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All practical MPC implementations should have a means to recover from infeasi-
bility. We present a recently developed infeasibility handler which computes
optimal relaxations of the relaxable constraints subject to a user-defined prioritiza-
tion, by solving only « single linear program on-line in addition to the standard
quadratic programming problem on-line. A stability result for this infeasibility
handler combined with the Rawlings-Muske MPC controller is provided, and
various practical and computational issues are discussed. From a simulated FCCU
main fractionator case study, we conclude that the proposed strategy for designing
the proposed infeasibility handler is applicable on problems of realistic size.

1. Introduction

During the last years, model predictive control (MPC) has become an attractive
control strategy within the process industries. Important stability results within the
area of linear MPC are given in Rawlings and Muske (1993) under the assumption
of feasibility. In order to fully exploit this stabilizing property, a means to recover from
infeasibility of the associated optimization problem whenever possible is required.
Infeasibility problems may occur due to e.g. disturbances, operator intervention,
modelling errors, or plant failures. Note that in the MPC controller proposed by
Rawlings and Muske (1993), an approach for handling infeasibilities caused by the
state constraints is included.

Constraints representing physical limitations must be enforced at all times (non-
relaxable). Other constraints should be satisfied whenever possible (relaxable), but
may be relaxed when necessary. When infeasibility occurs, it is often not obvious
which relaxable constraints to relax and the amount that these constraints should be
relaxed in order to render a feasible set of constraints. There are some existing
techniques which take prioritization levels into account when recovering from infeasi-
bility. Aspen-DMC, IDCOM-M, HIECON and PFC (the last two from Adersa)
provide a means of recovering from infeasibilities which involves prioritization of the
constraints. When the on-line optimization problem becomes infeasible, the lowest
prioritized constraints are dropped (Qin and Badgwell, 1997). In the research
literature, the few contributions to this field include Rawlings and Muske (1993),
Scokaert and Rawlings (1999), Garcia and Morshedi (1986), Kerrigan et al. (2000),
Tyler and Morari (1999), Scokaert (1994), Alvarez and de Prada (1997) and Vada
et al. (2001). To the best of the authors knowledge, the strategy presented in Vada
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et al. (2001) is the only optimal infeasibility handler which considers hard prioritized
constraints without the use of a sequential solution approach. The focus in the
present paper is on the application of this infeasibility handler, including guidelines
for addressing computational efficiency. The usefulness of the method is illustrated
on a simulated distillation column. Moreover, we present a novel stability result for
this infeasibility handler combined with the Rawlings—Muske MPC controller.

The following notation is used throughout the paper: Let n>1 be an integer
and x,yeR". Then I, :={1,....n}, x> (>)y<x;2(>)y;, i€l,, and 0, is an »-
dimensional vector with zeros. (x, y) is used to express [x7,y"]". I, is the n x n identity
matrix, I, =0, | J| denotes the cardinality of the set J-intX denotes the interior of
the set X

2. Infeasibility handling
Let the model of the plant to be controlled by
Xpe1 = Ax,+ Bu, (M

for some AeR"*" BeR" ™ where x, and u, denote the state and control vectors at
time 7 respectively. Note that the model defines the nominal case, while the need for
feasibility handling often arises from model/plant mismatch or disturbances. The
presentation is based on the well known linear MPC problem (Rawlings and Muske,
1993):

min,, ¢(x,, 7,) = Zfi.,x}],me +uj) Ruj),
subject to:

