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An existing dynamic model of the main reactor in the Silgrain® process for the
production of Si from FeSi has been extended here in order to resemble more
closely the behavior of the real reactor. The previous model was based on the
application of macroscopic mass conservation law, the population balance equa-
tion and the assumptions of complete mixing and isothermic conditions. The
major modifications are the inclusion of the condition governing the entrainment
of particles in the outflow, and the formulation of the energy balance.

The extended model consists of 1 integrodifferential equation, 4 implicit
ordinary differential equations, 8 algebraic equations and 3 integral equations.
After discretization in the particle size space, a system of Differential and Algebraic
Equations (DAE) is obtained. DAEs are not ODEs and they require analysis and
characterization and may require reformulation. After such analysis, it was
concluded that the system is implicit index-one for the usual range of operation
and that a method based on the Backward Differentiation Formulas (BDF) can
be used for its solution.

The model was implemented in MATLAB and the odel5s code was used for
solving the system of equations. The simulation results are satisfactory and seem
to match qualitatively with the known operation of the reactor. The model is
suitable for further use in designing a model-based control scheme.

1. Introduction

Silicon (Si) is one of the most important technical materials due to its properties
as semiconductor. Elkem Bremanger at Svelgen (Norway) produces Si metal via a
patented hydrometallurgical leaching process called the Silgrain® process. Hydro-
metallurgical leaching belongs to the category of reactive particulate processes, which
are inherently more difficult to describe than reactive systems comprised of one or
more bulk phases, due to the fact that dispersed particles in liquid phase are invariably
polydispersed in nature.

A model of the leaching reactor in the Silgrain process was developed in Dueiias
and Lie (2000) to simulate the dynamic response of the main reactor i the process.
This model was based on the application of the macroscopic mass conservation law,
the Population Balance Equation (PBE) and the assumptions of complete mixing
and isothermal conditions. The PBE is the most suitable approach to build dynamic
models of particulate processes since it accounts for the polydispersed nature of such
processes. This model accounted for the main event taking place within the reactor:
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the disintegration of particles, but it could not represent properly the practical
operation of the reactor.

The model of the hydrometallurgical leaching reactor has been reviewed recently,
and extended to resemble more closely the operation of the reactor. The main
modification is the inclusion of the condition governing the entrainment of particles
in the outflow, thus permitting a distinction between the Particle Size Distribution
(PSD) of the outflow and the PSD within the reactor, as it happens in reality. Another
major change is the formulation of the energy balance that was necessary since
temperature has an important influence on the operation of the reactor.

The resulting mathematical model is highly nonlinear and is composed of one
partial integro-differential equation, ordinary differential equations and algebraic
equations. Such a system is difficult to solve. The solution of the model is approached
by discretizing the PBE in the particle size space, which reformulates the system into
a system of Differential and Algebraic Equations (DAE). Historically, sets of DAEs
were frequently reformulated and solved as Ordinary Differential Equations (ODE),
by differentiation and/or extensive algebraic manipulation. However, it is advanta-
geous to keep the system in the DAE form, mainly because the variables have a
physical significance that is lost when reformulating the DAEs to ODEs. However,
DAEs are not ODEs and difficulties can be encountered when using numerical
methods to solve DAEs (Petzold, 1985). DAEs are solvable by numerical methods
provided they are low index and consistent initial conditions are given. Thus,
DAEs require analysis and characterization and may require reformulation before
approaching its numerical solution.

The paper is organized as follows: In section 2, we give a brief description of the
operation of the reactor in the Silgrain® process. In section 3 the model is discussed
in detail, section 4 shows the analysis of the DAE system which results from the
modeling stage and suggests the method to be used for the solution of the system.
Section 5 presents some simulation results, and finally the conclusions are presented
in section 6.

2. Operation of the reactor

Leaching is the dissolution of a scluble constituent from a solid by means of a
solvent. Aas (1971) described the process of hydrometallurgical leaching of ferro-
silicon in detail. Silicon metal is produced by leaching lumps of 90-94% FeSi in a
hot acidic solution of ferric chloride and hydrochloric acid. The acid dissolves the
impurities, mainly Fe, Al and Ca, breaking apart the lumps and leading to a
granulated product of high purity (Si). The dissolution of impurities is assumed to
proceed according to reduction-oxidation equations (Aas, 1971; Margarido, Martins,
Figueiredo and Bastos, 1993). One feature that characterizes the Silgrain® process
and distinguishes it from other hydrometallurgical leaching processes is the rapid
disintegration of FeSi into small grains during the reaction (Aas, 1971).

A simplified sketch of the reactor is shown in Figure 1. The hot acidic solution is
continuously pumped into the bottom of the vertical reactor and it leaves the reactor
through an overflow pipe near the top, together with the disintegrated product. FeSi
lumps are fed on the top of the reactor and sink to the bottom. The contact of the
lumps with the hot acid causes the disintegration of the lumps, and the smallest
grains are displaced upwards by the acid upflow (Aas, 1971).

