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Passivity Analysis of Nonlinear Euler-Bernoulli Beams

MEHRDAD P. FARDf}
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The Lagrangian equations for distributed-parameter systems based on Hamilton’s
principle are developed. These equations are subsequently used to derive nonlinear
models for beams. The passivity properties of the flexible mechanical systems
based on their distributed-parameter models are then investigated and direct
output feedback control laws for control purposes are proposed. Finite gain L,
stability and passivity of closed-loop systems are proven. Ilustrative cases with
simulation of the nonlinear beams and stabilizing feedback control laws are
included in the text.

1. Introduction

This work is motivated by the industrial interest in stabilizing vibrating slender
bodies. This is particularly an area of interest for the offshore engineering community
where vibrating slender bodies cause wear and tear due to fatigue. For instance,
vortex induced vibrations on marine risers and on floating underwater pipelines are
often the dimensioning load with respect to fatigue. Vibrating drill pipes in offshore
oil and gas exploration cause reduced drilling productivity and consequently increased
costs. Vibrating suspension bridges and energy transmission lines are also of great
concern for the industry.

Passivity properties of distributed-parameter systems have been investigated very
little in their original form, i.e. partial differential equaions (PDE’). There are few
papers which exploit this property of the original models to design control laws. In
Matsuno and Murata (1999) the passivity properties of one-link and two-link exible
arms, in their original distributed-parameter models, are investigated. In Aamo and
Fossen (1999) the passivity of a mooring system, modeled as distributed-parameter
system, is proved. Then, it concludes that passive control laws in combination withthe
mooring system ensure stability of the total system.

This work establishes the equations of motion and some basic properties of the
nonlinear beam equations. The reader is further introduced to the field of automatic
control and stabilization of vibrating beams. Illustrative examples are included with
simulations. The models are derived from the Lagrangian equations for beams using
a distributed parameter approach. The resulting equations are nonlinear. It is proved
that the resulting nonlinear systems are passive. The passivity analysis of underlying
systems are carried out using the original models. The passivity property is then used
to design output feedback control laws for stabilizing vibrating beams. Finite gain
L, stability and passivity of the closed loop are proven.

This paper is organized as follows: in Section 2 nonlinear models for beams are
derived. Section 3 is devoted to passivity analysis and control design. Numerical
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analysis of the underlying systems are conducted in Section 4. The results of numericali
simulation are presented in Section 5.

2. Mathematical Modelling

For distributed systems, the kinetic and potential energies, in terms of generalized
coordinates, can be written as

"L

V=1 V(q,q,9)dx ()
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where 7 and F are the kinetic and potential energy intensities, respectively. Morcover,
the virtual work is stmply

L
ow,. = J f(x, Hoqdx (3)
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where f(x, 1) is a vector of the generalized forces corresponding to the generalized
coordinate, q. Concentrated forces can be expressed as distributed by means of spatial
Dirac delta functions. The extended Hamilton’s principie
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requires variation of the Lagrangian L=7T— V.
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The integral can be transformed by using integration by parts with respect to x and ¢.
It will be assumed that differentiation and variation are interchangeable. First, the
integration is carried out with respect to ¢,
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Note that the fact that oq is zero at 1 =1,,¢, is used. The next step is to carry out
integration by parts with respect to x, thus
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Similarly, the next term can be transformed as follows:
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Introducing equations (3-8) into (4) results in
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At this point, the arbitrariness of the virtual displacement is invoked. If &q(0, ) =

0q(L, 1) =0 and 84(0, 1) = 54(L, ) =0, equation (9) is satisfied for all values of |
with xe(0, L) if and only if
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for ¥(x, )e(0, L) x (0, oc]. The boundary conditions may be derived from
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Boundary conditions are obtained by considering that either 8q(0, 1) or its coefficients
are zero and either (0, ¢) or its coefficient is zero. Similar statements can be made
about the conditions at x = L. Equation (10) represents the Lagrangian equation of
motion for distributed-parameter system with Lagrangian given by L=7T-V ,
where 7" and V are as in equations (1-2).