Xen =X
u —
xuNlt—O

Xj+1|, = AXj|,+Bﬂj|‘,t$j

2
Hx“,:gh, tdj-‘-;.jz"‘r
Duméd, !‘-{-.j
u;, =0 t+N<j

where Q >0, R>0, @@= (s - -, thyrn—11)> a0d X, € R”, 4y, € R™, are the predicted
state and control input vector at future time j, respectively, and x%, € R™ denote the
unstable modi of the predictor at future time j. Further, HeR™™", h>0eR™,
DeR*™ and d>0eR"%. Assume that (4, B) is stabilizable and N >max{n,,1}.
Due to the constraint u;,, — 0, # +- N < j, there exists a constraint horizon j, > N such
that satisfaction of Hx;,<h, t <j<j,+t implies Hx;, < h, t<j (Rawlings and
Muske, 1993).
The inequality constraints in equatiion (2) may be restated as

S7, <5+ S1x 3)

where S and S, are matrices, and s, is a vector. Note that the right hand side of
equation (3) is parameterized by the state x,. Due to eg. disturbances, operator
interventions, modelling errors or plant failures, the state may take a value such that
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equation (3) has no solution and the MPC optimization problem is infeasible. In the
following, for the ease of presentation, we assume that # and d are constants,
However, the proposed infeasibility handler can be used for timevarying h and d
as well.

The constraints in an MPC optimization problem can be divided into the
following classes:

Non-relaxable hard constraints: Hard inequality constraints that are absolute in the
sense that they cannot under any circumstances be violated. Constraints related to
physical limitations belongs to this class.

Relaxable hard constraints: Hard inequality constraints related to desirables. These
constraints are relaxed only in cases when the whole set of hard constraints (ie
relaxable and non-relaxable) is inconsistent.

Soft constraints: Inequality constraints related to desirables. Violation of these
constraints are allowed, but a term is included in the cost function (2) which penalizes
constraint violations (see e.g. Zheng and Morari (1995), or Scokaert and Rawlings
(1999)).

End point constraints: (Le. x{';y;,=0.) These are equality constraints related to
stability. If these constraints are violated, nominal stability is not guarantecd (Rawl-
ings and Muske, 1993).

In the rest of this paper, unless otherwise stated, we make the following
assumptions:

(i) There are no soft constraints.

(i)) The MPC optimization problem is always feasible when all relaxable hard
constraints are removed.

(iii) Hard prioritization is utilized, i.e. the prioritization among the relaxable hard
constraints is absolute in the sense that a higher prioritized constraint is
‘infinitely’ more important to fulfill than a lower prioritized constraint.

(iv) All necessary degrees of freedom are used to minimize the violation of the
constraints, and all remaining degrees of freedom are used to minimize the
cost function in equation (2).

3. Optimal weight design problem (OWDP)

In this section we formulate the problem of computing optimal constraint
violations subject to hard prioritization as a single LP problem to be solved on-line
at each sample, see also Vada et al. (2001).

The constraints in the MPC optimization problem equation (2) can be trans-
formed into the following three constraint sets:

G'm =g'(x), 8" (x):=g"" +g"x,

G'm <g%(x,), g7(x): =g + g*'x,

G'm, <g(x,), g3(x,): =g° + g*'x,
7, =0

where G'e RN GZeRm ™ N GIgRmaxmN | pl0cpm gl gmn g2%eR™,
gtleRm>r g30cRms g eR™™ " and 1,1 =, — n™" e R ™ N is a modified vector of
control inputs, where 2™ is the lower limit on each control input. Such a limit will
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always be present in a practical MPC problem, since cach element of 7, is related to
a physical quantity. (However, if for some reason, 7" does not exist, just replace 7;
with u;, — v, in equatiion (4), with uiin = ymin =(),) In equation (4), G'm, =g'(x,)
corresponds to the stability constraint xi.y;, =0 in equation (2). Further, the
inequality constraints in equation (2) are partitioned into the following two sets of
constraints: G, < g%(x,), which is the set of all non-relaxable hard constraints, and
G3r, < g3(x,), which is the set of all relaxable hard constraints. The total namber of
inequality constraints in equation (2) is ng N+m ja, and thus m; +m;=
ny- N +n,j,. The relation between equations (4) and (2) is easy established by, in
equation (2), inserting the lst, 3rd, and 6th constraint into the 2nd, 4th, and 5th
constraint and by replacing 7, with 7, + n™". Further, assume that therc exists a hard
prioritization among the inequalities in G, <g(x,), and that G* and g’ are
constructed such that the ith row of Gn, <g%(x,) have higher priority than the
(i+ 1)th row. This implies that minimizing the violations of the ith row of
G37,< g3(x,) is “infinitely’ more important than minimizing the violations of the
(i + 1)th row.

