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For a general class of constrained uncertain nonlinear discrete-time systems, and
a general class of observers, it is developed bilinear matrix inequalities whose
solution gives gain matrices used in a piecewise affine observer/controller structure.
The closed-loop system is robustly quadratically stable with a region of attraction
larger than a prescribed ellipsoidal region. It is also developed a second-order
algorithm for solving these inequalities locally.

1. Introduction

The problem of stabilizing nonlinear systems using output measurements is a
fundamental problem in control, and has received considerable attention in the
literature. This is in general a hard problem, as illustrated by the fact that finding a
stabilizing static output feedback (equivalent to a reduced order dynamic output
feedback problem) for time-invariant linear systems is still an open problem (EI
Ghaoui, Oustry and AitRami, 1997; Apkarian and Tuan, 1999). Further, incorporat-
ing input and state constraints make the output feedback stabilization problem even
more challenging.

In Slupphaug, Imsland and Foss (2000), the authors have attacked this problem
using (reduced order) piecewise affine dynamic output feedback for constrained
nonlinear discrete-time systems. The associated bilinear matrix inequality feasibility
problem has proved to be hard to solve, thus motivating us to consider piecewise
affine observer-based controller structures. By structuring the dynamic part of the
controller this way, we are essentially limiting the space to search for controller
parameters.

A common approach to the output feedback stabilization problem, is to design
an observer to obtain an estimate of the state, and then (independently) design a
state feedback controller using the estimated state. In the case of linear systems, using
linear state feedback coupled with a linear state observer results in global asymptotic
closed-loop stability as long as the observer-error dynamics and the closed-loop
process under pure state feedback are asymptotically stable. In this case the separation
principle is said to hold (Khalil, 1996), since the assignment of the closed loop
eigenvalues can be carried out as separate tasks for the state feedback and observer
problems,

For nonlinear systems, it has only been possible to establish separation principles
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that either gives only local stability (see e.g. Scokaert, Rawlings and Meadows (1997)),
or consider specific classes of systems. As an example, Atassi and Khalil (1999) shows
that the performance (including asymptotic stability and region of attraction) of a
globally bounded state feedback control of a certain class of nonlinear systems can
be recovered using a sufficiently fast high-gain observer. Despite this, the lack of a
global separation principle for general nonlinear systems suggests that designing state
feedback using a state observer should in many cases be performed together, analyzing
the nonlinear system and the observer as one system.

The approach taken herein is to simultaneously search for piecewise affine observer-
state feedback and piecewise affine observer output injection that stabilizes the
composite system, taking constraints into consideration. For a general class of
uncertain nonlinear discrete-time systems, and a general class of observers, it is
developed synthesis matrix inequalities (adapting a result in Slupphaug et al. (2000))
whose solution gives gain matrices used in the controller and the observer.

It is also developed a second-order algorithm for solving these matrix inequalities
locally, based on an algorithm given in Fares, Apkarian and Noll (2001) for solving
similar matrix inequalities. The algorithm uses general purpose LMI-solvers.

The approach is illustrated with a simple example.

2. System and observer models

2.1. System description

The system to control is a discrete time uncertain nonlinear system with an uncertain
output mapping, described by

xk-!—leg'(xksuk,‘}’) c R (l)

Vi€%G(x, V) c R 2
where
F (x,u,¥):= {x* | x* =f(x,u, ) for some Y eV}
G (x,¥):= {y |y = h(x, ) for some Yy eV}

We will assume that the system is constrained, that is, the allowed values for the
inputs and states are y, € U = R™and x, € X < R", respectively. We will also call these
sets the model validity sets, and they contain the origin in their interiors. We assume
that £(0,0,y) = 0 and A(0, y) =0, thus the equilibrium input is assumed known.

Assume that the dynamics of this uncertain system can be encapsulated by a
difference inclusion of local affine models, i.e.