It is worth noting that the Lagrange equation, equation (10), was derived for
systems with Lagrangian given by equations (1-2). Possible sources of potential
energy at the boundaries, like for instance springs were not considered. In cases
where such devices are attached to the boundaries, the potential energy due to these
devices can be added to the expression for potential energy equation (1). The
inclusion of these terms does not affect the Lagrangian equation but changes the
boundary conditions for that particular system.

doq

2.1. Coupled dvnamic system

Figure 1 shows a beam in bending under the distributed transverse force f(x, 1).
It is assumed that the beam is pre-tensioned with a constant axial force, P,, at its
boundary. In addition to this force, the beam is subjected to a time varying axial
force which is caused by the elongation of the beam in the longitudinal direction and
the bending of the beam in the transverse direction. The significant physical properties
of the beam are the flexural rigidity, or bending stiffness, EI(x), the mass per unit
length pA(x) and the axial stiffness EA(x). These parameters are functions of
independent variable x. The variables n(x,7) and u(x, f) denote the transverse and
longitudinal displacements respectively, and vary with position and time.

This section presents the derivation of the equations of motion for a modified,
nonlinear Euler-Bernoulli beam. The coupling in longitudinal and transverse
dynamics are included in the model. It is assumed that the beam is uniform along its
length, and accordingly the physical propertics of the beam are assumed constant.
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Figure 1. A transversely vibrating beam with axial force.

Henceforth in this paper,for the sake of simplicity and brevity, the notation

5, =20 (%0
()II‘ at25()x_ax:

»
X

and so on will be used. The Lagrangian, L =T — ¥, for the beam configuration

shown in Figure 1 is given by
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where 7(f) and W(f) represent the kinetic and potential energy respectively. The
expression for the potential energy consists of three parts. The first term is due to
bending, the second term is due to the axial force, and the third term is the strain
energy of the beam. The generalized coordinate vector q is defined as q’ =[u(x, 1),

n(x, H)]". The generalized force vector is given by
f(x, 1) =[0,/Cx, 01"

Computation of terms in (10) yields
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Substitution of the expressions equations (12-—17} into (10), yields
ANy + Elfpys — Py 23( ) ) — EA -a L) —fx.)=0  (18)
pAY— EAp, —%EA 2 ) =0 (19)

The boundary conditions for a simply supported beam are obtained, using equation
(11), as

; EAn? + EAp, = u(1), atx=1L (20)
Eln, . =0, atx=0,L (21)
nx, 1) =0, atx=0,L (22)
pix, 1)=0, atx=0 (23)

where (f) represents the control input.

2.2. Transverse bending of a beam

In many cases it is desirable, or sufficient, to consider only the transverse dynamic
of a beam and neglect the coupling between transverse and longitudinal dynamic.
This corresponds to the case where it is assumed that the strain-displacement relation
is given by

1 J-E}flr,tJlt

P(x,t)= P0+2

Consider the Lagrangian
L P
L=E p“h?t _Efnxx' POHJl:_EAZ”x dx
(1]

for V(x, )e(0, L) x [0, co). Following the same line of reasoning as in Section 2.1, one
can obtain the equation of motion

EA @
PANy + ER ey — Potlx — 7 2 ") —f(x,n=0 (24)

With reference to equation (11) the boundary conditions are obtained as

— Bl Pt S =0, atx—L 25)
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Ely,, =0, atx=0, L (26)

nix,t)=0, atx=10 (27)

where u;(f) is the boundary control input. The boundary control in equation (25)
represents the balance of shear force at the boundary.

