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In this paper a mechanistic model of a paper machine is presented. The model is
developed as a foundation for the control of three selected variables; the basis
weight, the paper ash content, and the white water total concentration (or wire
tray total concentration). The model 1s of high order and reduced order models
are developed and fitted to experimental and operational mill data. The fitted
models are validated with historical operational data.

Introduction

A paper machine is a complex process due to its multivariable nature and mixture
of physical, chemical, and mechanical sub-processes. Several researchers consider
modeling of this process to be an impossible task (see e.g. Roberts (1996b, page 8),
and no denying: an all-including model would not be possible given the present
knowledge. The approach taken in this paper is one in which we focus on a
mechanistic model which will be used in an MPC (Model Predictive Control)
application. The model is simplified to make it more suitable for control purposes. It
1s beyond the scope of this paper to present a model which in all aspects have the
correct physical structure, however it is important that the model captures the
essential dynamic behavior of the process and that it is applicable over a wider range
of operating conditions than would be expected from an empiric model. The
manipulated inputs and outputs of the model are as shown in Figure 1. Several
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Figure 1. Manipulated inputs, and outputs of the model.
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Proceedings.
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more inputs are present in the model and these will be considered as ‘measured
disturbances’.

The modeling is part of a larger project for stabilization of the wet end of paper
machine 6 (PM6) at Norske Skog Saugbrugs, Norway (Hauge, Ergon, Forsland, Slora
and Lie, 2000). Norske Skog Saugbrugs is the world’s second largest manufacturer of
uncoated super calendered magazine paper (Norske Skog, 2000), and the mill
incorporates three paper machines. PM6 is built in the early 1990’s and is the largest
and most modern paper machine at the Saugbrugs mill.

Empirical modeling or system identification of paper machines are reported in
several papers and books. Some of these focus on so-called cross-directional (CD)
modeling (i.e. a model of the profile across the paper web), ¢.g. Featherstone, Van
Antwerp and Braatz (2000), Campbell (1997) and Heaven, Manness, Vu and Vyse
(1996), while others focus on the machine-direction (i.e. changes in average values
across the web), e.g. Hauge er al. (2000), Hauge and Lie (2000), Menani, Koivo,
Hubhtelin and Kuusisto (1998) and Noreus and Saltin (1998).

The reported works on mechanistic modeling of paper machines are in most cases
constrained to smailer parts of the paper machine. However, Rao, Xia and Ying
(1994), Larsson and Olsson (1996) and Hagberg and Isaksson (1993) consider a
larger part of the paper machine, e¢.g. the wet end and the wire, press, and dryer
sections, although the chemistry involved in papermaking is not considered at all. As
far as we know, the only mechanistic models of a larger part of a paper machine
which includes chemical modeling are found in Shirt (1997), Hauge et al. (2000) and
Hauge and Lie (2000). In Shirt’s work both chemical aspects, which include adsorp-
tion and flocculation, and physical aspects, which include drainage on the wire,
refining, tanks, headbox, wire section, etc., are part of the overall model, although
transportation delays in pipelines are neglected and not all aspects are presented in
detail. The mechanistic model in Hauge ez al. (2000) and Hauge and Lie (2000) is
not presented in detail in those papers, giving only an introduction to the equations
used to describe the paper machine. In neither of these latter references are the
mechanistic models validated properly with real time data. The contributions in this
paper are to bring more details on the model, to report on further refinements of the
model, and to bring results from the model fitting and validation using experimental
and operational data.

A simplified overview of PM6 is given in Figure 2. Note that the developed
models cover the process from the thick stock pump to the reel. A thick stock (lower
left area of Figure 2, including the mixing- and machine- chests) model is developed
in Slora (2001), and this model is implemented at PM6 and provides estimates of
total and filler concentrations in the thick stock.

The paper 1s organized as follows: In Section 2 the paper machine sub-processes
are discussed in detail and models are suggested. In Section 3 we describe how
simplified mechanistic models more suitable for control purposes, may be obtained.
In Section 4 we report on fitting and validation of the simplified models using real
time process data. We improve the simplified mechanistic model by extending it with
a first order empiric model in Section 5. In this section we also identify a Kalman
filter and validate the model. Finally some conclusions are given in Section 6,

2. A Comprehensive Mechanistic Approach

The model described in this section consists of 28 ordinary differential equations
(ODE), 100 partial differential equations (PDE) and hundreds of algebraic equations.
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Figure 2, Simplified sketch of PM6.

For implementation in Matlab, each PDE is discretized by the method of lines
(MOL) (see e.g. Schiesser (1991)).

2.1. Chests and tanks
Chests and tanks are modelled as ideally stirred volumes, i.e.

dm;

o ?W:.ﬁr Vr; (1
i

dC; 1 1

dr _P};Ci.j‘%"";}rir (2)

where m; [kg] is mass of component i of some volume ¥ [m?], w; ;[kg/s] is mass flow j
of component 7 into this volume, r; [kg/(m®s)] is generation of component i in the
volume, C;[—]is the concentration® of component i in the volume, C,, ; 1s the concen-
tration of component 7 in mass flow j into the volume, p [kg/m?] is the density of the
mass flow and g, [m*/s] is the volumetric flow j into the volume. We will get back to
the ‘ideally stirred” assumption when discussing the deculator and the white water
tank, and the generation term when discussing the retention aid and flocculation.