The high flowrate of acid and the gas evolved during leaching causes agitation
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Figure 1. Sketch of reactor and model of the reactor.

within the reactor. but gravity classification of the solid charge still occurs. The upper
layers consist of the fine particles that are displaced by the upward flow, whereas the
deeper layers consist of unreacted and partially-reacted lumps of FeSi.

Clearly the assumption of complete mixing is not realistic, since only the disinte-
grated material that is small enough to be displaced by the acid upflow, flows out of
the reactor. This means that the PSD at the outlet differs from the PSD within the
reactor.

Aas (1971) stresses the importance of operating with FeSi lumps of the right
composition, as well as using the right type of leach liquor. Temperature and leaching
time play also an important role. This means that it is important to include the
energy balance in the model.

3. Model

The reactor is modeled as one well-mixed reaction region and one well-mixed
storage region in series. Figure 1 compares schematically the operation of the reactor
and the model.

The residence time in the upper layers of the reactor, a mixture of acid and fine
particles, 1s much shorter than the residence time 1n the bottom part. Therefore, 1t 1s
reasonable to assume that no disintegration or reaction occur in the upper part of
the reactor, so we can model it as a storage tank. Moreover, the FeSi lumps sink
quickly through the upper layers, and do not accumulate there, so that it can be
assumed that the feed enters directly into the well-mixed reaction region.

The high acid flowrate and the generation of gas during the reactions ensures
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agitation and well mixing conditions in both regions. Although we can assume homo-
geneity conditions within the reaction region, the PSD of particles leaving this region
is not the same as the PSD of the particles remaining in that region. The free-falling
velocity of the particles is the factor that determines whether the particles remain in
the bottom part or flow up with the acid. As shown in Figure 2, each particle is
subjected to three forces: the gravitational force, the drag force and the buoyancy
force. For a certain particle diameter, to which we will refer as cut-size, the free-falling
velocity equals the velocity of the upflow acid. Particles smaller than that cut size are
displaced by the upflow, and particles larger than the cut size are not displaced.

The model suggested here consists in the application of the PBE to the reaction
region and to the storage region, the mass conservation law to the reaction region
and to the storage region and the energy balance to the whole reactor. These are
discussed in more detail in the following sections.

3.1. Population Balance Equation

In 1964, two groups of researchers, Hulburt and Katz (1964) and Randolph
(1964), observed that many problems involving change in particulate systems could
not be handled within the framework of the conventional conservation equations.
These researchers recognized that particulate materials are unique in that the dis-
persed phase is made up of a countable number of entitics, and these entities possess
a distribution of properties. They proposed the use of an equation for the continuity
of particulate numbers, termed population balance, as a basis for describing the
behavior of such systems. This number balance is developed from the general
conservation equation

accumulation = input — output + net generation

applied to particles having a specified set of properties. In the population balance,
input and output terms represent changes in the number of particles in the specified
property interval due to convective flow, while the net generation term accounts for
particles entering and leaving the specified property intervals as a result of continuous
processes such as chemical reaction, or discrete generation such as particle breakage.

The PBE has proven to be a powerful tool for quantifying the dynamics of many
varied particle technologies such as crushing, agglomeration, liquid-liquid extraction,
biochemical processes, emulsion polymerization, etc. Randolph and Larson (1988)
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and Ramkrishna (1985) present a complete review of the application of PBEs to
problems in chemical engineering. This approach was first applied to hydro-
metallurgical leaching in single steady-state reactors by Herbst (1979). Rubisov and
Papangelakis (1995, 1996a. 1996b) were the first to successfully model the transient
behavior of hydrometallurgical leaching reactors.

In the field of reactive particulate processes, the macroscopic version of the PBE

is commonly used
dy(D,, 1) N Y(D,,ydV(t) 1
dt V) dt V(D)

(Qin (DWria (D, 1) — (W (D, 1))
d [dD, M
“E);( dtpl‘t,(Dp’ I})-I—B- -D

where (D, ) (m~?) is the number-density PSD function per unit working volume
and only one distributed property, the particle diameter D,, is considered. The left
hand side of equation (1) is the accumulation term, where F(f) represents the
working volume of the reactor (m?*), which is a function of time. The first two terms
of the right hand side of equation (1) represent the input and output by convective
transport, where Q,,(z) and Q(z) are the slurry flow rate (m3/s) at the inlet and outlet,
respectively. The generation term consists of two parts: a continuous disappearance of

particles,
o (dp,
oD, (‘EWD}J})

and a discrete generation of particles represented by the birth and death of particles
by disintegration (the last two terms of the right hand side).

In the reaction region of the Silgrain reactor the two main events taking place
are: disintegration of the particles and convective transport, and therefore, the PBE
reduces to:

i (Dy, 1) | (D, 1) dVi(1) 1 . B —
dI + l‘fl(:;) (;f - I/I{t) (Min (I)ﬁn(Dpy f) Qinler{”'}!"inltr(-Dpi t)) +B D
(2)

where M,, (1) is the mass mput of FeSi (kg/s) f;,(D,,?) is the PSD of the FeSi
expressed as weight-based probability distribution function (m ~1), ¥,(#) is the volume
of the reaction region, y,(D,, ) is the PSD function per unit working volume within
the reaction region, Yipe(D,, ) is the PSD leaving the reaction region and entering
the storage region, B represents the birth of particles of size D, resulting from
breakage of larger particles and the D represents the disappearance of particles of
size D, due to disintegration. Let us discuss some of the terms in more detail.

