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Observed medical ultrasound images are degraded representations of the true
acoustic tissue reflectance. The degradation is due to blur and speckle, and
significantly reduces the diagnostic value of the images. In order to remove both
blur and speckle we have developed a new statistical model for diffuse scattering
in 2D ultrasound radio-frequency images, incorporating both spatial smoothness
constraints and a physical model for diffuse scattering. The modeling approach is
Bayesian in nature, and we use Markov chain Monte Carlo methods to obtain
the restorations. The results from restorations of some real and simulated radio-
frequency ultrasound images are presented. and compared with results produced
by Wiener filtering.

1. Introduction

Ultrasound B-scan images are degraded representations of the true acoustical
scatterers in the imaged tissue. The degradation introduces image artifacts (speckle)
and limits the spatial resolution, hence reducing the diagnostic value of the images.
The dominant degradation effects are blur and speckle due to what may beapproxi-
mated as a convolution of the true reflectance field r with the imaging system point
spread function k, with the addition of noise introduced in the image formation
process. We assume the point spread function to be spatially invariant (Taxt, 1995;
Iraca er al., 1989), and thus the observed signal y can be modeled as

Vij=1thxr} ;+ ’Ii,j=zhk.lf‘i—k,j—l+ﬂi,js (i,j)es (1)
k.1

where #; ; are independent Gaussian variables with mean zero and common variance
7%, and . is a rectangular lattice with n, x n,=n sites. The indices i and J represent
radial and lateral location, respectively, while k and / are local coordinates for the
point spread function centered at (i, /). Note that the assumption of spatially invariant
point spread function is made out of computational convenience only, since our
focus is on the modeling of the image formation process. We study the effect of this
assumption in Lange er al. (1999), and refer to e.g. Taxt and Frolova (1999); Jensen
and Leeman (1994), for other discussions of the effect of the point spread function.
Due to the limited bandwidth of the point spread function and the presence of
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additive noise, perfect deconvolution is impossible. As an alternative, statistical
restoration of ultrasound images attempts to remove the effect of the degradation by
estimating the true reflectance image r. A simple and commonly used technique is
Wiener filtering (Jain, 1989; Taxt, 1995); other methods include multiscale wavelet
analysis (Zong et al., 1998), but even with these methods the restored images suffer
from blur and speckle.

We propose a new method for deconvolution of ultrasound images, based on
Markov random field models (Winkler, 1995) and Bayesian statistical methods
(Geman and Geman, 1984; Besag et al., 1995). These methods have become increas-
ingly popular over the last decade or two, and represent a general methodology for
restoration of indirectly observed measurements. The most important feature is the
ability to mode! the randomness and uncertainty inherent in the system. Specifically,
in dealing with ultrasound the methodology allows us to use stochastic models of
the imaged tissue and the image formation process, thus incorporating a priori
knowledge and measurement error in a way not possible in deterministic restoration
methods. Also, we are able to quantitatively assess the errors in our restorations,
producing a distribution over the image space rather than a single filter-image
restoration.

Our Markov random field model is based on the standard model for diffuse
scattering (Goodman, 1975; Wagner et al., 1987), where a point scatterer within one
resolution cell is modeled to be Gaussian with mean zero and variance depending
on the tissue type within the cell. Our idea is to let a spatially varying variance field
represent the underlying structures of the imaged region; based on the assumption
that this field is the sole descriptor needed to obtain faithful image restorations. The
argument for the scattering model in Wagner er al. (1987) gocs as follows: Assuming
that the concentration of scatterers is large relative to the wavelength of the pulse,
the reflectance r; ; at each location (i,j) is a Gaussian random variable with mean
zero and variance o?;. The reflectances at different points are assumed to be
uncorrelated, and thus the reflectances have the conditional distributions (i.e. the
distribution of 7, ; given that the value of a7 is known)

r2
p(n,jioé,-)=\/—2;7%j exp{— 2;':%‘;}, Vij)es @
Note that the radio frequency echo in general consists of a diffuse and a coherent
scatter component (Cohen et al., 1997), and that our model is valid only when the
coherent component is negligible and when the number of diffuse scatterers is large
enough for the law of large numbers to apply. This might not be the case for all
tissue types; however, there exists statistical tests for identifying the regions of an
image for which the diffuse scattering assumptions are true (Georgiou and Cohen,
1998). For the reminder of this paper we will assume these assumptions to hold. We
see that the estimation of the variance field is essential; given the variance field, the
reflectance can be simulated by drawing from the distribution equation (2).