"This quantity is usually called mass fraction, but within the pulp and paper community,
concentration or consistency is more commonly used.
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2.2. Pipelines
Pipelines are modeled using partial differential equations (PDE’s), i.c.
oC; oc; 1
— ()

o~ Vox +;ri’

where v is the velocity of the mass inside the pipeline and x is the variable
corresponding to the direction along the pipeline. Thus, the concentration is here a
function of both time 7 and space x. When the reaction rates are small such that the
advection term dominates, these models are notoriously difficult to discretize using
the method of lines (MOL). With constant velocity v and r; = 0, these models can be
interpreted as time delays. For implementation, the partial differential equations are
discretized into five ordinary differential equations each, i.e. a pipeline is approxi-
mated by dividing it into five ideally stirred volumes. The choice of discretization
level is a trade-off between factors such as accuracy, complexity and numerical
properties. With an increasing number of volumes, the model is more accurate but
also more complex, and the stiffness of the overall system is increased. Keeping in
mind that the model is developed for control purposes, we found that the input-
output properties of the overall model with a discretization level of five volumes, was
very close to higher levels of discretization. The choice of five volumes was also
convenient as a starting point with respect to model complexity. The trade-off can
be studied from the responses in Figure 3, where a step change (from 0 to 0.1) in the
initial concentration 1is applied to the pipeline between the screens and the headbox.
The pipeline is 40 m long, it has a cross section area of 0.7 m? and a mass flow of
2500 kg/s. A density of p= 1000 kg/m* is assumed. If the pipeline is a pure time
delay then the step change would appear at the outlet at 1 = L/(w/(Ap))=11.2 s,
where L is the length of the pipeline.

i 10 volumes

104 volumes.
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Figure 3. Step responses at the outlet of a pipeline (40 m length, 0.7 m? cross sectional area,
2500 kg/s mass flow). Discretization carried out with various numbers of ideally stirred
volumes.
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2.3. Fibers and fillers

The finished paper typically consists of 65% (wood-) fibers, 30% filler particles
and 5% water. The filler particles are added to improve certain properties of the
paper, such as brightness and smoothness, and also often to reduce the production
costs. At PM6 two different types of filler particles are used depending on the
requirements from the end-user. Onc of these types of filler particles is used occasion-
ally when particularly high brightness is required.

The fibers that enter the process come in a variety of dimensions, and may be
crudely classified as fibers and fines where strict definitions of fines appear in the
literature (Britt & Unbehend, 1976). The fines are generated in the refining process
by the shearing action of the refiner bars upon the fiber cell walls (Roberts, 1996a).

2.4. The thick stock

The thick stock area is the lower left area of Figure 2. Cellulose, thermomechanical
pulp (TMP), broke (repulped fibers and fillers from sheet breaks and edge trimmings),
recovered stock from the disk filters (thickened mixture of cellulose, white water, and
more) and filler particles are the main additives, and they are blended in the mixing
and machine chests. These tanks have relatively large volumes for smoothing rapid
changes in the additive flows. The stock is transported to the paper machine arca
(Figure 2, except for lower left area) by the thick stock pump. A mechanistic model
of the thick stock area, estimating the total and filler consistencies in the flow to the
paper machine, is developed and implemented at PM6 (Slora, 2001).

The components in the flow from the thick stock pump are assumed to be fibers,
fines and filler particles. The total® and filler concentrations are estimated by the
thick stock model, and the concentration of fines is assumed to be

Crines = fines( Crotat — Cinner) s 4)

where oy, is a constant and C,.,,;, and Cj,),., are total and filler concentrations in the
thick stock.

2.5. Retention aid and flocculation

The filler particles and fines are in general too small to be trapped on the wire (a
fine meshed woven cloth) and retention aid is added to help them flocculate, thus
increasing the possibility of mechanical entrapment. The retention aid is also added
for other reasons, such as improving the drainage from the sheet, but these effects
will not be studied here; see e.g. Roberts (1996b) for a general introduction to
retention aids and flocculation.

Fibers and filler particles are mostly negatively charged, and at PM6 a two
component cationic (positively charged) retention aid system is used. The two
components have quite different charge densities and molecular weights. A low
molecular weight, high charge density polymer is added first, mainly to fix or
neutralize highly anionic (negatively charged) impurities in the stock but also to

“The total concentration is the sum of concentrations of fibers, ﬁncsT and filler particles.
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Figure 4. (1) The polymer adsorbs onto anionic impurities in the stock. (2) Flocculation
caused by the polymer. Note the tight adsorption of the particles and the polymers due to the
charge and weight characteristica of the polymer.

improve retention as illustrated in Figure 4. We will assume that the flocculation due
to this polymer is negligible as is also experienced on the paper machine when the
addition of this polymer is stopped. The addition of this polymer is now used in a
control loop for stabilizing the charge (or cationic demand) of the stock at PM6.

The second polymer that is added has a low charge density and high molecular
weight. This results in adsorption onto fibers and filler particles leaving ‘tails’ which
other fibers and filler particles may adsorb onto (see Figure 5). This is termed
‘bridging flocculation’ and is assumed to be the main contributor to the flocculation
in the process. The addition of this retention aid is located just after the screens as
seen on Figure 2.