1. The relationship between /,(D,, t) and ;.. (D,, 1) is given by the balance of
forces acting on the particles. As discussed earlier, particles larger than the cut
size remain in the reaction region and particles smaller than the cut size are
displaced by the upflowing acid. Assuming that fines are displaced in the same
concentration as within the reactor, the relationship of the two PSDs can be
written as follows:

‘bim"(‘Dp’ 1= {w ot for D, <D,

3
0 for D,> D, ©)
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The cut size can be obtained from the balance of forces on the particle
Drag Force = Gravity Force — Buoyancy Force

and if we assume the particles are spherical (Coulson and Richardson, 1978)

RO%Dgut:%Dgut ppgr_gDc?utpfgr (4)
where R, is the dimensionless drag force, p, and p, are the solid density and
the fluid density, respectively, and g, is the gravity constant. The drag force is
generally a complicated function of the Reynolds number Re, but for turbulent
flow (500 <Re <2-10°%), as in the reactor under study, the drag force is
independent of the Reynolds number (Coulson and Richardson, 1978)

R,

2
Prio

—0.22 (5)

where u, is the fluid velocity. Substituting equation (5) into equation (4) gives

D, =033 2 (6)
gr(pp — pf)
p U 5
=0.33 S e 7
9. —7) ((1 = gz)") "

where the fluid velocity has been expressed as a function of the the superficial
fluid velocity u,, and the porosity (1 —g,) in the storage region.

. The discrete generation of particles in a certain particle diameter range is the

result of the disintegration process. Such an event is typically represented by
the particle birth and particie death rates, B and D, respectively. No references
have been found of the application of the PBE to leaching processes where
the particles experienced disintegration. However, numerous references have
been found of the application of PBE that include the birth and death rate
functions in other fields of particulate processing such as granulation (Kapur,
1995), comminution (Herbst and Asihene, 1993; Ramkrishna, 1985), and
emulsion dispersion (Chen, Priiss and Warbecke, 1998). It is important to
note that although these particulate processes differ considerably, they model
the birth and death rate terms in an identical way, as follows:

B—D= J. b(Dp,J’)a(J’)W(DpaJ’)’yl(% t)dy - a(Dp)wl(‘Dps t) (8)
13,

where a(D,) is the particle breakup frequency function (™Y, b(D,,y) is the
probability distribution function of daughter particles of size D, by breakage
of a particle of size y, and n(D,, y) is the average number of daughter particles
by breakage of one particle of size y. Such a mathematical formulation for the
discrete generation is used here. Batch laboratory experiments have been
carried out to determine expressions for the particle breakup frequency
function and the probability distribution function. The particle breakup
frequency function depends mainly on the particle size and temperature and
when particles are as small as the average grain size they do not disintegrate
anymore. We thus propose the following expression
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for the particle breakup frequency function, where k,, k+ and n are the fitting
parameters and D,,;, depends on the quality of the feed material used in the
process. Regarding the probability distribution function of daughter particles,
the laboratory results showed a bimodal distribution function, in which one
of the modes is static at a certain particle size diameter D¥* and the other one
depends on the size of the mother particle 3. The distribution functions
commeonly encountered in the references did not fit the data well. We suggest
then the following expression:

D,\'\ 4 D,y
b(D,,.yl=A.exp(—ﬁl(l _Dg) )+ Eiexp(—ﬁzlogz(l '_{y—Dp)Df))

(10)

which shows good fitting properties to the experimental data, and where 4,,
B, Ay, B> and D} are the fitting parameters. Finally, the average number of
daughter particles 7(D,, y) by breakage of one particle of size y can be obtained
from the dimensional analysis of equation (8). The suggested expressions have
the following dimensions: b(D,, y) gives the mass of particles of size D, obtained
per unit mass of mother particle of size y that experiences breakage, ,( y, 1)
gives the number of mother particles of size y per unit working volume, a( y, T)
gives the rate of breakup of a mother particle of size y and B is the number of
particles of size D, that are created per unit time and per unit working volume.
Therefore, in order to match dimensions, #(D,, y) is the ratio between the mass
of one mother particle and the mass of one daughter particle

N ppmlEyt R

In the storage region of the Silgrain reactor the main event taking place is the
convective transport, and therefore, the PBE reduces to:
Dy, ) | YDy ) dV3 (1) 1
dl' + V}(I} d! - Vz(!) (QInlcr (’)'ibimcr(Dps I} - ffoul“)wz{Dp? [D
where the inlet flow is equal to the outlet flow from the reaction region and where
the PSD within the storage region is the same as the PSD in the outlet flow since
the assumption of complete mixing is appropriate.