The restoration can now beformulated as a Bayesian estimation problem. We
define an appropriate prior distribution p(¢?) for the variance field, trying to model
the spatial properties inherent in theimaged regions. Using Bayes theorem, the prior
distribution is then combined with the likelihood model p(y|o?) to obtain the
posterior distribution p(¢? |y, k) from which inferences can be made:

p(a? |y, ) p(y| a?, h)pl(a?) 3
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We define the prior model in Section II, selecting a distribution from the family
suggested in Geman and McClure (1987), where it was used for tomographic
reconstruction. These models have the property that they are able to recover
discontinuities in piecewise smooth images. This property is essential in our applica-
tion, as discontinuities may represent interfaces between regions of different tissue
types. Following the definition of the prior we compute the full posterior distribution.
The distribution is analytically intractable; hence we have to rely on iterative stochastic
techniques to make inferences. Markov chain Monte Carlo methods (Geman and
Geman, 1984; Hastings, 1970; Green, 1995) are well suited for sampling Markov
random field models, but we argue that when the model is formulated in terms of o2
only, these techniques can be very inefficient. However, in Section I1I we show that
this problem can be solved by augmenting the model with the reflectance field r. We
show that y and ¢? are conditionally independent given r, and thus that r can be
viewed as an auxiliary variable (Besag and Green, 1993; Higdon, 1998) decoupling y
and o®. When sampling from the joint distribution of r and &2 this fact can be
utilized to construct an algorithm with better computational properties.

A related approach can be found in Hokland and Kelly (1996), who use a discrete
Markov model for the variance field. However, their discrete model made the method
unstable. Furthermore, it is unclear how well a discrete model describes the underlying
structure of e.g. human tissue, and also how well it can account for the radial
reduction in intensity seen in ultrasound images. Our main contribution is the
formulation of the continuous variance field, which from a computationally viewpoint
is far better, making sampling and estimation easier, faster and more robust. Specifi-
cally, we avoid the problems of choosing the number of levels in the discrete variance
field, and of estimating the variance at each level. We also feel that a continuous
model is a better descriptor of the imaged regions, since it is reasonable to assume
that scattering properties varies slightly within tissue regions. Finally, radial reduction
in intensity can only be explained by a continuous model.

We conclude the paper with examples and a brief discussion in Sections I'V and V.

2. Bayesian Model Formulation
2.1. Introduction

With a slight abuse of notation we will use p(-) to represent both the distribution
and the density of the random variables. Recall that the images are defined on the
rectangular lattice .#, using thepolar coordinate representation of B-scan ultrasound
images. All images are defined on the domain .# , letting e.g. 0% = (6% ,..... 02 )",
where 5, and n, represent the number of samples in the radial and lateral directions.
respectively. For any subset Ac.f we write r,={r,;; (i,))es/} and r_, =
{ri.;; (L,j)eJ\«/} and write p(r) and p(r_ ) for the corresponding densities. Our
approach is based on Markov random field (MRF) models. One of the key features
of Markov random fields is that each site (i, ) has associated with it a neighborhood
4(i,j), such that the conditional probability of the field at the site (7,/), given the
values at all other sites, only depend on the values of the field in (i, /) (Winkler, 1995).
We write (i, j) ~ (k, ) if the sites (i, /) and (k, /) are neighbors.

2.2, Prior distribution for the variance field

The crucial part of our model is the formulation of the prior distribution for the
variance field ¢ . We let the prior be of the form
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where the first sum is over all pairs of neighboring pixels in the lattice .#. ¢(') is a
spatially structured interaction term, and () is an unstructured level term. The
choice of the prior model is justified from physical considerations about the scattering
medium, and is explained below.

In the diffuse scattering model the variance depends on the acoustical properties
of the scattering medium (Goodman, 1975), and it is thus reasonable to assume the
following:

e Variances tend to be approximately constant in regions of homogeneous tissue.
e Abrupt changes in variance may occur at interfaces between different tissue
regions, as the scattering intensity varies between tissue types.