On a more microscopic level one may go on to describe the adsorption and
flocculation of various components (e.g. adsorption of polymers onto fibers, fines
and filler particles, and the flocculation of fibers with fibers, fibers with fines, filler
particles with filler particles, etc.) as i1s found in e.g. Van de Ven (1993) and Shirt
(1997). This, however requires many ordinary and partial differential equations, and
a simpler solution was sought here. An equation for the concentration of flocculated
component { that provided an overall good fit for the model, and which also was
relatively simple was

:' =+ br&\:_/ —

L Low charge density,

Fibers and high molecular weight,
filler particles polymer

Figure 5. Bridging flocculation of fibers and fillers.
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This equation describes concentration of flocculated components in pipelines (follow-
ing the convention of equation (3)), with obvious extensions to equations for chests
and tanks as outlined in equation (2). Component i is either filler particles or fines
(we are not interested in flocculation of fibres as we assume later on that they will be
retained on the wire in any case), C,,. ; is the concentration of flocculated component
I, Coon-fioe.i 1S the concentration of non-flocculated component i, k; .., and k; ., are
flocculation constants and C,, and Cp,,, are concentrations of retention aid and
fibers, respectively. The reaction rate is empiric and should not be regarded as an
attempt to explain the complicated process of flocculation. This is obvious considering
that as long as there are fibers, the equation predicts a positive reaction rate even
with no filler particles or fines present in the system.

In addition to the flocculation equation (5) itself, there are several other issues
which must be addressed. For example that the equation fails to account for several
major disturbances on the flocculation. The temperature and charge are two of these
disturbances and they are stabilized at PM6 by separate control loops. Another
parameter which has tremendous effect on the flocculation is the pH (see e.g. Horn
(1996)). At PM6 the pH is observed for longer periods of time showing no dramatic
variations,

The retention aid is added at the screens, and only seconds later it arrives at the
wire section where obviously some of it must be recirculated through the wire cloth.
We will get back to this issue in Section 2.11. The recirculated polymer will undergo
a deactivation process in which it diffuses into the pores of the fibres (Koethe, 1993)
thus loosing some ability to cause flocculation (Pelssers, 1989). In addition, the
recirculated flocs must pass through a number of pumps and other process equipment
(such as the hydrocyclones and the screens) with high shear rates, causing break-up
of flocculated particles® (Gregory, 1988). These facts caused (Shirt, 1997), in his
dynamic model, to assume that all particles which are recirculated through the white
water system loose any active high molecular weight (low charge density) polymer
coverage. In our model we allow for some flocculation to take place in the white
water system, thus giving some initial concentrations (larger than zcro) of flocs at
the outlet of the screens where the retention aid is added.

2.6. The white water tank

The white water tank is modeled as a perfectly stirred tank equation (2). The
validity of this assumption may be questioned since the main input flow (the
dewatering from the wire section) enters on top of the tank, and the main output
flow (the flow to the first stage of the hydrocyclones) leaves at the bottom of the
tank. There is no mixing arrangement present in this tank. The tank is however only
moderately tall and the main input and output flows are quite large and have high
velocities, so the turbulence inside the tank is assumed to blend the contents well.
Another approach is taken in (Nissinen, 1999) where the upper part of the tank is
assumed perfectly mixed, and the lower part a plug flow.

*Bridging flocculation is typical formpolymers with low charge density and high molecular
weight. Flocs produced by bridging flocculation, and then broken at high shear rates, will not
easily re-flocculate (Gregory, 1988).
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2.7. The hydrocyclones

There are a total of five hydrocyclone stages and a tank between the fourth and
fifth stage, as shown in Figure 6. Each stage consists of several units where the accept
flow goes through the top of the cyclones and the reject flows out at the bottom. In
the model we have neglected the time delays, or volumes, of the hydrocyclone units
themselves, because these volumes are small compared to the pipeline volumes
between the units. The pipelines are modeled as shown in equation (3), and the
cyclone units split the incoming flows into an accept flow and a reject flow. The
concentrations in the accept flow will be lower than in the reject flow because
gravitational forces are used to separate the two outlet flows, and heavier particles
will have a tendency to be rejected.

Equations like

Wi,accept = Oci,accept : Wi,injecl (6)
are used for finding the accepted total mass flows in stage i(ie{l,...,5}), and
Ci,j,accept = O(i,j,acoept ) Ci,j, inject (7)

are used for finding the concentration of component j in the accept flow at stage i.
Component j is recirculated filler particles, ‘fresh’ filler particles, fiber, fines, retention
aid, flocculated fines or flocculated filler. Observations after step changes in the
addition of filler particles indicate that recirculated and newly added filler behaves
quite differently in the hydrocyclones, and this is the reason for treating them
separately.

Due to high shear rates and deactivation (as explained in Section 2.5), it 1s
assumed that no flocculation takes place in the fourth and fifth stage, and also that
the polymer entering the fourth stage is completely inactive. The tank between the
fourth and fifth stage is modeled by ordinary differential equations similar to equation
(2), but without the flocculation term, and only for the components filler, fiber,
and fines.

2.8. The deculator

The deculator is a relatively small two chamber tank whose purpose is to remove
air bubbles from the stock. The ‘right side’ chamber (refer to Figure 2) has the largest
volume and an overflow to the ‘left side’ chamber keeps the level constant. The level
on the ‘left’ side is controlled and assumed constant. Equations similar to equation
(2) are used for both chambers. The assumption of ideally stirred masses in each
chamber is probably good due to large masses entering and the small volumes
involved. In addition, the ‘right’ side chamber has an input flow (recirculated from
the headbox) entering at the bottom which should make the assumption even better.

2.9. The screens

There are two screens in parallel, in addition to a reject system for recirculation
of usable fibers and filler particles back into the white water tank. In the model the
screens are seen as one unit, splitting the flow in a reject and an accept flow. The
equations used are similar to those used for the hydrocyclones, thus ignoring the
volume of the screens which are small. The reject system is not part of the model
due to the reject flow and concentrations being small. The reject flow is about 2% of



Paper Machine Modeling at Norske Skog Saugbrugs 35

From the
white water To the deculator
tank (right side}
1
Dilution water
From the:
while water To the deculalor
tank — (lefl side)
- 2
2. stage
pump MM/\(
From the To the deculator
white waler .
tank P N (ief side)
2 =
3. stage ‘ 3 j
pump Aut '
Dilution
vater N = —1
A =
4. stage 4
Reject tank
Dilution
water = S—
\*=
5. stage 5
pump Dilution water
Waste water
treatment
Figure 6. The five stage hydrocyclone arrangement.
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the inject flow and the concentrations are found by laboratory measurements to be
no larger than the inject and accept concentrations.