Assume that, at a given sample, there is no feasible solution to equation (4). Since
the 3rd constraint in equation (4) is the only relaxable hard constraint, in order to
transform equation (4) into a feasible optimization problem, we introduce a vector
of constraint violations z,€ R™ as follows

G'm, =g'(x,)

G*n, < g*(x,
g (x) )
Gaﬂt = ga(xr) +z,

7, z, =0

Next we introduce the notion of lexicographic minimum: y°€Y < R" is the lexico-
graphic minimum of Y if it is not possible to find another y€ Y and an i€l such
that y; <)? and y; =% je ;" ;. As an example [0.10, 0.01, 10000] is lexicographically
less than [0.10,0.011,0], since the first element of both vectors are equal, while
minimizing the second element is ‘infinitely” more important than minimizing the
third.

Now we are ready to state a problem whose solution can be used to compute
optimal constraint violations (according to the given hard prioritization) by solving
only one LP problem on-line in addition to the original MPC QP problem:

Optimal weight design problem (OWDP)
Let X # 0 denote the set of all x, such that there exists (m,. z,) satisfying equation (5).
Given an x,€ X, let Z(x,) denote the set of all z, >0 such that there exists a satisfying
the inequalities in equation (5). Design the weight vector € in equation (6) such that
Vx.€ X, z¥ defined by

(m¥, z¥): = argmin &'z subject to (5) 6)
is equal to the lexicographic minimum of Z(x,).

Note that since we have assumed that d, h>0, (4.B) stabilizable, and
N = max{n,, 1}, we have that X # ), and OeintX. In Vada et al. (2001), existence of
a solution to the OWDP under these assumptions is established. A consequence of
this result is, at each sample, if:
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(i) the state x, has a value making equation (2) infeasible, and

(1) x,eX, that is, with the given x, there exists a relaxation of the relaxable hard
constraints such that equation (2) becomes feasible, then an optimal relaxation
z; can be computed by solving the LP problem in equation (6).

4. Stability

In this section we show that by combining the proposed infeasibility handler with
the MPC controller defined in Section 2, the region of attraction of the original MPC
controller without an infeasibility handler is increased. For a certain prioritization,
Theorem 4.1 below establishes nominal asymptotic stability for the receding horizon
implementation of equation (2) if the constraints in equation (2) are replaced by
equation (5) with z, =z}, where the weights & in equation (6) is a solution to the
OWDP. First, we present Lemma 4.! which is needed in the proof of Theorem 4.1:

Lemma 4.1 Assume that the constraints x,., ;, € X,Yj> 1, are hard non-relaxable
constraints in equation (2), where X < R", OeintX, is an arbitrary bounded subset of
X. Then, in equation (2), there exists a sufficiently large j,> N such that Vx, e X,
Hx o Sh=Hx, j;, <h i=12,...

Proof. Follows from Rawlings and Muske (1993) and boundedness of X. O
Next, we define a prioritization among the constraints which is used in Theorem 4.1

Priority Assumption

Assume that a unique priority level is assigned to each relaxable row of Hx;, < h and
Duj, < d in equation (2), such that all constraints on the horizon related to a certain
relaxable row of Hx; , < h or Du;, <d with a given priority level have higher priority
than any constraint on the horizon related to rows with a lower priority level constraints.
Let Hy(D;) denote the ith row of H(D), and assume that Vje Uj5-1, €04, 120,
HiX, s o0 < h, has higher priority than Hx,, ;;, <h;. and that Yjelj, iel), =0,
Dty ;1. < h; has higher priority than Dy, ; _, <d;.