In other words, we believe the field to be piecewise planar with each subregion
corresponding to the different tissue types in the imaged region. Hence prior
distributions with convex interaction functions will be unsuited for our purpose, since
they tend to over-smooth images, favoring gradual changes in intensity. We will
instead use an interaction function of the form

ul’
0
Plu) = ; &)

1 i
*ls

as suggested in Geman and McClure (1987); this model is known to provide for
recovery of discontinuities in blurred and noisy images. The non-interpolating prop-
erty of the model is due to its concavity and finite limit as u— oo, favoring large
intensity jumps instead of gradual changes; see Figure 1. We refer to Geman and
Reynolds (1992) and Charbonnier et al. (1997) for a further discussion of the
properties of this class of models.

" ”
™~
08l
o)
oa
1 | in'
i
0.2
40 8 & 4 2 T 4 & 8w

Figure 1. Plot of the interaction function ¢(u) with =1 and y=1.
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In addition to the spatially structured model equation (5), the unstructured term
is chosen from the conjugate family of inverse Gamma distributions; and can be seen
as a prior on the level of the variances. The parameter of the inverse Gamma
distribution is chosen small to make the distribution sufficiently vague. Combining
the two terms, we get the following prior density:

p(al)aexp{ ﬁ Z “’u kl¢(ln 3) z 2 (6)

L~k +(£+l)]n0' }

=exp{—®(c?) — ¥(c?)}

where f and & are positive parameters, and w;;, is a weight depending on the
neighborhood system. In the experiments we use a second order neighborhood
system with w;; ,, = 1 for orthogonal nearest neighbors, and w;; ,, = 1/1/2 for diagonal
nearest neighbors. The parameter f determines the strength of the interaction, while
¢ in equation (5) determines the size of the intensity jumps allowed. The parameter
y 1s set equal to 1 in all experiments, since for y <1 sharp boundaries are favored
over gradual transitions (Geman and Reynolds, 1992), while larger values of y permit
more variations within homogeneous regions.

2.3. Posterior distribution

As noted in Section I, it is possible to formulate the model in terms of the
variance field ¢ only. Given an estimate &2, the reflectance field r can be simulated
readily using equation (2). However, in Appendix A we show that the posterior
density p(c*|y) has poor sampling properties, leading to computational problems.
This deficiency is amended by considering the augmented model (42, r) as follows.

2.3.1. Model augmentation The idea behind model augmentation is to introduce
auxiliary variables that allow one to construct sampling algorithms that in some
sense are easier to work with. The variable z of interest is augmented by a variable
u, and to generate realizations from p(z) one specifies the conditional distribution
p(u|z) and builds p(z, u) = p(u|z)p(z), which is then sampled from. The idea is to
specify u in such a way that the joint sampling of (z,) is in some sense easier than
the sampling of z alone. Note that p(z, #) maintains the marginal distribution p(z).

In our setting we let  be the auxiliary variable. The augmented model is then
(62, r) with distribution

p(a®, |y, h) oc p(y|r, )p(r, 6*) oc p( y |1, h)plr|o)p(a?) )

Note that o® and y are conditionally independent given r, thus r decouples o2 and y,
making the variance field o* conditionally independent of the blur. This is important
because the blur causes long-range dependency, making unconditional sampling of
a? very difficult.

2.3.2. Posterior density We now proceed to find the joint density for ¢ and r.

According to equation (1), the density for the observed image y can be written as

li.i)es (L, f)ef

ryirky =TT pyinyec |] exp{—%(y.d—{h*r},-,,—)z} (8)
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where the convolution between / and r can be considered a constant shifting of the
expectation of y, and is as defined in equation (3).

By inserting the expression for p(6?), p(r|c®), and p(y|r,h) in equation (7), the
joint density for ¢? and r can be written as

P&, rly,b) cc p(yIr, p(r|a®)p(a?)

1 7i+2
OCCXP{— Z(?(yi-j_ {h*r}i,j)z + r;zjf}'—z} ¢ + (8 +%)ln63j) (9)
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We will later show that our sampling algorithm will use the conditional distribution
of r, ; and ¢7; at single pixels (i, ), and from equation (9) we arrive at

2.
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By performing the multiplication of the quadratic parenthesis and rearranging the
terms, equation (11) can be written as:

1 1
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(13)
Concerning implementation, note that we can store the values of Y,, , in a two-
dimensional table, reducing the the double summation in equation (11) to a single

sum over the values of Y,, ,. For every pixel updated, we have to update as many
values in the table as there are elements in the point spread function A. Thus we
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reduce the effective neighborhood size of r from the support of k convolved with £
to only two times the support of A.