2.10. The headbox

The headbox is modeled as a pure mass flow splitting unit. The two output flows,
one recirculation flow to the deculator and one flow onto the wire, are assumed to
have the same concentrations as the input flow. The mass flow to the wire section is
calculated by

WH*W:aI'hI'fI'\/FIa ()

which can be derived from Bernoulli’s equation, where wy_y [kg/s] is the mass flow
onto the wire, o, [kgt*m*?] is a lumped constant (dependent on the geometry of
the slice opening amongst others), h; and /; are the height and length of the slice
opening respectively and P, [Pa] is the pressure inside the headbox. Note that the
length of the slice opening is a constant while the height of the slice opening is used
for controlling the cross directional (CD}) profile. Thus the height varies across the
slice opening and the average is used in the equation above. More detailed models of
headboxes can be found in e.g. Rao et al., (1994) and Tuladhar, Davids, Yim &
Woods (1997).

2.11. The wire, press, and dryer sections

Following Shirt (1997) we assume that (long) fibers, flocculated fines and floccu-
lated filler particles are retained on the wire*. In addition we aflow for some filler
particles to be mechanically entrapped so that the component mass flows entrapped
on the wire are

Ww tiller = WH—-w "~ (CH,flocculated ritter T Cr, non-flocculated filter " OfW,fiuer) 9)
Wy fines = WaH-W' CH,flocculated fines (10)
Wi fiber — WH-W ' CH,fibera (11)

where wy; [kg/s] are the component mass flows retained on the wire
(ie{filler, fines, fiber}), Cy ; are the concentrations in the headbox (je {flocculated
filler, non-flocculated filler, flocculated fines, fiber}), and ay iy, is the fraction of non-
flocculated filler mechanically entrapped on the wire. The significance of mechanical
entrapment seems to be somewhat controversial in the literature. For example Van
de Ven (1984) found (theoretically) that mechanical entrapment was low, while Bown
(1996) reports that mechanical entrapment can be a dominant mechanism.

Most of the water is drained from the wire to the white water tank, and this is
modeled by

Ww—wwr = %w Wy 5

where Wy —wwr [kg/s] and wy_ - [kg/s] are total mass flows from the wire to the

“Laboratory measurements at PM6 of the fiber (length) distribution in the headbox and in
the flow from the wire section to the white water tank showed no clear distinction between
fiber lengths being retained and fiber lengths being drained from the wire, although longer
fibers seemed more likely to be retained.
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white water tank and from the headbox to the wire respectively, while «; is the
fraction (close to one) of mass flow out on the wire which is recirculated to the white
water tank.

The concentrations of filler particles, fines and fibers in the mass flow from the
wire section to the white water tank are casily calculated using equations (8-12) and
the concentrations in the headbox (the concentration of fibers in this flow is equal to
zero). As explained in Section 2.5 we also allow for some recirculation of retention
aid, and the concentration of retention aid in the flow from the wire to the white
water tank is calculated as

CW— WWT,retaid — Xretaid CH.rcl.aid's (13)

where Cy iy rer.aia A0d Cyer.01q aT€ cOncentrations of retention aid in the flow from
the wire to the white water tank and in the headbox respectively, and ¢, i is the
fraction of retention aid being recirculated. The parameter o, .;s may be viewed as a
lumped parameter considering that we do not account for deactivation and destruction
of polymers by shear rates elsewhere in the model. An exception is in the hydrocyclones,
where we assume that polymer entering the fourth stage is completely inactive.
The transportation of the solids from the wire section, through the pressing and
dryer section, and onto the reel is modeled by an advection equation
Wy g Wy g,

“ (14)

ot -7 Jx

where wy g ; [kg/s] is the mass flow of component i (i = filler or solids (filler, fiber
and fines added)) from the wire section to the reel, and v [m/s] is the paper machine
velocity (near the reel). We do not model the filtration process or drainage process
in any detail, and we only focus on the solids on the wire.

2.12. The output equations

The outputs are as shown in Figure 1, and the equations connecting the outputs
to the internal states of the dynamic model are

1000 " t:‘eu;lge trim~ Ww — R, solid (Iﬁ__- Lpaper}

Vbasis weight (1) = v(£) - bg - (1 — f(0)) 13
100wy — g fitier (£, X = Lpapee) - (1 — (1))
! )= WoRl 16
Yoaper wn (1) Wiy — R, sonia (1% = Lyaper) (o
Ywwiot. cone. () = 100 - (Copr _ vz sine (1) + Cor — wwrt imes 1)) (17)

Where Y hasis weight (I) [g’fmzls ypapcr ash (I) [0"’6]5 and FWW tot. conc. (!) [%] are the basis
weight, paper ash content, and white water total concentration, respectively. The
basis weight and paper ash are measured by a scanning device between the dryer
section and the reel. o4, i 18 @ constant which adjusts for edge trimmings of the
paper, Wy _ g i(t,x = L,....) [ke/s] is the mass flow of component i (i= filler and/or
solids (filler, fiber and fines added)) at the scanning device (L, ., indicates the length
of the paper sheet from the wire section to the scanning device), w(f) [m/s] is the
paper machine velocity at the scanning device, by [m] is the width of the paper sheet
at the scanning device and f(/) is the measured moisture content in the paper at the
scanning device. Cy_ ywr. fine(!) @and Cy i1 eines(?) are the concentrations of filler
and fines in the flow from the wire section to the white water tank.
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3. Model reduction