Theorem 4.1 Assume that the constraints x,. ;€ X, Vj>1 are hard non-relaxable
constraints in equation (2), and let j, be given as in Lemma 4.1. Let G* and g* in
equation (5) be constructed according to the Priority Assumption. Assume that ¥t > 0,
z, = z{*, the solution to equation (6) with ¢ a solution to the OWDP, and assume Sfurther
that Vi =0, u, = ufj,, where uf, is the first m elements of the solution of equation (2 )
where the constraints are replaced by equation (5). Then, ¥xoe X, {z,}{ o becomes
zero within finite time, and the origin is an asymptotically stable equilibrium point with
X contained in the region of attraction.

Proof. First we prove that z}* becomes zero in finite time: Given any x, € X, let z,,
denote the constraint violations obtained by shifting the constraint violations in z%
one step ahead and filling up with zeros in the locations corresponding to prediction
J2+ LI (N]1) for the state (control input) constraints. Thus, since x, = Xy0 (nominal
case), at time 1 =1, z, =z, is feasible, and hence zero violation of the constraint at
the end of the horizon of the highest prioritized constraint is feasible. Then, due to
the choice of ¢ in equation (6), the corresponding element of =¥ is equal to zero.
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Continuing this argument, due to the prioritization along the horizon, we obtain
that in z*, all violations of Hx;,<h (or Du;,<d) corresponding to the highest
priority level, becomes zero after at least j, (or N) samples. Continuing this for the
row of Hx;, < h or Du;;, <d corresponding with the next priority level, and so on,
we obtain that z} =0, ,t=m3,my+1,...

Finally we prove asymptotic stability with X contained in the region of attraction:
Let X’ be the set of all x, such that there exists a 7, satisfying equation (5) with
z,= 0. It follows from Rawlings and Muske (1993) that Vxe X", by using the control
law defined by receding-horizon implementation of the solution of equation (2), the
origin is an asymptotically stable solution. Combining this with the fact that
zF =0, t=my, my+1,..., the result follows. O

Note that we need to assume that V¢ <0, x, is contained in a bounded region X. This
is done to obtain a fixed j, which is sufficiently large to be valid for all x,e X. Also
note that a result similar to Theorem 4.1 is stated in Rawlings and Muske (1993) and
Scokaert and Rawlings (1999) for the case when only the state constraints can be
relaxed, and when all rows of Hx;,, have equal priority. Recall that the strategy in
(Scokaert and Rawlings 1999) is based on solving a sequence of optimization
problems. An important consequence of Theorem 4.1 is that by using the proposed
controller, the region of attraction of the MPC controller equation (2) without
infeasibility handling is at least enlarged from X" to X (cf. the proof of Theorem 4.1
for X"). Also note that, in the case when all state constraints and none of the input
constraints are relaxable, the region of attraction of the approaches proposed in
Rawlings and Muske (1993) and Scokaert and Rawlings (1999) (the optimal minimal
time approach) are equal to the region of attraction obtained by using the infeasibility
handler we propose.

5. Solving the OWDP

In Vada ef al. (2001), an algorithm which solves the OWDP is presented.
In order to give an intuitive understanding of this algorithm, we give in the following
an outline of the main ideas behind the algorithm.