From equation (12) one can recognize that the conditional distribution for r, i
given y, r_ ; and o to be a Gaussian distribution with mean

g T
‘“'"’=g_2__lz 2 1 (14)
1 i
rg m.n'fm—i.n j-l ij
and variance
1 1 1 |t
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and thus the conditional sampling of r; ; is straightforward using one of the standard
algorithms for sampling Gaussian random variables.

3. The Sampling Algorithm
3.1. Merropolis-Hastings algorithm

Given the above model we want to use the posterior means as estimators of the
variance and reflectance fields. The densities equation (9) are analytically intractable,
hence we have to rely on Markov chain Monte Carlo methods as follows: We construct
an ergodic Markov chain ¢(0); r(0); o*(1); #(1),... converging in distribution to
pla?,r|y,h). This is done as follows: For each k=1,2,... we generate ¢2(k) from
r(k—1) using p(c?(k)Ir(k —1)), and then we generate r(k) from o2(k) using
p(r(k)|o*(k), y, h). After a burn-in of t, iterations an estimate of the posterior means
can be found as

i 1 fott —— 1 fott
E@in=_ 2 @) ECldtnh=- ¥ r@ (16)
! i=ig+1 loi=rg+1

Several methods exist for constructing the Markov chain ¢2(0); /0); o2(1); (1),...;
we refer to Gilks et al. (1996) for a overview of the theory and methodology related
to Markov chain Monte Carlo methods. Among the most common methods is the
Metropolis-Hastings algorithm (Hastings, 1970), which is the one we have used in
the experiments. Assuming we want to sample from a distribution p(z), the algorithm
is as follows: If the current state of the Markov chain is z, a new state ' is drawn
from a proposal distribution with density ¢(z, z'). The new state is then accepted with
probability

N Pz, z)
2 'm’n{l’ p(z)qu,z*)} a7n

or otherwise the old state is retained. This algorithm is usually based on a succession
of random local changes, since global changes tend to have small probability of being
accepted. Usually, updating is most conveniently done at one site at the time,
requiring access to the full conditionals p(z; ;|z_. ;) and relying on the Markov
property p(z; ;|z ¢ ;) =plz;, ;| 2. ) to do efficient updating. The attractiveness of
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this approach comes from the fact that p(z; j|z, 5) usually has a small support, and
hence can be computed efficiently.

We will follow this approach, sampling from the conditional densities given in
equations (10) and (11). This sampling scheme is efficient for the following reasons.

e p(o?;l6% ;). 1) is a distribution with small support: The neighborhood is of
the same size as specified in the prior equation (6). Because of this local Markov
property, sampling is eased. We again stress that given r, the variance field o>
is conditionally independent of the point spread function 4.

o p(r; jIr ;0% 3. h) is a Gaussian distribution, which is straightforward to
sample from.

Details of the sampling are given in the next section.

3.2. Sampling algorithm

We now proceed to describe some details related to the sampling scheme given in
section I1I-A: this part may be skipped at a first reading.

3.2.1. Sampling the variance field. The choice of proposal distribution ¢(} poses a
small problem. Since variance is a scale parameter, we chose to propose an new state
by scaling the existing state with a random number u ~ U[1/2,2]. However, when
working with the model, we found that the restorations often contained outlying
pixel values in otherwise smooth regions. While not discussed in the original paper
by Geman and Reynolds (1992), this is a feature of the model, as shown by Hurn
and Jennison (1996). The reason is as follows: Let r{; be the true pixel value at site
(i,j), and assume that 7; ; is the marginal minimizer of equation (8). Then Hurn and
Jennison (1996) show that the difference 7; r,-—rﬂ ; is Gaussian distributed with
variance (1/72Z, ;h?,) . This variance can get extremely large when the blurring is
severe, or when there is much noise. Then because of the concavity of the roughness
penalty ¢(-), outlying pixel values are allowed to occur. Geman and Reynolds
(1992) does not encounter this problem because they use a modified Gibbs sampler
supported on a interval around the current values of the state and its neighbors. The
algorithm is formalized in Geman et al. (1993), restricting the image space to those
images in which no pixel values differs from its neighbors by more than a threshold
vo. However, as noted in Hurn and Jennison (1996), this restriction can be removed
by embedding the modified Gibbs sampler in a Hastings algorithm.