2.3. Transversely vibrating beam with control mechanism

In the previous section there was no active control mechanism for the system.
Consider a control mechanism, which consists of a mass-damper-spring (MDS)
system that is attached to the boundary of the beam as shown in Figure 2. This
mechanism is composed of a lumped mass m, a viscous damper with constant
coefficient d and a spring with constant stiffness k. The boundary control force u(f)
is applied to this MDS system. The equations of motion of the total system in the
domain, 0 < x < L, will be the same as in equation (24). Only the boundary condition
in equation (25) will be modified to take into account the MDS system of the control
mechanism:

EA
- Elnxxx + Po”lx + 7”5 + mr,tt + d’?: + kr’ = MC(I) a't X = L (28)

The new state vector v =[n(x, 1) n(L, ©)]' is now introduced. After introduction of
damping into equation (24), the governing equations can be written as

Mi+Dv+Pv+F =U (29)
where

[ pA 0j|
M =

| 0 m

(D 0
Bi=

“{} d:|
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Figure 2. A vibrating beam with a MDS boundary controller.
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3. Passivity Analysis

3.2. Passivity of coupled system

Proposition 1. The system consisting of equations (18-19) with the boundary
conditions (equations (20-23)) is lossless passive when the output y,(f) is given as

yi(D) = (L, 1)

Proof: Consider the storage function

L
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Diflerentiation of ¥{(z) with respect to time, using the results of Lemma 1 yields

L I
EA
+ ETn, +75 UM
0 4]

L
+ EAP[.\:P'!
0

L
(1) = — Elym,

4]

L L L

1
+ EA'J::FHI: + EA 5 q:chl

0 0

+ Pon.n,

0
) = (EA,UX(L, N+ EA % (L, I)),u;{L, f).

Hence, using boundary condition equation (21) and y,(t) = (L, 1) yields ¥(¢) =
u;(1)y (), which completes the proof.
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Figure 3. The closed-loop system.

Theorem 1. Consider the feedback system in Figure 3, where 5 is defined by
equations (18-19) and (20-23). Let the controller output, y,(¢) be

y2(1) = Kuy (1) = Kp (L, 1) G31)

where K> 0. Then the closed-loop system X, ,, consisting of equations (18-19)
and equations (20-23) with control law eqaution (31) is #,-stable.

Proof: Control law equation (31) is output and input strictly passive according to
Definition 10.6 in Khalil (1996), since

1
w2 (DY) = 5130 + 5 A0,

According to Theorem 10.6 in Khalil (1996) the closed-loop input—-output map u—y
is .%,-stable.

3.2. Passivity of transversely vibrating beam

Proposition 2. The system equation (24) with boundary conditions, equations 25—
27, 1s lossless passive, when the output y,(¢) is given as

Y1) =n(L, 1)

Proof: Consider the storage function

pA - Py [*
V()= 3 j e (x, tydx + 2{ 0z (x, t)dx
0 (0]

(32)

L L
2 J b D+ f e, D
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The derivative of V(¢) with respect to time, using the results of Lemma 1, yields
. E4 |
V(t) — _EI’?xxx (Ls t) + _2—’1:: (Ln t) + POTIx(La [) ﬂ,(L, t)

Hence, using the boundary condition equation (25) and y,(¥) =#,(L,?) yields
V () = uy(H)y,(f) which completes the proof.
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Theorem 2. Consider the feedback system in Figure 3, where  is defined by
equation (24) and (25-27). Let the controller output y,(7) be

Y2(8) = Ku,(t) = Ki, (L. 1) (33)

where K> 0. Then the closed-loop system X, . consisting of equation (24) and
(25-27) with control law equation (33) is .%,-stable.

Proof: Control law equation (33) is output and input strictly passive according to
Definition 10.6 in Khalil (1996), since

K 1
u (Ny, (1) = 2 us (1) + ﬁ)"%{!)-

According to Theorem 10.6 in Khalil (1996) the closed-loop input—output map u—y
is %,-stable.

3.3. Fassivity of transversely vibrating beam with control mechanism
Proposition 3. The system equation (29) is output strictly passive, when the output
M(1) is given by

}’{f) = fh(L: 1.

Proof: Consider the storage function

L

L P L
nn= p;f He (x, Hdx + ;JA nZ(x, dx + J-E; J n3(x, Hdx
0 o 1] (34)
L
1 1
+ f A 0 + (L, )+ k(L.