The constraints in the OWDP, i.e. equation (5), can be restated as a set of equality
constraints by introducing nonnegative auxiliary variables v, and w,

Glnr = gl(xr)
G'm+v,  =g%(x)
U]
Gaﬂt +w—z= ga(xt)
ﬂh vl"! wn Zj 20

and by defining x: = (7., v Wy, z,), equation (6) can be transformed into an LP
problem on standard form

min ¢¥ x*F
x”' ®)
. _J A XM = b(x,)
subject to: { P50

where b(x,): = (g'(x,), £7(x,), £(x)) €:= Onm + my +ms, €) and
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1
G 0!’!'!1 X ma Om, Hms Oml ¥ my

AP = G? L, Opny  my Oy x mey eRimtmytms)  (Nm+my+2my) 9)

G Opymy, A, -1,

The problem in equation (8) is called a parametric LP, (Gal, 1995), since the right
hand side of the equality-constraints in equation (8) is parameterized by x,. Recall
that the problem stated in the OWDP is to design ¢ in equation (8) (or, more precisely
¢, since ¢;=0. i€l  ,+m,) such that for each x,e X, any optimal solution to
equation (8) has the property that the z,-part of this solution is equal to the
lexicographically least feasible z, > 0. By using theory from parametric programming,
it can be shown that X can be covered by a set of polytopes, where each of the
polytopes is uniquely defined as

Xyr:={x, € X|(B™) " '(g'(x,), £2(x.), £3(x,)) >0} (10)

where B eRUmtme b m)xmitmytma) jo o basis for R™*™*™s that consists of
my + m; 4 my linearly independent columns of 4. Each of the polytopes X is
associated with a separate basis B"". Further. each of the bases considered has the
property that if x,e Xpr, the non-zero elements of z°(x,), the lexicographically
minimum of Z(x,), are equal to corresponding elements of the vector (B*F) ~ !(g'(x,),
g%(x,). g%x,). Let # denote the set of bases such that X is covered by the
corresponding set of Xgeres. In Vada e al. (2001) it is shown that each basis in £
defines a set of linear constraints on ¢ in equation (6) in order for & to solve the
OWDP. The main idea is to compute a ¢ which satisfies the set of constraints defined
by all bases in #. 4 is computed by a sequential algorithm that finds a new basis
B"" in % by moving into a new region of X defined by neighbors of already computed
regions. This algorithm is continued until X is covered and terminates in finite time
since 4 is finite.

6. Practical modifications and computational issues

In some MPC implementations it might not be desirable or natural to distinguish
between each (scalar) constraint by assigning different priority levels to each of them.
In such cases, two or more constraints can be collected into the same priority level
and thus share the same element of z,. Note that by this, the size of the OWDP is
also reduced (fewer elements in &) at the cost of a possibly increased number of
constraint violations.

Another modification of the proposed infeasibility handler which also allows for
more than one constraint having the same priority level and which also reduces the
size of the OWDP, is to divide the relaxable constraints into two parts: hard
prioritized constraints and soft prioritized constraints. With soft prioritization the
original cost function is extended with appropriated weighted penalties on the
constraint violations (Zheng and Morari, 1995). This can be done by classifying the
ny? most important relaxable constraints as hard prioritized constraints and the
my — ni5* other relaxable hard constraints as soft prioritized constraints. The OWDP
is then solved without the set of the soft prioritized constraints, and by this the size
of the corresponding LP which computes ¢ is reduced equivalently as with the
modification proposed above.

Whether or not each constraint should have a separate priority level, or whether
or not the lower prioritized constraints can be treated as soft con-straints, is of course
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dependent on the application. However, it is important to note that it is not
straightforward (if possible at all) to choose the weights in a soft constrained
approach so as to obtain the desired hard prioritization for all possible initial states.
Thus, in order to ensure that the violation of the most important relaxable constraints,
such as shut-down and alarm limits (if they are relaxable), are minimized according
to a given prioritization, the violation of these constraints should be computed by a
hard prioritized infeasibility handler.