In the present context, with o2 taking values on the whole of R, Gibbs sampling
is costly to implement. Since the unsatisfactory reconstructions represent local,
coordinate-wise minima, a better approach would be to design the algorithm to
effectively escape such local minima. We have chosen a new proposal in which,
letting &2 ; be the median of the neighbors of the current state, a new state is proposed
by scaling &2; with a random number u ~ U[1/2,2]. Thus if the current state is an
outlying pixel value, large jumps can be made. The choice of the median is important;
choosing the mean could lead to undesired smoothing at region boundaries.

The solution suggested in Hurn and Jennison (1996), where the parameter f is
increased to enforce a higher degree of smoothness, would also partly eliminate the
problem, but at the cost of slower convergence.

3.2.2. Sampling the reflectance field. As customary when sampling from Gaussian




Bayesian 2D Deconvolution 235

distributions, we choose a Gaussian distribution centered at the current state as a
proposal distribution for r; ;. Following Roberts e al. (1997), the standard deviation
of the proposal distribution is scaled so that the acceptance ratio equation (17) is
about 0.25. This means that we accept about one out of four proposed moves.

3.3 Diagnosing convergence

‘When designing algorithms, assessing the convergence of the Markov chain isan
important issue. Quantitative convergence rates are in most cases hard to find, but
there exists a number of convergence diagnostics (Brooks and Roberts, 1998; Roberts,
1995; Mengersen ef al., 1998) which can be used as a guide to the convergence of the
chain. In this paper we have assessed the rate of convergence by monitoring the
functional

fle?)=p Z Wi @ Ingi,

2
i~k Oj.1

(13

using as burn-in the approximate number of iterations needed until all appear to
have converged. To further verify that the algorithm produces consistent results, we
have started sampling with over-dispersed initial states. Figure 2 shows the result
from such an experiment. We start two different runs in initial ¢2-fields with constant
levels of 10 an 0.1, respectively. Figures 2(a) and 2(b) shows the trace of the runs at
two different locations, while 2(c) show traces for the functional f. Clearly, this is a

!
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Figure 2. Traceplots of two Markov chains started in different initial states. (@) and (b) show
plots of the variance at two different sites, while (c) shows a traceplot of the functional £
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subjective method, but the plots do at least indicate that the estimates produced by
the algorithm are independent of the initial values used.

3.4. Parameter selection

The free parameters are f3, 8, ¢, 7 in the prior, the noise variance 7% and the point
spread function k. As explained in Section II-B we use y = 1 in all the experiments.
For a discussion of the effects of changing 7, see e.g. Geman and McClure (1987),
Geman and Reynolds (1992). The parameter ¢ in the inverse Gamma distribution is
also regarded as fixed; we use the value 0.00001 in the experiments shown, but
changes of several orders in magnitude does not seem to have any significant effect
on the results. In a considerably simpler setting than ours, Geman and Reynolds
(1992) and Hurn and Jennison (1996) find conditions on f and & so that the
estimators satisfy certain desirable properties. In our case this approach does not
seem feasible, and so f and & is chosen by hand. As pointed out in Geman and
Reynolds (1992) the value of & should be chosen approximately the size of the
discontinuities considered important, and should thus be set in each specific applica-
tion. We use ¢ = 2 in our experiments, but the results seems stable over a wide range
of deltas, as was shown quantitatively in Hurn and Jennison (1996). The last prior
parameter, f3, is chosen by trial and error, and is set to f = 4. The results do to some
extent depend on the value of this parameter, as does the speed of convergence.
However, it is hard to do this kind of modeling without having to choose at least one
parameter. In particular, one has to chose a parameter balancing the degree of fidelity
to the data to the smoothing imposed by the prior distribution.

Following Hokland and Kelly (1996) we use a sinemodulated circular Gaussian
point spread function (see Lange et al. (1999)). The radial and lateral standard
deviations were estimated from the power spectrum of the observed images, while
the noise variance is estimated from the power spectrum outside the acoustic
bandwidth of the observed images.