0

The derivative of V() with respect to time, using the results of the Lemma 1. yields

Vo = ( — EluL. )+ 5 (D) + Pon, (L)
(39)

+mn, (L, )ni(L, 1) + kn(L, r))m (L,1).

Using the boundary condition equation (28) and y(r) =#,(L, 1) yields
u ()y(1) = V(1) + dy? (1)

and, hence, the proof is completed.
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Figure 4. The closed-loop system.

Theorem 3. Consider the closed-loop system X , - in Figure 4, where
M u(O)—n,(L, 1)

A n (L, H)—u(r)
Let the controller output u«(¢) be
w(t) = Kn,(L, 1) (36)
where K > 0. Then, the closed-loop system X , , consisting of model equation (29)

and control law equation (36) 1s %,-stable.

Proof: The control law equation (36) is output strictly passive according to the
Definition 10.6 in Khalil (1996), since

1
u(tyn,(L, 1) = Kn{ (L, 1) = X u*(t).

According to the passivity theorem, Theorem 2.2.6 in Van der Shaft (1996), Z , , is
ZF,-stable.

4. Numerical Analysis

At this point it is convenient to transform the equation of motion equation (24),
into nondimensional form. For this purpose the following nondimensional variables
(denoted with asterisks) are introduced:

x _H

Nt =g =n=q'L
i

pr=r=p=u*L

x*=%:x=x*L
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where 7 is nondimensional time. Substituting these dimensionless quantities into
equation (24), dropping the asterisks, results in:

3
Mo = O yxxx — ﬁﬂxx - E'ﬁ?]xx =0 (37)

where

Boundary conditions equations (25-27) can also be transformed into the non-
dimensional form as

Hex(0, T} = 1y(1,7) =0 (38)
70,7)=0 (39)
1) = ~ 11,0+ o1 40200, @)

where () = u(t)(L,/EI). Equations (37-39) are also valid for the system described
in Section 2.3, The boundary condition of equation (28) can be represented in the
nondimensional form as

p

1
(1) = — (1, 7) + E'fx(la )+ 5 'i':::'{ls 7)

(41)

L ELI L3
+an(lst)+d\/;i-}nr(l>f}+k£-!q{lyt)

4.1. Finite difference analysis

In order to develop a finite difference scheme approximating the non-dimensional
continuous system, equations (37-40), it is assumed that the region to be examined
is covered by a uniform rectangular grid with sides parallel to the x- and t-axes, with
h and k being the grid spacing in the x- and t-directions respectively. Furthermore, it
is assumed that the point considered is the point x = ik and 7 =jk of the domain,
where i/ and j are integers and i = j = 0 are the origin. The value of the function (., .)
at the point x =ih and 7 = jk are denoted by #,;. For a general discussion of finite
difference methods the reader is referred to Ames (1965), Mitchell and Griffiths
(1980), Richtmyer and Mortonon (1967), Smith (1978).

The following finite difference approximations are used:

@ (Y /(W
(&), 7" o0 @

*n Mije1— 205+ 54 2
(5_13)‘_ j = e — 4+ O(k*) (43)
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Using equations (42-47), the finite difference approximation to equation (37) takes
the form

Hij+1= _arz(ni+2,j_4?1i+1,j+6ni,j_4ni—1,j+r’i—2,j)
+ B (i, — 2055+ M- 1, )
(43)
3, 2
+§r ("H—l,j_ni—l,j) (Wi+1,j_27']i,j+’1i—1,j)

+ 20— i -1

where 7, convergence parameter, is defined as r = (k/A?). Note that equation (48) is an
explicit finite difference equationand has a truncation error of O(h®) 4 O(k?).