The computational load and memory capacity required for computing and storing
the index set to each basis is proportional to |#|. The computational load can only
be reduced by reducing the size of the original OWDP, or by designing a more
efficient algorithm to compute #8. The latter issue is discussed in Vada er al. (2001),
while we here focus on the first. Recall that the above suggested modifications reduces
the size of the OWDP. Another modification which also reduces the size of the
OWDP is to reduce the horizon of the state constraints (i.e. j,). Note that if j; is less
than the minimal j, satisfying the condition given in Lemma 4.1, nominal stability
of the controller is no longer guaranteed. Simulations indicate that the method we
have used for computing j, give a very conservative estimate (see Section T), thus
much can be gained by improving the procedure for computing j,.

7. Simulation example

In this section, we illustrate the use of the proposed infeasibility handler for a
linear model of the top section of a fluid catalytic cracker unit (FCCU) main
fractionator, see Figure 1, which is a critical unit for separating gasoline and LCO
(diesel) from the feedstock from an upstream riser reactor. A rigorous model of the

Top temperature c>\
- Wet gas
it
Gasoline
Middle Top reflux
temperature p
‘:\\ =100

Middle pump
around
Liquid Vapor

Figure 1. Top part of a FCCU fractionator.
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fractionator has been developed and fitted to real plant data (Cong et al., 1998), and
a linear model has been derived by discretization and linearization of this model
around a nominal operating point:

[ 90.9028 —6.4632  5.7545 1.5616
=001 —1.2803 92,1012  1.5499  3.3564
—0.7713 —4.2529 853340  3.4314
0.2413 —0.7122 —0.1415 85.6537
[ —3.6674 —12.4077 —0.0648 —57626  0.1049
B—001 —2.0582 —0.5071  0.1088 —7.2823  (0.2324
—1.3759 —1.6691 15177 —1.8955 —0.1224
0.1182  —0.0777 —0.0002 —0.3235  1.4456

and x;:=x®—x""  and = — " where XM= (e L, xP™)  and
W= " U™, (X", 1™™) is the nominal operating point. The sampling time
is 30's. The legend for the states and control inputs is given in Table 1, and the nominal
operating point in addition to the absolute upper and lower bounds are given in
Table 2. Non-relaxable hard constraints are defined as x“™% < x, + x"om < x“sub.
and u™ " <y, + 1" <y, Further, the relaxable hard constraints and their
corresponding priority levels are given in Table 3. The prioritizations are based on
assumptions such as: gasoline is assumed to be more valuable than LCO (this
assumption determines the prioritization between priority level 1 and 2, which are
related to product quality, andbetween priority level 3 and 4, which are related to
minimizing the content ofavaluable product in a less valuable product), and high

Table 1. States and control inputs.

Var. Description Unit
(x ) Top vapor temperature °C
(x,), Middle vapor temperature °C
(x,)s3 Top heat exchanger outlet temperature °C
(x)s Middle heat exchanger outlet temperature °C
(), Top pump-around tee valve position Yo
(i), Top reflux valve position %
()3 Top pump-around valve position Yo
(u)a Middle pump-around tee valve position %
(14)s Middle pump-around valve position Yo

Table 2. Nominal operating point, lower, and upper bounds.

X 107.0°C xqps-t 106 xgewb 108
x5 219.0°C xge 1o 218 xghs-ub 221
x5y 87.0°C xgst 83 xgb 91
xgm 199.0°C xghs 1 195 xghs.ub 203
™ 62.3% st 0 wihs-ub 100
™" 0.0% g1 0 ughse 100
uy™ 50.0% st 40 s b 80
“gom 67.9% 2°bs:1b 0 u:bs.ub 100

4
wer 50.0% U™ 40 1S 80
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Table 3. Relaxable hard constraints.