4. Experiments

The model was tested on a simulated region image, and on a real ultrasound
image; see Lange ef al. (1999) for more experiments. We implemented the algorithm
in LabVIEW, and the tests were run on a Power Macintosh 8600/25 computer, using
approximately 50 minutes to process each image. A ten-fold increase in speed can be
expected by implementing the routines in C. Furthermore, we claim by no means
optimality of the algorithm, as our emphasis was on producing best possible
restorations. The processing was done in polar coordinates, but the images were log-
compressed and scan-converted into Cartesian coordinates prior to display.

4.1. Simulated images

To produce the simulated images we make a region image (Lange ez al., 1999)
and use it as a variance field for the diffuse scatterers r; ;, which are then sampled.
The data y is made by convolving the ideal image with a parametric point spread
function and adding white Gaussian noise.
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(d)

Figure 3. Three region simulation of ultrasound image. () Simulated 128 x 128 image of
diffuse scatterers r. (b) The data y produced by blurring and adding noise. (¢) Estimate of
reflectance field r. (d) Estimate of the variance field o2.

Figure 3a shows a 128 x 128 simulated image of diffuse scatterers with three
region types having variances 0, 9, and 27. Figure 3b shows the simulated data
produced by blurring and adding white Gaussian noise with variance 0.5. The
restoration in Figure 3c is visually very close to the true image in 3a, although there
is some smoothing due to the choice of estimator.

4.2. Real image

The ultrasound image in Figure 4 was acquired using a Vingmed Sound CFM
750 scanner with a special 16 MHz A/D-converter and a 5 MHz 15 mm annular
array probe. 64 beams of 128 samples were recorded within one focal zone, and the
image represent an area of approximately 1.5-0.7 cm. Figure 4a shows a homogeneous
medium of diffuse scatterers submerged in water. In 4a, the lower area representing
the diffuse scatterers shows much speckle, which can also be seen in Figure 4d. The
image in Fig. 4d was estimated using the Wiener filter H=(u, v)/| H(i, v)|% + k in the
frequency domain, with the regularization factor k tuned for optimal visual result.
In our realization of r (Figure 4b) the speckle is removed, and the image shows two
relatively homogeneous regions with a smooth interface. We used a sample from the
posterior distribution as a realization, since the model states that r;;|of;~
N(0,67)),¥(i,j)e.#, and the posterior mean therefore is not meaningful as an
estimator. Even though the lower region of the image should be homogeneous, the
point spread function has introduced artifacts that our model cannot remove. Figure
4c shows the estimated variance field, an image which in fact summarizes all relevant
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(a) (b)

{c)

Figure 4. Ultrasound image of a homogeneous medium submerged in water. (a) Observed
64 x 128 image y (b) A sample from the posterior distribution for r given y and 2. (c) Estimate
of the variance field. (d) Wiener filtering of y.

information in a precise fashion. The homogeneity of the two regions, and the border
between them are clearly seen, without disturbing noise and image artifacts.

5. Discussion

This paper describes a model for the scattering distribution of homogeneous
tissue, and introduces smoothness constraints through the use of the model in Geman
and Reynolds (1992) for the underlying scattering characteristics. The model is used
in a new algorithm for restoration of ultrasound images.

We believe that the results demonstrate the potential usefulness of Markov
random field models in restoration of medical ultrasound images. The restoration of
the simulated images produced results that are more representative of the true object
than the observed ultrasound images. Also, in the case of the real image, the results
obtained are significantly better than the one produced by Wiener filtering. In both
cases the speckle patterns are efficiently removed, while at the same keeping important
details and not introducing artificial structures.

Our prior model favors homogeneous areas with sharp transitions between
regions, which is a reasonable characteristic for a model representing ultrasound
images since tissues are mostly homogeneous with sharp transitions between different
tissue types. This characteristic of the prior distribution, which can be understood
by studying the plot in Figure 1, is a great advantage to the restoration procedure. A
disadvantage is that we may loose smaller structures. However, these structures are
to a certain degree, depending on their size and the size of the degrading point spread
function size, lost anyway in the blurring process.