In Hauge & Lie (2000b) it was shown, by simulation, that the full scale model
described in Section 2 can be reduced to a much simpler and lower order model
without affecting its properties to any large extent. The implemented full scale model
is of order 528, and it was shown that a 38th order model have basically the same
input-output propertics. the simplifications were by and large carried out by lumping
pipeline volumes into existing tanks, discretizing the remaining pipeline volume (the
pipeline between the screens and the headbox) into one volume and discretizing the
wire, press, and dryer sections into one ‘volume’. Further model reductions were
obtained by e.g. comparing the responses of simplified models of various order, fitted
to process data. The simplifications were carried out with a step by step approach in
which the model was carefully studied after each phase of simplifications and model
fitting. The model reductions culminated in a third order model. In Figure 7, only
elements relevant for the simplified model are shown. There are three lumped volumes,
and these are the white water tank, the reject tank, and the deculator (‘right’ side).
Only two components are accounted for in the simplified model, and these are filler
particles and fibers, thus no flocculated filler or fines concentrations are calculated
throughout the white water system.

3.1. Summary of simplified third order model

The model equations are

x=fi{x,u,d,z,0)
Z :fz(xauadaza 9) (18)
y = g(x7u’d’27 6)7

Fillar

Thick stock 1

| r%l

Retention Ald

T Yk

Figure 7. Sketch of PM6, according to the third order mechanistic model.
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where zeR*' is a set of algebraic equations. The states are

Cke.ﬁller
X =| Cywr.sitter |> (19)

CDI Fiber

where Cy. qnee i the concentration of filler in the reject tank, Cywy e 1S the
concentration of filler in the white water tank, and Cp, ., is the concentration of
fiber in the deculator (‘right’ side).

The mputs and outputs are

Wrs Fhasis weight
u= wfillel s Y= ypaper ash L] (20)
Wret. aid Yww tot. conc.

where wy 1s the flow of thick stock, wgy., is the flow of filler which is added at the
outlet of the white water tank, w,, ;4 is the flow of retention aid added at the outlet
of the screens, and the outputs are as explained in section 2.12.

The measured disturbances, which are accounted for in the model, are

C‘I"S. total
CTS LFiller

Sl Slage pump
d= b ; 21)
Py

hsliu opening

where Crg o a0d Cys i, are total and filler thick stock concentrations, S qage pump
1s the speed of the pump between the white water tank and the first stage of the
hydrocyclones, v is the machine velocity, Py, is the pressure inside the headbox, A,
opening 18 the height of the slice opening and f'is the paper moisture percentage.

The parameter vector ¢ consists of various more or less unknown parameters,
which we tune to fit the model to process data. Several other parameters exist, some
which are known, and some which are set at fixed values due to identifiability
considerations. The parameter vector then, is

9=[°5|,rresh filler, accept 1, filler,accept  *2,filler,accept  *1,fiber,accept %2, fiber, accept

(22)
O fiber  Ow.ritler  O7s.freshfiter  Vwwr Vee Vor Keeo  Kiiver)s

Where o; ; ,ccep 15 the share of accepted component j (fresh filler, filler or fiber) at the
th hydrocyclone stage, oy giper and oy gy, are shares of fiber and filler mechanically
entrapped on the wire, t;g freen riner 1S the share of fresh filler in the filler flow from
the thick stock, V; are the volumes of the white water tank, reject tank and deculator
(‘right’ side), and k; are flocculation constants for filler particles.

3.2. Implementation issues

The algebraic equations in the model are calculated in an order similar to the
physical appearance of the variables in the process (e.g. algebraic equations associated
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with the first stage of the hydrocyclones are computed before equations associated
with the reject tank and the second stage). The advantage of calculating them in this
order is that the model file is well arranged, and changes in the model can be easily
implemented and tested. The disadvantage is that due to several equations being
mutually dependent, we can not compute all of them as they appear in the model
equations. In the model file this is solved using shifted values for some variables, 1.e.

Xt 1 =1 (X Uy s Zi» Zic— 1,0)
zZe=/> (xkaukadkszkazk—lae) (23)

Y= g(xksuk:dkazbzk—lag)

The method used here corresponds to the fixed-point iteration method (see e.g.
Gerald & Wheatley (1994)), using only one iteration. A simple explicit Euler method
is used for discretizing the model in equation (18). One reason for using the explicit
Euler method, contrary to e.g. a Runge-Kutta method, is that it can be used in a
straight forward manner, even though we use a fixed-point iteration method with one
iteration to calculate some of the algebraic equations.

It is possible, by substitution, to eliminate the algebraic equations from the model.
We have compared validation results (as in Section (4), using a model where the
algebraic equations are climinated, and a model where the fixed-point iteration
method using one iteration is used. The two methods gave practically the same
validation results and the model outputs were close to indistinguishable. The reason
for this is that most of the variables in the process change slowly and thus the error
of using a delayed value is small. The model file, when the algebraic equations are
climinated, consists of a few very large and complex equations. Changing the structure
of the model would not be possible using this file, and in the remainder of this paper
we use the model file where fixed-point iteration is used.