3.2. Mass Balance

The macroscopic mass conservation law applied to the reaction part of the reactor
can be written as follows

dM l(rj - in
dt - Min + Gin Pin — 1 — Ginter Pinter (I)
(12)

o L pinter{”

1 T Hinter

d _
E( Viltyp (1) = M, + g;, Pin




100 M. Duefias Diez et al.

where M, is the mass input of FeSi, ¢;, is the volumetric inflow of leaching acid and
p1(?) and pj,...(¢) are the slurry densities within the reaction region and in the outlet
flow from the reaction region, respectively. Densities are a function of the solid’s
volume fraction, as given by

p1(0)=pp (1 —g,()+ p,g.(1) (13)
pinter(t) = pf (1 - ginter(t)) + pp ginter(l) (14)
In turn, the solid’s volume fraction is a function of the third moment of the PSD
D,
T P max
g1(t)=¢ J Dy (D, ndD, (15)
o]
T Dp max
ginter(t) = 6 j\ Dg ly[/inter(Dps t)de (16)
0

It must be noted that equation (12) assumes that the acid does not accumulate in the
reaction region and that the outflow is thus composed of the acid inflow plus the
fines displaced by the acid. This assumption is reasonable according to the operation
of the industrial reactor, since the acid is fed continuously.

Now, the application of the macroscopic mass conservation law to the storage
region of the reactor results in the foliowing expressions

d 2 in
DD ) = o0
(17)
d Gin
E(V'Z(t)pl(z)) = 1_—imerpinter (t) - qout([)pZ (Z)
where
p2(1) = pr(1 — g2(D) + pp g2 (D) (18)
9.0 =7 f " D3y, 0aD, (19)

and ¢,,.(¢) occurs by gravity and can be derived by applying Bernoulli’s law between
the surface of the liquid and the physical outlet, yielding to

i 4
Gour = CDZDgut \/291' (W(I/l + I/2 - I/;emiconical) - hout) (20)

where D, is the diameter of the cylindrical part of the reactor, A,,, is the distance
between the bottom of the cylindrical part of the reactor and the outlet orifice,
Vemiconicar 15 the volume of the reactor that has semiconical shape, D,,, is the diameter
of the outlet orifice, and Cj, is the coeflicient of discharge, which typically has a value
of 0.64 for liquids or slurries (Coulson and Richardson, 1978).

3.3. Energy Balance

Temperature has an important influence on the disintegration of particles. This
makes it necessary to use a nonisothermal model. In the model suggested here, we
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assume that the temperature is the same both in the reaction region and in the
storage region of the reactor. Such an assumption is reasonable since the main heat
input is provided by the acid inflow, and the corresponding flowrate is very high in
comparison to the FeSi feed, causing great turbulence within the reactor and therefore
good heat transmission, with the FeSi feed being heated to the reactor temperature
almost instantly.

Therefore, the energy balance applied to the whole reactor is given by

aww_,
g =l =l — 0 @1

where U(7) is the internal energy of the system, /;, and h,,, are the enthalpy flow
entering and leaving the reactor, respectively and Q is the heat loss to the surroundings.
It must be noted that in the energy balance, the kinetic and the gravitational
components of energy have been neglected in comparison to the internal energy
component U(f). Moreover, we assume that the internal energy and the enthalpies
are functions of temperature, so that we can rewrite equation (21) as follows

d
SV OPCp (O(TW) — Toe) + VO Cpa T — T}

(22)
= Min(‘!)cpp(Ts - Trer} + in Py Cpf(j‘:n - Tref ) — QOut“}pCp.Z{”(ﬂr) - Trei‘)

where Cp, and Cp, are the heat capacities (kcal/kgK) of FeSi and the acid,
respectively, T is the surroundings temperature (K), 7' is the reference temperature
(K) used to calculate enthalpies, pCp, (1) and pCp,(¢) are the average heat capacity
(kcal/m* K) of the slurry within the reaction region and within the storage region,
respectively. The average heat capacities are functions of the solid’s volume fraction
as shown below

pCp () =p, Cpe(1—g, (1) + P Cpp g, (1) (23)
pCpy (1) = pr Cpe (1 — g5(0) + p, Cp, g2(1) (24)

3.4. Overview of the model

Table 1 summarizes the model, which consists of 1 integrodifferential equation, 4
implicit ordinary differential equations, 8 algebraic equations and 3 integral equations.

3.5. Discretization of the model

Integrodifferential equations are very difficult to solve. The method of moments,
as developed by Hulburt and Katz (1964), is the most widely used method to reduce
integrodifferential equations into a set of ordinary equations, but it is not applicable
here because this would lead to an open set of equations.

Examples of numerical solution methods proposed in the literature (Ramkrishna,
1985) are: the method of weighted residuals, the method of self-preserving distribu-
tions, Monte Carlo simulation techniques, the size interval-by-size marching method
and discretization via fixed/moving pivot techniques. Of the numerical methods,
those based on discretization of the continuous PBE are reported to be the most
attractive from the computational point of view (Kumar and Ramkrishna, 1996).