The removal of speckle is efficient with our method, and we believe this results in
visually better images. Speckle removal is important in 3D visualization systems,
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where the data in a 3D volume is mapped to a 2D image through a process called
rendering. In order to make the 2D image understandable, it is important that only
significant structure information participates in the rendering process, and that
irrelevant information (i.e. noise and speckle) is excluded. It is important to notice
that if a certain speckle pattern is interpreted (by the model/algorithms) as a real
structure when it in fact is a homogeneous area, this can lead to misinterpretation
by the end observer. This is a crucial point if the clinician wishes to use this
restoration method to study and analyze details from a volume scan. In other words,
if this method proves useful for real ultrasound data, a surgeon, e.g. during removal
of a tumor in the brain, could perform a 3D scan and then use the method to restore
the reflection image of a smaller part of the volume to investigate the remains of the
tumor. It would then be crucial that the method does not produce false structures
due to the speckle pattern.

Further problems have to be solved. As mentioned in Section I our model has
limitations, and it is important to consider how to deal with specular structure and
quasiperiodic components. In Hokland and Kelly (1996) the specular structures were
incorporated in the Markov field model, without significantly improving the results.
Because of the continuous variance field, we believe that our model has the exibility
to at least partly account for the effects of specular structures. The presence of
quasiperiodic scatterers will cause problems, but these occur only in some applica-
tions. Secondly, it 1s well known that point spread functions in ultrasound imaging
do not have Gaussian shapes, and that they vary both radially and laterally (Jensen
and Leeman, 1994; @Odegird, 1995). As we show in Lange et al. (1999), poor estimates
of the point spread function effects the quality of the restorations.

Thus effort should be put into the estimation of the point spread function in
order to get truly good restorations, especially in larger images. Some attempts on
estimation of 2D point spread functions exists (Taxt, 1995; Jensen and Leeman
(1994), but this is a field that needs further study. From a practical point of view, the
efficiency of the algorithm should be improved. Most medical applications require
real-time processing or at least on-line response times, and thus further optimization
of the algorithm should be investigated. Note that when used on a sequence of
images, the proceeding estimates could be used as initialization for the current frame,
hopefully leading to a considerable speedup. Also, when doing real-time display of
sequences, samples from the posterior distribution could be used instead of the
sample means equation (16).
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Appendix
1. Alternative model formulation

We derive the posterior distribution p(a2|y, h), showing that our model can indeed
be formulated in terms of ¢ only. Using equation (3) we need the likelihood, which,
using equation (1) and equation (2), is found by integrating out »;

p(ylo?) = jp(ylr)ﬂrldz)dr (19)
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For clarity of exposition we define matrices / and A as follows. A is an r x n diagonal
matrix with entries 67 ,,0% 5,..., 0% ,, on the diagonal, and H is a n x n band matrix
representing the point spread function A. Letting £, = 7>/ we get

p(ylo?)= jﬂY|f)P(f|62M?
oc J.exp{— ;((y —H)'E, Y(y—Hr)—r"Z" ')}dr

=exp{—% yTZs_l}J}Jexp{—rT(st "H4+ X YHr
+27THTE yldr
=exp{— ;_ YISty

+%yTZS_IH(HTZ, 'H+Z 7Y ‘H’rEs"y}

=exp{—; YIE - THHTE " H+ 2 D) P HTE, ‘)y}

= exp{—% yI(Z,+ HZH") 1y}

where the last line comes from the identity
A '—A'B(C '+DA 'B)y ‘DA’

=(4+BCD)™!

see e.g. Mardia et al. (1979), p. 459.
The posterior density is then found by combining the prior density equation (6)
with the density of the likelihood model equation (8):

pla?1y) < p(ylaH)p(o?)
(20)

However, note that the matrix Q =(HZH") ! in general is full; this can be scen
heuristically by expanding Q as a power series. Letting ¢;; ,; be the elements of Q, it
is a well known fact (Besag, 1974; Besag and Kooperberg, 1995) that

E(Y, ;ly u.j),az)=— Z gi'j'u.}’&.: (21

ki#ij Gijij
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implying that the neighborhood of site (i,j) consists of all sites (k, 1) such that
4ij,u # 0. Hence since Q is full the local Markov property fails to hold since the
neighborhood of each site is simply the whole image. This means that conditional on
the data y, any two sites in the variance field 62 are directly dependent, which is
undesirable for at least two reasons. First, updating is time-consuming because for
each site thatis updated, the full density has to be computed in equation (17).
Secondly, because of the global dependency, the chain will move slowly in the sample
space, resulting in slow convergence of the Markov chain. Thus this formulation of
the model. while valid and instructive, leads to computational problems. However,
this deficiency can be amended by considering the augmented field (¢2, r), as shown
in section II-C.
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