4. Parameter estimation and validation
4.1 Criterion and minimization algorithm

The function lsgnonlin in the Optimization toolbox version 2, in Matlab
version 6, is used for solving the minimization problem

f=arg mén](@), (24)

where # is the parameter vector in equation (22), 6 is the estimated parameter vector
that minimize the least squares criterion

JO)=e"(0)- Q- e(0), (25)

where e is a vector of errors and @ is a diagonal weighting matrix.

There are at least two alternatives when deciding how the errors e should be
calculated. In the prediction error method (PEM) and in subspace methods one
calculates the prediction error

a(t) = yt|t — 1) = (1), (26)

where y(#) is the measured output at time ¢, and j(z|f— 1) is the predicted output at
time 7 based on past input-output data, i.e. a one-step-ahead prediction. In this case
the error vector would be e.g.
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e"(0) =[ei(0) e;(0) ... eh_,(0) e(0)), (27)
with
el () =[e1) ed2) ... &(f) ... e(N—1) &(N)], (28)

where m is the number of outputs and N is the number of samples in the data set.
Another approach is to simulate the system. with only the initial conditions given.
The error is then

&(7) = y(110) — (1), (29)

where (7|0) is the model output at time ¢ given only the initial conditions. The error
vector for output 7 is then

e/ () =[ed1) &(2) ... (1) ... eN—1) &N)]. (30)

Traditional system identification is carried out by using the one-step-ahead
method, however in our case we wish to emphasize the need for a model with good
long term prediction abilities. The reason for this is that the model will be used for
model predictive control (MPC). It thus seems natural to use the simulation approach
in the parameter estimation algorithm. The simulation approach results in a determin-
istic model, and it will be necessary to identify or model the noise as well. We will
return to this issue soon.

4.2. Experiment design and preprocessing of data

For a linear system, the concept of persistent excitation (see e.g. Ljung (1999)
and Soderstrom & Stoica (1989)) provides an adequate characterization of the input
signal needed to identify the model. The order of the excitation is dependent on the
power spectrum of the signal only. and is independent of its shape (e.g. amplitude).
This is not the case for a non-linear system; because such systems are amplitude
dependent, i.e. the response to an input sequence u(r) may be qualitatively very
different from that for a-u(z). Often, experiment design for non-linear systems is
based on a few rules of thumb, e.g. to use an input sequence of several amplitude
levels (Pearson & Ogunnaike, 1997), and to excite the relevant frequency bands. On
a paper machine an open loop experiment is carried out with high risk of poor paper
quality or even sheet breaks, thus we choose to experiment in closed loop (see e.g.
Ljung (1999), Soderstrom & Stoica (1989) and Forssell (1999)). We use the process
inputs « and outputs y in the same way as for open loop identification, ignoring the
feedback mechanisms and the reference signals. Furthermore, we specify changes in
the setpoints, thus forcing the inputs to perturb the process. As an example, a rough
approximation of the filtered PRBS signal is possible by changing the setpoints of
the mass flows according to a PRBS scheme and let the valve and pump controllers
work out the correct openings and velocities. Such an experiment plan is used at
PM®6. There is no need to introduce several amplitude levels in the plan, since the
process inputs and outputs are far from typical binary signals, as seen in Figures 8
and 9.

Filtered data are used when the deterministic model was identified, while the raw-
data are used when the stochastic part of the model was identified. The filtering was
carried out by a second order Butterworth filter. As is seen in Figure 9, a cubic
interpolation routine was applied to the paper ash data in a region near the 125th
minute duc to erroneous measurements.
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Experiment inputs.
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Figure 8. Experiment inputs applied to the process at February 28, 2001.
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Validation of third order mechanistic model.
Measured (solid line) and simulated (dashed ling) data
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Figure 10. Validation of third order mechanistic model by simulation. Operational data
collected during March 811, 2001. Simulated data are bias corrected.

4.3. Model fitting and validation of deterministic model

For comparison, we compute the value of a root mean square error (RMSE)
criterion

1 X )
RMSE, = }‘_‘*,gl( y:() — 7402, (31)

where N is the number of observations, y,(f) is the measured value of output i at time
t, and y;(7) is the predicted or simulated value of output i at time 7.

Optimal fitting of the mechanistic model to experimental data was carried out as
described in section 4.1. In addition, the parameters in equation (22), and the outputs
in the criterion (equation (25)) where scaled. For validation of the mechanistic model,
operational data collected during March 811, 2001, were used. Figure 10 shows the
validation results, when the mechanistic model is simulated (ballistic simulation) with
the measured inputs. The simulated model outputs are bias corrected, and the model
fit for basis weight and paper ash seem reasonably good considering that the time
span 1s more than 90 hours. The initial oscillations in the basis weight is possibly
caused by large oscillations in the estimated thick stock consistencies at this time.

RMSE values for the fitted (data collected February 28, 2001) and validated (data
collected during March 8-11, 2001) third order mechanistic model is shown below:
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Wire

Basis weight  Paper ash tray cons.
Fitted 0.30 0.33 0.022
Validated 1.17 0.66 0.037

5. A Hybrid Extension

A hybrid model will be introduced in this section. The hybrid model consists of
the third order mechanistic model and a first order empiric model. The empiric
model is identified with the error signals in equation (30) as outputs, and « and
various measured disturbance signals as inputs. Denote the output from the mechan-
istic model by j,.. and the output from the empiric model by ., then the hybrid
model output is Fp,p = Pmec — Pemp- The empiric model may be viewed as originating
from neglected and unknown dynamics in the third order mechanistic model. The
neglected dynamics typically arise from the model reductions carried out, but also
from such sources as sensors and actuators. Unknown dynamics can e.g. be a filter
in a measuring device with proprietary software, some physical unit not known to
the person modelling the system or a general lack of understanding of the physical
process.