4.2. Truncation error

Truncation error is defined as the amount by which the exact solution #; ; of the
differential equation does not satisfy the difference equation at the point (ih, jk).
Using finite difference approximation, a difference approximation for equation (37)
is obtained as

1 _ _ _ o _ - _ -
Ea(m,,-ﬂ +7i-1 _2771',;') = _F[”i+2,j+ 671i,j—4’7i—1,j—4’1i+1,j+ni—z,j]

i} ; _ 3 _
ir ]fz(ﬂﬁ 1, Mieq,j— 271;',,') + @Z(ﬂi-ﬁ- Li— 77i—1,j)2 (49)

Fivr,j+7ioq,;— 27,5

where 7;; 1s an approximation to #;; at the point (iA, jk). Using Talor’s expansion up
to the 4th order in equation (49), the exact solution of the partial equation and its
derivatives at different points can be obtained. Substituting into equation (49), after
some manipulation the following expression is obtained:

3
(nrr)i,j — cC(”’x;x;’cx)i,j + ﬁ(nxx)i,j o E(nx)tg,j(”xx)i,j + ei,j . .- (50)
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where the quantity
h? 2 h 2
€;;= 8 ()i, A Mxxxx)i, j +2_4{’?xxx)i.j('?n)i,j

6 2
+ 288 el s Wlcxsedis + 5 O Clasadi, s (i

(51)
h ph?
+ 2& (nx)i,j(’rxxx)i,j(qxxxx)i, i + E(”xm)i.j
k_z
- 1_2_ ['Iﬂﬂ)l'_j

is defined as the principal part of the truncation error.

4.3. Consistency or compatibility

It is sometimes possible to approximate a partial differential equation by a finite
difference scheme which is stable but has a solution that converges to the solution of
a different differential equation as the mesh lengths tend to zero, Smith (1978). A
finite difference scheme is said to be consistent if the limiting value of the truncation
error is zero as h—0 and k—0. It is readily seen from equation (51) that the
truncation error tends to zero as A—0 and k — 0. It is concluded that the difference
equation scheme in equation (48) is consistent.

5. Numerical simulation

In this section the control laws proposed in this paper are simulated. The
simulation is carried out for a riserof length 1000[m]. Detailed specifications of the
riser are given in Table 1. The length of the riser is divided into N + 1 nodes, where
N =100, and the convergence parameter is chosen as r = (.0001. Furthermore, it is
assumed that the riser is filled with sea water.

Table 1. Parameter and material properties

Péirameter

\;alue

Mass per unit length

Inner diameter
Outer diameter

Sea water density
Length

E

108.1 [’E:}
m

76.2 x 103 [m]
1524 x 102 m]

1024 [k—ﬁ]
by

1000{]

2.06 % 10° [A—;]
m
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Two test cases will be presented to illustrate the performance of the controlled
system. In the first case, only the first vibration mode is excited, while in the second
case several modes of vibration are excited. The riser is initially at the stress free
configuration. At the instant =0, the riser is exposed for sea current along its
length. At the instant ¢ =1, the sea current is switched off and the riser is left to
vibrate freely. At the instant f =8, the controller is switched on.

5.1. Transversely vibrating beam with boundary control

5.1.1. Case 1. The first vibration mode The sea current profile is modeled as a half
period of a sine function and excites only the first transverse bending mode of the
riser. Figure 5 shows the responses at different nodes of the riser. The total mechanical
energy of the system, equation (32), is shown in Figure 6. The spatial integration is
approximated by trapezoidal integration scheme. Since the mapping u, —y, is lossless
passive, the energy does not decreases for ¢ < 8. However, due to the control law, the
energy of the system decreases after t = 8.

5.1.2. Case 2. Several vibration modes The sea current profile is modeled as a sum
of sine functions with frequencies up to the tenth mode of vibration. Figure 7 shows
the responses of the riser at different nodes. A comparison between control forces for
both case studies is shown in Figure 8.

5.2. Transversely vibrating beam with MDS control mechanism

The same scenario as in Section 5.1, with a sea current velocity of 2.9m/s is
simulated for this system.

Transversal Displacement at the top boundary Node: 75
0.4 . - 0.4 . =
0.2 1 0.2
E o j Ne——1  E o0 Moo
-0.2 -0.2
0.4 : E -04 :
0 5 10 15 20 4] 5 10 15 20
Time[sec] Time[sec)
Node: 50 Node: 25
0.2 r T 0.1
/
0.1 : w 0.05
-0.1 ~-0.05} :
0.2 : - ~0.1
5 10 15 20 0 [ 10 15 20
Time{sec] Time[sec]

Figure 5. Transverse responses at different nodes, when only the first mode of vibration is
excited.