Discretization techniques aim at the formulation of PBE in discrete particle size
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Table 1. OQOverview of the model
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space. This is done by integrating the continuous PBE over a discrete size interval,
Say "Dp.i to Dp.i+ls

Dois1 | a(W Poiv1 ] Dp.i+1
Dy i ' Dp.i Dp.i (25)

Dp.l"l 1 Dp.mm:
+j J b(D,, y)a ym(D,, yW(y, )dy dD,
J D,
where the discrete PSD, ¢,(1) is given by

1) = f " WD, 14D, (26)

By,

and the number of intervals used to represent the total population of particles is N.
Thus, i=1,2,...N. The various discretization methods differ in the way of relating
the continuous and discrete PSDs, y(D,,, f) and ¢,(1).

The main disadvantage of discretization methods is that the discretized model
may not be consistent with the number and mass conservation laws, or any other
integral property of interest associated to the entire population. Often, the accuracy
of the solutions is improved by using finer discretization grids, but this is incurring a
very high computational costs. The method proposed by Kumar and Ramkrishna
(1996) improves considerably the effectiveness of discretization. They suggest that the
discrete equations are internally consistent with regard to the desired moments of
interest of the distribution, thus ensuring the preservation of the quantities of interest,
while relaxing the accuracy of other less important quantities.

The numerical technique divides the entire size range into small sections. The
size range contained in between two sizes D, ; and D, ;,, is called the ith section.
The particle population in this range is represented by a size x;. such that
D, .<x;<D, ;- This technique allows for the use of a general grid, for example,
fine in some ranges and coarse elsewhere. The particle population is assumed to be
concentrated at representative sizes, x;’s, having a zero value for other sizes. Hence,
the continuous and the discrete PSDs, y/(D,, £) and ¢;(?), are related as follows

N
W(D,,0)= ) ¢()d(D,—x;) (27)

i=1

where 6(D, — x;) is the Delta Dirac function. Once this method is applied to the
system under study we obtain the discretized model shown in Table 2. The discretized
system of equations is thus an implicit nonlinear DAE system.

4. Analysis of the DAE

Historically, sets of DAEs were frequently restated and solved as ODEs, by
differentiation and/or extensive algebraic manipulation, often destroying the natural
structure of the system. Today, it is becoming more common to deal with such
problems in their original, natural DAE form, mainly because the variables in the
original DAE typically have some physical significance, whereas those that result
after manipulation into an ODE may not (Lefkopoulos and Stadherr, 1993). However,
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Table 2. Discretized model
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differential and algebraic equations (DAEs) are not ordinary differential equations
(ODEs) (Petzold, 1985). A number of difficulties can arise when numerical methods
are used to solve DAE systems of the form F(z,y,y') = 0. Many of the DAE systems
can be solved using numerical methods which are commonly used for solving stiff
systems of ODEs, such as Backward Differentiation Formulas (BDF). Others can be
solved using such methods but only after substantial modification to the strategies
usually used in codes implementing those methods (Petzold, 1985).

DAE systems can be characterized using the concept of index. The index can be
thought of as a measure of the variation of the DAE structure from a standard ODE
system (Lefkopoulos and Stadherr, 1993). Therefore, the first thing to do when
dealing with DAE systems is to determine its index. Let us define in more detail the
concept of index of a DAE. It can be defined as the minimum number of times we
must differentiate all or part of F(z,y,y) =0 with respect to time f in order to
determine y’ as a continuous function of y and ¢. More formally, it can be stated that
the index of a DAE is the smallest nonnegative integer v such that F has v continuous
derivatives and the nonlinear system:

Fy.y)=0

d , on_dF _ dF oF
;ﬁF(t,y,y,y’}— dys +

¥ Y=

dv " vov 1y
FGRYY.yhy =0

when viewed as relating 7,y,¥,¥",...,¥%,¥" ' ! as independent variables, is solved for
Y uniquely in terms of y and ¢, i.e. there is an underlying ODE y' =y'(z,¢). The
definition implies that any pure ODE is an index-zero DAE, and a system of algebraic
equations is index-one provided it is nonsingular.

For the purposes of index analysis of a DAE it is often convenient to partition
the equations F into differential equations f and algebraic equations g. Thus, without
loss of generality, the DAE can be rewritten as follows

f(t,y,y') =0

g(t,y)=0
It can be shown that the DAE is index-one if and only if the matrix

B= (28)

is nonsingular (Lefkopoulos and Stadherr, 1993).

If we apply the criteria in equation (28) to our DAE system, we obtain a matrix
that is a function of 7 and of the internal vector y. Therefore, the index of the DAE
system may vary during integration. It can be proved that the DAE under study is
index-one as long as the volume of slurry within the reaction region and within the
storage region is distinct from zero, or what is the same, the model is an index-one
implicit DAE except when the reactor is empty (i.e., during start-up). The advantage
of index-one systems is that they do not need reformulation in order to be solved.
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Another difference between ODEs and DAEs is that in the latter we must specify
consistent initial conditions, and this can become a challenging problem for certain
DAESs. For a set of initial conditions to be consistent, it must satisfy the system at
an initial time ¢,

F(f5.¥0,¥0) =0 (29

Note that the term ‘initial conditions’ is used to refer to the vector (y,, y, ) rather
than simply to y,. This is a necessary condition, but not always sufficient for
consistency. Usually, some or all of the equations resulting from differentiating ¥ v
times with respect to time have to be satisfied too.