We will start this section by fitting and validating a deterministic hybrid model.
The validation will be carried out with operational data sets spanning several days.
It is of course not realistic or the intention to use the models to predict several days
ahead, so we will then identify a stochastic sub-model, and validate the combined
deterministic and stochastic model. This validation will be carried out close to
realistic conditions, validating the one-step ahead prediction abilities and the long-
term prediction abilities.

5.1. Model fitting and validation of deterministic hybrid model

We use the experimental data set from February 28th, 2001, to identify the
empiric model. The criterion and functions used are similar to those used with the
mechanistic model (see Section 4.1.). The model structure 1s

Xemp,k+1 — Axemp,k + Bu, + Ed, (32)

yemp,k = Cxemp}k -+ Duk + de,

with x,,,eR’, deR?, y ,€R> and ueR’. The two sources of measured disturbances
are the estimated thick stock concentrations. Although it would be preferable to add
other disturbance sources, this is not possible using the February 28th, 2001, dataset
due to lack of excitation from other sources. An alternative could be to use operational
data spanning several days, such that more measured disturbances were excited. We
will return to this issue soon, but point out that using operational data to identify
e.g. the time constant of the process, which is a simple transformation of A4, in this
case fails because the process itself is not properly excited. With operational data and
a first order system, we found A~ 1, which is an integrator. Validation of the model
identified from operational data was not successful.

Figure 11 shows the fitted deterministic hybrid model. RMSE values for fitted
(data collected February 28, 2001) and validated (data collected during March 8-11,
2001) fourth order hybrid model are shown below:
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Fourth order hybrid model.
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Figure 11.  Fourth order hybrid model fitted to experimental data. Experimental data collected
at February 28th 2001.
Wire
Basis weight Paper ash  tray cons.
Fitted 0.18 0.19 0.0082
Validated 0.78 0.56 0.047

The basis weight and paper ash validation results are better than for the pure
mechanistic model, although this is not the case for the wire tray consistency where
the result is poorer.

We mentioned earlier that only two measured disturbances were used in the
empiric model, due to lack of excitation from other sources. This is true for the short
experimentation data set used to identify the models, but in the operational data sets
which span several days, many measured disturbances vary quite a lot. We take
advantage of this and identify the £ and F matrices in the state space model of
equation (32) a new, and in addition augmenting the d vector such that deR°. The
other system matrices are not altered. The measured disturbance vector used in the
empiric model is equal to that of equation (21), except that the last element (/) is
not part of the empiric model. RMSE values for a fitted fourth order hybrid model
with operational data collected during March 8-11, 2001, are:

Wire
Basis weight  Paper ash tray cons.
0.56 0.39 0.014
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Validation of fourth order hybrid model
Measured (solid line} and simulated (dashed line) data.
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Figure 12. Validation of fourth order hybrid model identified from experimental data
(February 28, 2001) and operational data (March 8-11, 2001). Operational validation data
collected during May 11-16, 2001. Simulated data are bias corrected.

Two operational data sets were used for validation of the new hybrid model. The
first validation data set is collected during May 11-16, 2001, and the bias corrected
results can be seen in Figure 12. There appear to be problems with the basis weight
and especially the wire tray concentration outputs, however compared to the model
outputs when using the mechanistic model or the hybrid model with de R2, the results
for the basis weight has improved while the result for the wire tray concentration is
WOTSE.

RMSE values for validation of the third order mechanistic model and two fourth
order hybrid models with operational data collected during May 11-16, 2001, are:

Wire

Basis weight Paper ash tray cons.
Third order mechanistic model 2.74 0.52 0.031
Fourth order hybrid model (deR?) 1.27 0.35 0.023
Fourth order hybrid model (deR®) 0.56 0.34 0.044

A second operational validation data set was collected during May 19-23, 2001,
and the bias corrected results can be seen in Figure 13. This data set is rather special,
because a filler used only a few times per year was added from around the 40th to
the 60th hour. This filler has a significant effect on both the retention aid and on the
measurement devices. In addition, extra chemicals are added in the pulping process
due to high brightness demands on the finished paper. There are probably several
errors in the data set, e.g. the low peaks around the 45th hour in the paper ash time
series, and the large oscillations in the wire tray consistency during the 40-60th hour.
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Validation of fourth order hybrid madel
Measured {solid line) and simulated (dashed line) data.
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Figure 13. Validation of fourth order hybrid model identified from experimental data

(February 28, 2001) and operational data (March 8 11, 2001). Operational validation data
collected during May 19-23, 2001. Simulated data are bias corrected.

RMSE values for validation of the third order mechanistic model and two fourth
order hybrid models with operational data collected during May 19-23, 2001, are:

Wire

Basis weight Paper ash  tray cons.
Third order mechanistic model 1.08 1.05 0.054
Fourth order hybrid model (deR?) 0.71 1.30 0.042
Fourth order hybrid model (deR®) 0.56 1.24 0.046

5.2. Identification and validation of ‘quasi extended’ Kalman filter

Identification An extended Kalman filter normally updates the Kalman filter gain
matrix at each sample, based on noise covariance matrices and a linearization of the
model (see e.g. Gelb (1974)). For simplicity we skip the linearization of the model
and the identification or tuning of the covariance matrices, and identify the Kalman
filter gain matrix directly from data collected during March 811, 2001. Thus, the
Kalman filter is not updated and therefore the name ‘quasi extended’. Note that we
do not use filtered data when we identify the Kalman filter gain matrix.

