time, defines
the stability time 7;(x,.f,) associated with x, over the backward time interval
[to,2_1] as

Ti(xp,10) = 1 di
fo =11 J o

T.(xo,ty) and T(x,,1,) are called the hyperbolicity times associated with x, at 2.
With these definitions, coherent structure boundaries at ¢ = ¢, are given by stable and
unstable material lines along which T; or T, attains local extrema. In the next section,
the fields 7; and 7, are plotted for studying mixing properties in controlled 2D
channel flow. It is interesting to note, that for time periodic velocity fields, the
coherent structure boundaries defined above coincide with the stable and unstable
manifolds of hyperbolic fixed points of the corresponding Poincaré map.

4. Destabilization

4.1. 2D channel flow

Mixing is commonly induced by means of open loop methods such as mechanical
stirring, jet injection or mixing valves. These methods may use excessive amounts of
energy, which in certain cases is undesirable. In Aamo ef al. (2001), it is proposed to
use active feedback control on the boundary of a 2D channel flow, in order to exploit
the natural tendency in the flow to mix. In Aamo (2002) (Section 6.3.2) it was
demonstrated that the very simple control law,

Vyall :kuAP (13)

has a significant stabilizing influence on the 2D channel flow. In this section, we
explore the behavior of the flow when £, is chosen such that this feedback destabilizes
the flow rather than stabilizes it. The conjecture is that the flow will develop a
complicated pattern in which mixing will occur. 2D simulations are performed at
R = 6000, for which the parabolic equilibrium profile is unstable. The vorticity map
for the fully established flow (uncontrolled) at this Reynolds number is shown in the
topmost graph in Figure 11. This is the initial data for the simulations. Some mixing
might be expected in this flow, as it periodically ejects vorticity into the core of the
channel. The objective, however, is to enhance the mixing process by boundary
control, which we impose by setting &, = 0.1 in equation (13). The vorticity maps in
Figure 11 suggest that the flow pattern becomes considerably more complicated as a
result of the control. The upper-left and upper-right graphs in Figure 12 show the
perturbation energy, £(w) , and enstrophy as functions of time. The former increases
by a factor of 5, while the latter is doubled. It is interesting to notice that the control
leading to such an agitated flow is small (see lower-left graph in Figure 12). The
maximum value of the control flow kinetic energy is less than 0.7% of the perturbation
kinetic energy of the uncontrolled flow, and only about 0.1% of the fully developed,
mixed (controlled) flow! Next, we will quantify the mixing in a more rigorous way,
by studying the movement of passive tracer particles, representing dye blobs.

The location of the dye as a function of time completely describes the mixing,
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Figure 11. Vorticity map for the fully established, uncontrolled, channel flow ar Re = 6000
(top), and for the controlled case at 1 = 50 (middle) and ¢ = 80 (bottom).

[=%

0 100 200 300 400 300

Figure 12.  Energy F(w) (top left), enstropy (top right), control effort ({(w) (bottom left), and
dye surface length (bottom right), as functions of time.
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but in a flow that mixes well, the length of the interface between the dye and the
fluid increases exponentially with time. Thus, calculating the location of the dye for
large times is not feasible within the restrictions of modest computer resources
(Franjione and Ottino, 1987). We do, nevertheless, attempt this for small times, and
supplement the results with less accurate, but computationally feasible, calculations
for larger times. A particle-line method, loosely based on Ten et al. (1998) and
Krasnopolskaya et al. (1999), is used to track the dye interface. In short, this method
represents the interface as a number of particles connected by straight lines. The
positions of the particles are governed by the equation dX/dr=(U(X, 1), V(X, 1)),
where X is a vector of particle positions. At the beginning of each time step, new
particles are added such that at the end of the time step, a prescribed resolution,
given in terms of the maximum length between neighboring particles, is maintained.
The fact that we are working with a single fluid representing multiple miscible fluids,
ensures that dye surfaces remain connected (Ofttino, 1990). At =50, when the
perturbation energy is about tripled in the controlled case (Figure 12), eighteen blobs
are distributed along the centerline of the channel as shown in Figure 13. They cover
25% of the total domain. Figure 14 compares the configuration of the dye in the
uncontrolled and controlled cases for 5 time instances. The difference in complexity
is clear, however, large regions are poorly mixed even at ¢ = 85. The lower-right graph

Figure 13. Initial distribution of dye blobs (at ¢ = 50).

Figure 14. Dye distribution for uncontrolled flow (left column) versus controlled flow (right
column) at ¢ = 55, 60, 65, 75 and 85 (from top towards bottom).

F 2 T
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Figure 15. Particle distribution for controlled flow at =85, 100, 125 and 150 (from top
towards bottom).

in Figure 12 shows the total length of the surface of the dye. The length appears to
grow linearly with time in the uncontrolled case, whereas for the controlled case, it
grows much faster, reaching values an order of magnitude larger than in the
uncontrolled case. In order to approximate the dye distribution for large time, a fixed
number of particles are uniformly distributed throughout the domain, distinguishing
between particles placed on the inside (black particles) and on the outside (white
particles) of regions occupied by dye. Figure 15 shows the distribution of black
particles at ¢ =85 (for comparison with Figure 14), 100, 125 and 150. The particle
distribution becomes increasingly uniform.