Pri. level Constraint Pri. level Constraint
1 (x"s), < 107.5 6 (14%)3 <55
2 (x™),<219.5 7 (™5 <55
3 (x%5), < 106.5 8 ("), <67
4 (x%), >218.5 9 (™) <75
5 (u*), <5.0

production rate has higher priority than minimizing the energy use (this assumption
determines the prioritization between priority level 5 and the other relaxable input
constraints). Note that since the constraint horizon in equation (2) is j,, there are j,
constraints corresponding to each of the above defined state constraints (both
relaxable and non-relaxable), and that due to the move horizon, there are N
constraints corresponding to each of the above defined control input constraints
(both relaxable and non-relaxable). Hence, there are several constraints related to a
given priority level. The prioritization implies that minimizing the violation of any
of the constraints related to priority level i has higher priority thanminimizing any
of the constraints related to priority level i + 1. Assume that within a given priority
level, minimizing the constraint violation at prediction & + 1 has higher priority than
at prediction k. That is, we assume the same prioritization as in the Priority
Assumption (defined in Section 4). We have chosen N =15, and by using a slight
modification of (Gilbert and Tan 1991, Algorithm 3.2) to calculate j,, assuming that
the nonrelaxable hard state constraints are always satisfied, we get j, = 40. Thus, for
the given example, there are m, = 185 distinct priority levels, and in the OWDP, the
dimension of ¢ is thus 185.

In order to solve the OWDP we used Algorithm 4.4 in (Vada et al., 2001), which
is brie y described in Section 5. In the algorithm, the parameter determining the
lower bound on the weights is set equal to 1.0. The number of bases in the resulting
set 4 is 167, and the elements of the resulting & which are greater than 1.0 are shown
in Table 4.

The algorithm is implemented in MATLAB with NAG Foundation Toolbox,and
the computation time was about 76 minutes on a Pentium 450MHz PC with 256MB
RAM. Note, however, that the computation of ¢ is done off-line. The on-line
computational effort associated with the infeasibility handler (the LP problem in
equation (6)) is typically smaller than the QP in equation (2).

Note that only six of the weights are greater than their minimum value. At a first
glance, since the weights related to the 78 highest prioritized constraints are all equal
to the predetermined minimum value, one might thinkthat it is remarkable that these
weights solve the OWDP. However, note that all weights in Table 4 are related to the
first or second samples on the horizon for a given priority level. Thus, for the given

Table 4. Weights solving the OWDP with j, =40. All other ¢; are equal to 1.0.

i & Corresponds to: i & Corresponds to:
79 2570 (xt%,,), <2195 120 62910  (x%,),),>106.5
80 11390  (x, ), <2195 165 1070 (). <50

119 1486  (x{%%2)1 = 106.5 180 1.283 (ufh‘)l <670
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process, minimizing the constraint violations at the beginning of the horizon implies
that the constraint violations at the end of the horizon are minimized. (Recall that
within a given priority level, the constraints corresponding to the first samples of
the horizon have lower priority than the samples at the end of the horizon.) Note
that this might not be the case for a different process. Further note that it is by far
not intuitive to determine how large the weights should to be in order to guarantee the
fulfillment ofthe hard prioritization. The largest weight produced by this algorithm is
only two orders of magnitude larger than the smallest weights. This is in strong
contrast to a heuristic approach that might rely on a sufficiently large weight ratio
between each priority level. The latter approach could lead to a numerically ill-
conditioned LP.

The simulation result obtain by combining the proposed infeasibility handler
with the closed-loop implementation of equation (2) when a state disturbance of
[—1,2,—4,4]" enters the system at =0 is shown in Figure 2. In equation (2),
Q= 1001, and R =1,,. Observe that all relaxable constraints are satisfied for all £ > 2:
At t = 0, there are 4 relaxable constraints which are violated. Two of them corresponds
to the first sample of the constraints with priority level 2 and 3, and the other two
corresponds to the first two samples of the constraint with priority level 9. At 1 =1,
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Figure 2. Simulation results using the proposed infeasibility handler combined with linear

MPC. All values are deviations from the nominal operating point. Solid lines: states and

control inputs, dash-dotted lines: non-relaxable constraints, dotted lines: relaxable constraints.