One-step ahead validation Figure 14 shows validation results using the hybrid model
with ‘quasi’ extended Kalman filter. All in all, the Kalman filter seems to work well,
although several severe measurement errors in the paper ash time series around the
45th hour cause large prediction errors for the basis weight and wire tray concentra-
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Validated "quasi extended" Kalman filter
Measured (solid fine) and predicted (dashed line) data
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Figure 14. Validation of ‘quasi extended’ Kalmann filter for fourth order hybrid model.
Operational data collected during May 19-23, 2001. Predictions are bias corrected.

tion. Before implementing this estimator on paper machine 6, some sort of outlier
detection is needed.

RMSE values are based on bias corrected measured data and predicted data
(one-step ahead predictions). RMSE values for identification (March 8-11, 2001,)
and validation (May 11-16, 2001 and May 19-23, 2001) of the fourth order hybrid
model with ‘quasi extended” Kalman filter, are:

Wire

Basis weight Paper ash  tray cons.
Identification, data from March 8-11, 2001 0.21 0.23 0.0023
Validation, data from May 11--16, 2001 0.20 0.32 0.0031
Validation, data from May 19-23, 2001 0.46 0.67 0.0047

Validation of prediction ability during sheet breaks The identification and validation
carried out in the previous section assumed that all inputs and outputs are measured,
and therefore known. A problem within the paper industry is that some of these
measurements are lost when sheet breaks occur, and a standard solution to this
problem is to ‘freeze’ the corresponding mputs at their present values (the values at
the time of the sheet break). At PM6, the basis weight and paper ash measurements
are lost during sheet breaks, while we still measure the wire tray concentration. Thus,
in Figure 15 we have validated the model, simulating sheet breaks of various lengths.
The sheet breaks last from 30 minutes to 2 hours, and they take place during normal
operation or during grade changes. The paper ash seems to be predicted reasonably
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Validation of prediction during shect breaks.
Measured {solid line) and predicted (dashed line) data
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Figure 15. Three periods of simulated sheet breaks, The first and second column show
simulated sheet breaks during normal operation, while the third column show a simulated
sheet break just prior to a grade change. Operational data collected during May 11--16, 2001.

well during sheet breaks, while the result for the basis weight is morc mixed
considering the drift in the 40-41st hour in Figure 15.

The simulation is carried out such that at sheet breaks we use the identified
constant gain Kalman filter matrix, and the innovation signal for basis weight and
paper ash is ‘frozen’ at the mean value of their ten values prior to the sheet break.
The innovation signal for wire tray concentration is calculated at each sample as
before. An alternative method, and probably more common, is to set the innovation
signal to zero for the lost measurements. The states will then only be updated through
the available measurement.

Validation of prediction ability during grade changes Prior to grade changes, the
operators must give information to the control system about the time of change, new
basis weight, paper ash, and other variables. With this information the long term
prediction ability of the model must be reasonably good. Figure 16 shows validation
results were we have validated the ability to predict the responses during a grade
change. The innovation signal for all three model outputs is ‘frozen’ at the mean
value of their ten values prior to the long-term prediction.

Conclusions

In this paper we have presented a high order mechanistic model of paper machine
6 (PM6) at Norske Skog Saugbrugs in Halden, Norway. The model is simplified
making it more suitable for control purposes, and a third order mechanistic model is
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Validation of grade change prediction.
Measured (solid line) and predicted (dashed line) data
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Figure 16. Prediction during a grade change. Operational data collected during May 11-16,
2001.

outlined. The third order model is fitted to experimental data and validated with
historical operational data. In the experimental data set only a few of the measured
disturbances are properly excited, thus the data set is not ideal for fitting of the model.
Fitting of the model to operational data sets, in which the measured disturbances were
properly excited, were tested but failed due to lack of excitation of the manipulated
inputs. One may consider merging several operational data sets, or merging data
during grade changes such that both manipulated inputs and measured disturbances
are properly exited. However, this approach may also fail because the process itself
probably is time varying, and unmodeled disturbances, such as e.g. variations in the
raw material, cause drifts and trends which are not accounted for in the model.

The fitting and validation reveals deficiencies in the model and perhaps i the
experimentation, although it is not clear whether one can eliminate these deficiencies
without increasing the order of the model.

A first order empiric model is added to the mechanistic model to capture neglected
and unknown dynamics in the process. The resulting fourth order hybrid model gives
much better validation results than the pure mechanistic model for the basis weight.
This output is probably the most important quality variable of the three outputs.

A ‘quasi extended’ Kalman filter, in which the Kalman filter gain matrix is
constant, is then identified from operational data. Validation of the hybrid model
with Kalman filter on operational data seems to give good results. Finally the model
is validated with respect to prediction ability during sheet breaks, and prediction
ability during grade changes. The prediction ability during sheet breaks seems good
for paper ash, but is more uncertain for the basis weight which have a tendency to
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drift away in some cases. Without improving the prediction ability during sheet
breaks it seems that one might as well freeze the inputs at the value prior to the sheet
break. However, one may consider using the predictions for operator support if e.g.
changes in machine velocity and other variables occur during a sheet break. The
prediction ability during grade changes seems reasonably good for the basis weight
and paper ash, however for the wire tray concentration, the prediction ability seems
poorer.

Let us finally point at a few topics which could be of interest for further research:

e Refining the model, especially focusing on improving the predictions of the
wire tray concentration.

e Identify and validate covariance matrices, linearize the model, for implementa-
tion of extended Kalman filter.

® Online estimation of key parameters, i.e. an augmented Kalman filter.

e Compare with more traditional handling of measurement loss
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