In order to quantify the mixing further, we ask the following question: given a
box of size ¢, what is the probability, P, of the fluid inside being well mixed? An
appropriate choicc of &, and what is considered well mixed, are application specific
parameters, and are usually given by requirements of some downstream process. In
our case, the blobs initially cover 25% of the domain, so we will define well mixed to
mean that the dye covers between 20% and 30% of the area of the box. The size & of
the boxes will be given in terms of pixels along one side of the box, so that the box
covers &° pixels out of a total of 2415 x 419 pixels for the entire domain. On this
canvas, the box may be placed in (419 — (¢ —1)) x 2415 different locations. The
fraction of area covered by dye inside box i of size ¢, is for small times calculated
according to

. R
=% (14)
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Figure 16. Probability of well mixedness for the uncontrolled case (0) and controlled case (*).

where 7, is the number of pixels covered by dye, and for large times according to

i M
&

n,, +ny

(15)

where n, and n, denote the number of black and white particles, respectively,
contained in the box. P , which depends on ¢, is calculated as follows

P, =% > eval(0.2 <c} <0.3) (16)

i=1

where 7 is the total number of boxes. The expression in the summation evaluates to
1 when 0.2 <c¢i<0.3 and 0 otherwise. For small times n= (419 — (¢ —1)) x 2415,
whereas for large times n may be smaller as we choose to ignore boxes containing
less than 25 particles. Figures 16 and 17 show P, as a function of time for
ge[15,30,45,60]. In Figure 18, the hyperbolicity times of a grid of uniformly
distributed initial conditions at 7, = 100 are shown (see Section 3.3.4 for the definition
of hyperbolicity time). The geometry of the coherent structure boundaries become
considerable more complex in the controlled case, indicating extensive stretching and
folding of material elements in the flow.
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Figure 17. Probability of well mixedness for the controlled case based on uniform particle
distribution.

4.2. 3D pipe flow

Recently, the results of the previous section have been generalized to 3D pipe
flow (Balogh et al., 2001). The control law designed in Aamo (2002, Section 6.3.2),
with an appropriately selected feedback gain, was used, that is

v(1,0,z,0) =k (p(1,0,z,0) — p(1,0 + .z, 1)) (17)
Simulations were performed at Re = 2100, which is slightly higher than the limiting
number Re = 2000 for nonlinear stability. Figure 19 shows that the control results in
an approximately 50 increase in the perturbation energy and 92 almost instantaneous
increase in the enstrophy.

The instantaneous streamwise vorticity along a cross section of the pipe (Figure
20) also shows some promise for increased mixing with higher values of vorticity and
more complex vortex structures in the controlled case than in the uncontrolled case.
Vorticity is increased not only near the wall but everywhere in the pipe.

The method used to quantify and visualize mixing is the tracking of dye in the
flow, as done for the 2D case in the previous section. A passive tracer dye is
introduced along the center of the pipe represented by a set of 100 particles
(Figure 21). The position of these particles is traced using a particle-line method
(Krasnopolskaya et al., 1999, Ten et al., 1998). The distance between neighboring
particles is kept under 0.1 by introducing new particles to halve the distance if
necessary to obtain a connected dye surface at all time. As shown in Figure 22, the
number of particles, that is, the length of the dye, increases in the controlled case at
a much higher rate than in the uncontrolled case. Adding particles is not feasible
computationally for an extended period of time. Addition of particles was stopped
when their number reached two million (=4 in the controlled case and =8 in
the uncontrolled case), but the tracking of them continued. Figure 23 shows the
distribution of particles inside the pipe. In the controlled case a more uniform particle
distribution was obtained even for smaller time.




294 Ole Morten Aamo and Thor I. Fossen

Uncontrolled flow, forward time (7;,(x,, £,))

Figure 18. Hyperboliticy times for uncontrolled (upper two graphs) and controlled (lower
two graphs) channel flow at ¢, = 100.

In Balogh et al. (2001), the control law equation (17) was also shown to exhibit
certain optimality properties.

5. Concluding Remarks

The field of flow control has picked up pace over the past decade or so, on the
promise of real-time distributed control on turbulent scales being realizable in the
near future. This promise is due to the micromachining technology that emerged in
the 1980s, and developed at an amazing speed through the 1990s. In lab experiments,
so called micro-electro-mechanical systems (MEMS) that incorporate the entire
detection-decision-actuation process on a single chip, have been batch processed in
large numbers and assembled into flexible skins for gluing onto body-fluid interfaces
for drag reduction purposes.
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Figure 21. Initial particle distribution.

Control of fluid flows span a wide variety of specialities. In Part II of this tutorial,
we have focused on diagnostics of mixing and the problem of enhancing mixing by
boundary feedback control. Diagnostic tools from dynamical systems theory have
been presented that enable detection and quantification of chaotic transport in
periodically perturbed systems. However, real systems are generally not periodic, and
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available measurements or simulations are finite in time. A method for quantifying
mixing in finite-time velocity fields has been discussed, and applied to data obtained
from simulations of the 2D controlled channel flow. Mixing has traditionally been
brought on by open-loop control strategies, such as stirring, jet injection or mixing
valves. Applications of active feedback to mixing problems are scarce in the literature,
but the idea is currently drawing attention from various rescarch groups. Feedback
laws for the purpose of mixing enhancement in 2D and 3D pipe flow have been
presented, and simulations show that they induce strong mixing.
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