The most widely used approach to determination of consistent initial conditions
is to reduce the system to an index-zero system. The system under study is index one,
so in order to reduce the system to an index-zero system we have to differentiate the
algebraic equations with respect to time once, as shown in Table 3.

Now, we can arbitrarily decide the initial value for the differential variables of the

Table 3. Derivatives of algebraic equations of the system

dipy (1)
debinter,i(1) B o :fr s for D, < Dy,

dr
0 for D, > D,

dg,(?) n i 3 dp, (t)

&
d 6/ " dt

dp,(t) dg (1)
dD o (D) pr w2 dg, (1)
et — 2p-0.33

dt g, (p,—pp) (I —go ()" dt

dginesl) _ T 5~ 3 @i i1

di 6/ di

dpimer (t) L] o dginter(t)

dgou(t)  CoN'mg. Dl | UAOIIAD
dr a \/EDr \/(4 I/1(l) + 4 VVZ (I) - 4 V;emicnnical - houtﬂ:D%) dt df

dg>(H) = al 34, (1)
dt *623“ dr

dp, (1) _ - dg. (1)

dt (bp =) dt
dpCp1(¥) dg (1)
Ttl = (pyCry = P Crp) =~
dpCp, (1) dyg, (1)

=(p, Cp,— p; Cpy)

dt dt
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DAE, i.e. ¢, (1), Vi(?), ¢5.:(2), V3(2) and 7(1). Once this is done, the remaining initial
conditions are calculated by solving the system of equations composed by the
equations in Table 3 evaluated at r=0 and the differential equations in Table 2
evaluated at 1= 0. It must be noted that in the case under study some of the initial
conditions can be calculated by direct substitution in the equations, but others result
from the solution of a linear system of equations. By following this approach, we get
a set of consistent initial conditions (y,, ¥;).

It is useful to discuss in more detail the selection of the degrees of freedom. ¥;(0),
V2(0) and T(0) can be chosen making use of the knowledge of the operation of the
reactor. However, to select the discrete number-density PSD functions per unit
working volume, ¢, ;(f) and ¢, (1), is not straightforward. One possible approach,
that is applied here, is the following:

1. Choose a continuous weight-density PSD.

2. Apply the discretization grid and integrate in order to calculate the discrete
weight-density PSD

3. Transform the distribution from weight-basis to number-basis.

[nitially, B-splines were used to fit a possible continuous weight-density PSD, but
this approach was rejected because the interpolation between points could yield
negative values for those regions of the distribution function close to zero and
negative values do not have physical meaning in this context. Instead, it was decided
to use a log-normal distribution function for the initial weight-based distribution
function. The log-normal distribution is often used in the empirical representation
of PSDs (Randolph and Larson, 1988). The variant used here can be used for
distributions that are truncated below a minimum size and/or above a maximum
size, and is written as follows

— —l (D, — Dp.min)(Dp,max - Dp.mim) ’
1= amoS1ogs P { ~log ( Dy e — Dy.oui)D,2%% log & ) } (30)
where D, ., is the minimum diameter, D, ., is the maximum diameter, D, is the
average diameter and o is the standard deviation.

Finally, one issue that arose in this problem is the need of scaling the states and
the system of equations. The variables of the system show a wide range. Hence, the
discrete PSD can have a value in the order of 10°, whereas the cut-size diameter can
have a value of the order of 10~ *. Such a large difference in order of magnitude can
cause ill-conditioning problems when calculating the Jacobian of the system of
equations. In order to avoid such problems, the system of equations was rewritten in
terms of scaled variables and the equations themselves were also scaled. In both
cases, the scaling factor was the initial value of the variables except for those variables
whose value is 0.

Once the DAE has been categorized by its index, and consistent initial conditions
have been calculated. we are in a condition to select the method of solution for
the DAE system. Linear Multistep methods, and more precisely, the Backward
Differentiation Formulas (BDF), have emerged as the most popular method to solve

DAEs. The simplest first order BDF method is the implicit Euler method, which
consists of replacing the derivative in F(,y, y') = 0 by a backward difference

F(rn,yﬂ,%”ﬂ) =0 (31)
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where & =1, —t,_,. The resulting system of nonlinear equations for y, at each time
step is then usually solved by Newton’s method (Brenan, Campbell and Petzold,
1996). The k-step (constant stepsize) BDF consists of replacing y’ by the derivative
of the polynomial which interpolates the computed solution at k+1 times
ty l_1,---, 1, &, €evaluated at ¢,. This yields

F(tn: YVnp;;n> =0 (32)

where py, =Xa; y,_; and «;,i=1,2,..., k are the coefficients of the BDF method.
It is convenient to discuss the convergence of BDF method applied to fully-
implicit index-one systems.