Passivity Analysis of Nonlinear Euler-Bernoulli Beams

Normalized energy function V(t)
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Figure 6. Mechanical energy content of the system.
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Figure 7. Transverse displacement at different nodes. when several modes of vibration are

excited.
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Figure 8. Comparison between control forces.

5.2.1. Case 1. First vibration mode Figure 9 shows the comparison between controlled
and uncontrolled responses of the riser when only the first mode of vibration is
excited. The total mechanical energy of the system, equation (34), is shown in
Figure 10. Since the open-loop system is strictly output passive the energy of the

open-loop system decays. The rate of decay increases after the controller is switched
on at t = 8.

5.2.2. Case 2. Several vibration modes Figure 11 shows the transverse responses of

controlled and uncontrolled system at different nodes. Acomparison between control
forces for both cases is shown in Figure 12.

6. Conclusion

Hamilton’s principle has been used to derive the Lagrangian equations for
distributed-parameter systems. Nonlinear models for Euler-Bernoulli beams are
derived and their passivity properties are investigated. Linear output feedback control
laws which guarantee finite gain L, stability of the closed-loop systems have been
proposed. It is worth noting that any passive control law in combination with the
underlying systems may be selected. The passivity of the closed-loop system using
Theorem 2.2.3 in Van der Schaft (1996) is still preserved. The finite gain L,
stability is also proved, which is more stringent than passivity. In addition to the

aforementioned reason, simplicity of proportional controller makes it more attractive,
from the implementation point of view.
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Figure 9.  Comparison between controlled and uncontrolled responses of the riser, when only
the first mode of vibration is excited.
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Figure 10.  Mechanical energy content of the system with MDS mechanism.
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Transversal Displacement at the top boundary
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Figure 11. Comparison between controlled and uncontrolled responses of the riser, when
several modes of vibration are excited.
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Figure 12. Comparison between control forces.
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Appendix

Lemma 1: Let #(x, 1) and p(x, 1) be the solutions of equations of motion which satisfy
the corresponding boundary conditions. Then
L
] (52)
0

(53)

L
— WxxHix

4]

I
—EI '[ [?erxx He— 'Jn’fxxr]dx = - El[ﬂxxx’?:
[

L

Ea [t EA
TJ U131 + 30l = ==,
0 0

L

(34)

L
Pof [xx?te + Nl dx = Py,
0

]

L 3Er (*
—vEI'[ X xocxx HtlX = —?—z—j nZ.dx—yEIl [L(rrm(L, D (L, 1)
1]

7 . (55)
- 2 ﬂchx(Li !)) — HxxHx ]

A L l L

?Pﬂ x’?xxnxdx = TPO[Z ’?i (Ls I.) - 7 .[ q.%dx:l (56)
i 1]
ML L
v%EA X el = ?gEA £‘n‘£{L, f) - Hedx (57)
277, 2 4 4],

L L 1 L
1pA f XM X = wA[z ne(L, 1) — 2[ nfdx] (58)

0 0

L

(59)

L
EA_[ (Bt + poxpt)dx = EA p,
1]

(4]
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L L 1 L
WJAJ X, fedX = JpA [5 w(L,0)—5 f u?dx] (60)
0 0
L L 1 L
VEAJ Xfhsx fhrdX = yEA [5 (L) =5 J Il dx} (61)
0 0
L L L
EAJ M UM dX + EAJ N tx My dX + EAJ 1M xx e X
0 0 0

L

L. EA L
+ yEAJ X1 Py X + EAJ N X + > J 15 g X
0 0 0
(62)
L

+ yEALyZ (L, Hp, (L, 1)

0

L
+ Z?EAj XM o] tdX = EAN, p 1,

0

L L
- vEAf My tedx

0 0

1
+EA577:2c.ut

apply for all = 0.

Proof: The proof is straight forward by applying integration by parts and will not be
given here.