Note that in the upper part, only the hard constraint on x, are shown. since the other hard
constraints are active only at =0.
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Table 5. Weights solving the modified OWDP with 9 priority levels and j, =40.
All other & are equal to 1.0.

i & Corresponds to: i & Corresponds to:
2 113.90  (x®),<219.5 5 1.070 (), > 5.0
3 6291  (x™), >106.5 8 1.282 ("), <67.0

Table 6. Weights solving the OWDP with j,=5. All other  are equal to 1.0.

i & Corr&iponds to: i & Corresponds to:
9 2570 (x%),<219.5 15 62910 (x%,,),>106.5

10 11390 (x™, )2 <2195 25 1.070 @), <5.0

14 1486 (x%,), > 106.5 40 1.283 (1), <67.0

the only constraint violation corresponds to the first sample of the constraint
withpriority level 9.

Table 5 shows the weights when, within each of the priority levels given in Table
3, all constraints along the horizon have the same priority. In this case, there are
only 9 priority levels, i.e. e = 9. The number of bases in the resulting B is 243,
ie |#7| is almost 50% larger than obtained by using the same prioritization as in
the Priority Assumption. Note that for each priority level, the weights obtained by
solving this modified OWDP are equal to the largest weights over the horizon in
Table 4. Hence, reducing the number of priority levels does not imply reduced off-
line computational load. The simulation results obtained with the same disturbance
as above is equal to the one obtained by using the prioritization defined by the
Priority Assumption, see Figure 2.

Table 6 shows the weights when j, = 5. With this choice of j,, the corresponding
ms becomes 45. The number of bases in the resulting % is 45, and the computation
time was less than one minute. Also in this case, the simulation results obtained are
equal to the one in Figure 2, where j, = 40. This shows that for the given disturbance,
the original choice of j, is rather conservative, and by reducing j, to a more realistic
value, the computational load is greatly reduced.

8. Discussion/Conclusions

In MPC, it is normally the case that some constraints are more important to
fulfill than others. In such cases, this information defines a restriction on how the
constraints should be relaxed in order to recover from infeasibility. We assume that
the difference in importance can be described by the use of priority levels and we
focus on how to relax the constraints when a constraint with a certain priority level
is infinitely more important to satisfy than a constraint with a lower priority level.
Furthermore, we assume that if a certain constraint must be violated, it is desirable
to minimize the violation of this constraint. The main feature of the optimal
infeasibility handling algorithm of Vada et al. (2001) is that it is faster than alternative
algorithms for hard prioritization, since it reduces the problem to a single LP to be
solved online. In this paper, this algorithm is applied in simulations of a realistic
MPC problem. For this problem, the offline computational load of the algorithm is
not prohibitively large, even though the problems includes 185 priority levels. The
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elements of the resulting cost function computed by the algorithm are non-intuitive,
implying that designing such a cost function by trial and error might be time
consuming.

The paper also proves that the proposed strategy guarantees nominal asymptotic
stability if avoiding constraint violations at the end of the horizon has the highest
priority. This result implies that the region of attraction of the controller without
infeasibility handling is at least enlarged by using the proposed infeasibility handler.

Certainly, in some MPC implementations it might not be desirable or natural to
distinguish between each (scalar) constraint by giving them different priority levels.
Hence, we propose two modifications of the infeasibility handler which assigns the
same priority level to several constraints. One approach is based on hard prioritiza-
tions only, and one approach combines hard prioritization and soft prioritization.
This leads to an LP with less variables, which is desirable in large-scale practical
applications. Still, the computation complexity of the offline computations may
restrict the applicability of the present approach for some problems. Reducing the
computational complexity is therefore a problem that calls for further investigation.

Traditionally, when designing constraints which are desirables (not related to
physical limitations), one needs to consider whether or not such constraints may
cause the controller to run into feasibility problems. By using the proposed approach
for infeasibility handling, such considerations become less important. Actually, one
might design relaxable hard constraints which one knows can be satisfied in only
small regions of the state space.
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