Theorem 1 (Brenan et al. 1996) Let F(t,y,y) =0 a uniform index one DAE on an
interval I=[t,, t, + T). Then the numerical solution of ¥(t,y,y') = 0 by the k-step BDF
with fixed stepsize h for k <7 converges to O(h*) if all initial values are correct 1o
O(H*) accuracy and if the Newton iteration on each step is solved to O(H* " ') accuracy.

Thus we can conclude that the DAE under study can be solved with a code based
on the BDF method. Popular DAE solution codes based on BDFs are DASSL
(Brenan et al., 1996) and LSODI (Brenan et al., 1996). Here, the odel5s code of
the MATLAB ODE suite is used. It was chosen because MATLAB is one of the most
widely used problem-solving environments. The ode15s code is based on a variant
of the BDF's called Numerical Differentiation Formulas (NDFs). For further informa-
tion about ode15s, see (Shampine, Reichelt and Kierzenka, 1999).

5. Simulation Results

The discretization grid was selected taking into account the operation of the
reactor and the regions of interest in the particle size spectrum. For example, it is
advisable to have a fine grid in the region corresponding to the particles leaving the
reactor. For this reason, the grid was divided into two regions: fine particles,
corresponding to the sizes of particles leaving the reactor, and coarse particles. The
total number of intervals are thus split in two, half of the intervals corresponding to
the region of fines and half of the intervals corresponding to the region of coarse
particles. Finally, a linear grid is used in both regions. Figure 3 shows a sketch of
such a discretization grid. The number of intervals in the grid has been chosen by
running simulations for different number of intervals and selecting the minimum
number of intervals that provides the same results as finer grids, based on visual
inspection of the results.

:"Ii ";:} -'i'-urz Tugu J:l'”"' N

frrrrrrrrry r 117 17 17T 17T 1 1
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- - -
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Figure 3. Discretization grid.
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Simulations have been carried out with initial conditions and inputs in the range
of values of the real reactor. The system is simulated until it reaches steady-state as
regards PSD and then the response of the system to a step change in one of the
inputs is simulated. Note that scaled variables are used in all the figures.

Figures 4 and 5 show the evolution of the system after a step change in the FeSi
feed, from the normal operating value to half this value. It can be seen that before
the step change in FeSi feedrate, the volume of the reaction region ¥, (¢) increases
and never reaches steady-state, since more FeSi is fed than consumed in the disinte-
gration. The open-loop operation is thus integrating. Once the FeSi mass input is
halved, the volume in the reaction region continue to increase, but at a slower pace,
as it could be expected. The volume of the storage region V,(t) also decreases, but at
a slower pace after the step change. The change also affects the solid’s particle
fractions in both regions, decreasing in both cases, which is logical since less solid
material is fed to the system whereas the fluid feed remains constant. Figure 4 also
shows that the step change in the FeSi feed M;, results in an increase in Temperature
T(t). This result is reasonable since the heat exchange between the cold FeSi feed
and the hot acid flowrate has been reduced. The cut size D.(r) does not vary
much since the porosity in the storage region (1 — g,(7)), which is the main factor
determining its variation, has not been modified to a large extent. Finally, Figure 5
indicates that the PSD in the reaction region, and in the storage region are not
greatly affected by a change in FeSi feedrate, as could be expected. Note that the

1 T T T T ? p— T T T
L | e B e s 16~ P R
o ! ;
= : - :
Z06 : R B fouennes . = ,-
= H .
= : L '
It & L T
) S E S H 0 i i S T S—
0z 04 De 08 1 0 0.2 04 06 o8 1

&

Figure 4. Time evolution of some states/outputs after a step change in FeSi feedrate.
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Figure 5. Time evolution of PSDs after a step change in FeSi feedrate.

PSD in the storage region differs greatly from the PSD in the reaction region, as we
expected. In the reaction region coarse particles predominate, whereas in the storage
region only fines are present.

Let us take a look now at the simulations of a step change in the temperature of
the acid flow, which is increased by 2.5% with respect to the normal operating
temperature. As can be observed in Figure 6, an increase in the acid temperature
makes the disintegration proceed more quickly. This means that accumulation of
FeSi in the reaction region is hindered and for this reason the volume in this region
builds up more slowly. Similarly, the volume of the storage region decreases more
slowly since more fines are produced now than prior to the step change. The same
reasoning explains the observed trends for the solid’s volume fraction within the two
regions. Figure 6 shows that an equivalent increment in the reactor temperature is
obtained and that the cut size evolves according to the evolution of the porosity of
the storage region. The displacement of the PSD within the reaction region towards
smaller sizes, and the change in PSD shape, as observed in Figure 7, confirm that a
boost in inlet acid temperature enhances disintegration.

Figure 8 shows the result of a step change in the shape of the PSD of the FeSi
feed. As it can be noticed, the PSD within the reaction region will expertence a
noticeable change, whereas the PSD in the storage region is not so much affected.

The simulation results are satisfactory and seem to match qualitatively with the
knowledge of operation of the reactor. The new model resembles more closely the
behavior of the industrial reactor than the previous model in (Duefias and Lie, 2000).
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Figure 7. Time evolution of PSDs after a step change in inlet acid temperature
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Figure 8. Time evolution of PSDs after a change in the PSDof FeSi feed.

6. Conclusions

The intention of this paper is to improve an existing dynamic model of the main
reactor in the Silgrain® process for the production of Si from FeSi in order to
resemble more closely the behavior of the real reactor. This requires the consideration
of the momentum balance over the particles, since only the disintegrated material is
displaced out from the reactor by the acid upflow, whereas the coarse material
remains within the reactor until its disintegration. Furthermore, the energy balance
has to be included since temperature plays an important role in the disintegration.
Finally, a model for the disintegration terms based on laboratory experiments has
been used.

The extended model consists of 1 integrodifferential equation, 4 implicit ordinary
differential equations, 8 algebraic equations and 3 integral equations. The solution
of such a difficult system of equations is approached here by using the discretization
method proposed by Kumar and Ramkrishna (1996). The discretized system turns
out to be a DAE system. DAEs are not ODEs and difficulties can be encountered
when using numerical methods to solve them. Thus, DAEs require analysis and
characterization and may require reformulation before considering its numerical
solution. Such analysis is carried out here. It is concluded that the index of the
system may vary with time and the operating conditions, but that for the normal
range of operating conditions the DAE is implicit index-one and no reformulation is
necessary. Attention is also given to the determination of consistent initial conditions
since this is a key issue when solving DAEs. Particularly challenging is the selection
of initial values for the discrete number-density PSD functions per unit working
volume. The need of scaling the state variables and the system equations is also
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discussed. The analysis of the DAE system concludes with the selection of a numerical
method to solve the system. A method based on the BDFs is appropriate for this
system and the ode15s code of the MATLAB ODE suite, which is based on a variant
of the BDFs called NDFs, is selected here.

The model is thus implemented in MATLAB and a simulation analysis is carried
out to test the model. The simulation results are satisfactory and seem to match
qualitatively with the known operation of the reactor.

To sum up, the main contributions of this paper refer to the following research
areas:

o The use of the macroscopic PBE for modeling particulate processes. Previous
rescarchers have made use of the assumption of complete-mixing for the PSD.
We make a more general use of the macroscopic population equation. The
outfiow PSD in not longer assumed to be equal to the PSD within the reactor,
but both PSDs are related by considering the momentum balance over the
particles. Another contribution in the modeling area is the suggested functions
for the disintegration terms, which have been obtained after experimental
results at laboratory scale.

o The use and solution of DAE systems. DAEs are challenging and require a
more thorough analysis than other mathematical systems. Here we present a
complete example of an analysis of a DAE system. The determination of the
index of the system, of consistent initial conditions and of the method of
solution were the main issues in the analysis.

Further work will include a comparison of the simulation results with experi-
mental data from the industrial reactor. Also, the model is expected to be used to
design advanced control systems which may lead to an improvement in the operation
and yield of the reactor. Passivity-based control and predictive control are two of the
model-based control techniques in which the model presented here could be used.

Acknowledgments

The authors would like to thank Prof. Lorentz T. Biegler (Carnegie Mellon
University, Pittsburgh, USA) for his useful advice regarding numerical solution of
the model. We also want to acknowledge the help we received from Birte Skofteland,
Anne Grete Forwald, Einar Andersen and the other employees at Elkem’s Research
Centre (Kristiansand, Norway) during the laboratory work that was carried out in
this centre. The work of Marta Duefias Diez is financially supported by the Research
Council of Norway (project number 142994/432). Additional support has been
obtained from Elkem ASA in relation to the case study.

Notation

Roman Symibols

Symbol  Definition Units
a(D,,T) Particle breakup frequency function s !
b(D,,y) Birth probability distribution function m!

B Particle birth rate I/sm*

Cp Heat Capacity kcal’lkg K

D Particle death rate I/sm*
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D, Cut size m

D, Particle diameter m

f PSD as mass probability distribution function ~m™!

g solid’s volume fraction —

- Gravity acceleration m/s?

N Number of intervals —

M Mass Flowrate kg/s

q Volumetric slurry flow rate m*/s

Q Heat loss to the surroundings keal/s

{ Time $

T Temperature K

U, Superficial velocity m/s

U, Actual fluid velocity m/s

|4 Working volume of the reactor m?

X Representative diameter m

¥ Mother particle diameter m

Greek Symbols

Symbol  Definition Units
o Delta Dirac function =

n Average number of daughter particles —

p Density kg/m?
pC, Volumetric Heat Capacity kcal/m®* K
10} Discrete particle size number-density distribution m~?
/] Continuous particle size number-density distribution m~*
Abbreviations

BDF Backward Differentiation Formulas

DAE Differential and Algebraic Equations

NDF Numerical Differentiation Formulas

ODE Ordinary Differential Equations

PBE Population Balance Equation

PSD Particle Size Distribution

Subscripts

Symbol  Definition

in Relative to the inlet to the reactor
inter Relative to the flow from the reaction to the storage region
max maximum
min minimum
f Relative to the liquid
D Relative to particle
out Relative to the outflow from the reactor
1 Relative to the reaction region of the reactor
2 Relative to the storage region of the reactor
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