F (%, u, V) © My(x,u,®%),VxeX,ueU 3)
G(x,¥) © Hjy(x, ©°), VxeX @)

Here, i(x):= {iely, |xe XF'} with Iy:=1,..., N. X} denotes local model validity set
i, which is the part of the state-space in which uncertainty model i is valid. The local
model validity sets will without loss of generality be taken as non-overlapping (hence
i(x) is a singleton). Further, they shall exactly cover X, i.e. X =V, X L. N, denotes
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Figure 1. lustration of the uncertainty modelling. The shaded area is accounted for in the
controller synthesis.

the total number of local uncertainty models (and associated validity sets). The .#;s
and ;s are defined by

M(x,u, ©%):= {x* | 10€ 0, x* = A (O)x + B(O)u + ¢(0)} (5)
Hi(x,0%):={y|30€©’, y = C'(O)x + d'(H)} (6)

where the involved matrices are affine in the parameter 0, ie AY0):=

b+ 2Ne, 436, and accordingly for Bi(f), ¢'(0), C'(6) and d(0). The parameter i
denotes which subset (local model validity set) of the state-space the matrices are
valid. Further, 6 =(0,,...,0y;)"€©® is the possibly time-varying parameter vector
and N denotes the number of parameters. The parameter vector is assumed to be in
a hyper-rectangle

O :={0=(0,,...,0x)" |Vjely;,0,€[0,1]}

A procedure for obtaining this uncertainty description from a given nonlinear
ODE with uncertain parameters is given in Slupphaug et al. (2000). If the uncertainty
description is obtained by upper and lower bounding each element of the uncertain
state transition map, %, and output mapping, ¥, see Figure 1, then typically
N; — 2:1 + r_

For the Ny, local model validity sets that contains the origin in their closure, the
‘affine terms’ (¢/(f) and d'(6)) are identically zero. This is possible since we assumed
£(0,0,y)=0 and h(0,y) =0 for all y e'¥.

We also define non-overlapping local output sets, Y% jel,, . These partition the
output space ¥, and are used for defining the piecewise affine observer output
injection structure. By assuming that output constraints are mapped to the state
space, there is no loss of generality in constructing ¥ =U jeln, Yi_®". This auto-
matically ensures that the piecewise affine observer output injection is well defined.
Also define M, the number of local output sets with the origin in their closure.
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2.2. Observer description
We assume a full state model-based observer with an ‘observer correction term’ v,

K1 =L W) + i

J=8"(%)
The input u, € U, and the state and output mappings are defined for fHeXcR.A
natural choice for the observer model is a nominal nonlinear model of the system to
be controlled.
To develop the synthesis inequalities, we will need to represent the dynamics of
the observer using local affine parameter-varying models. This can be done by
encapsulating the dynamics (as in Section 2.1), by an affine difference inclusion

(R, u) € My (%, 14, ©°), Vi€ X,ue U

(%) € Hyp(£,0°), VRe X

Define i(%), I;, X%, A(8), ©" etc. as for the system, confer section 2.1.

By encapsulating the nonlinear dynamics of the observer using this difference
inclusion, we implicitly take into consideration unnecessary ‘non-existing’ observer
dynamics (since we know the observer dynamics exactly). Depending on how many
local model validity sets we choose to use, and how close the encapsulation is, this
may introduce considerable conservatism.

If we choose a piecewise affine observer model,

%, u) = AD% + B Oy 4 9

we can account for the exact observer dynamics. This observer model can for instance
be obtained by an approximation of a nominal model. Note that an approximation
can be made arbitrarily accurate by using many local model validity sets. The analysis
of this structure will be a special case of the above, since it implies ©° = 0.

3. Output feedback controller synthesis

Based on the models above, we will develop synthesis inequalities parameterized
in the matrices defining the piecewise affine observer-state feedback and observer
output injection functions. Feasibility of the inequalities will imply that the feedback
and observer correction structure will stabilize the given uncertainty class for the
defined uncertainties.

Let j(y) = {jely, |ye Y5}. When the dependence on x and y is understood from
the context, we will write i for i(x),  for i(x) and j for j(}).

3.1. Feedback and observer injection structure

The control 1, and observer correction term v, are chosen to be affine functions
of the observer state £, and the output y,,

u, = K%, + ki (M

v =Ki(y— ) + k) ®)
The feedback matrices (K’ and k%) are chosen based on which subset X* the observer
state X, is in (hence superscript i =i(x,)). The observer matrices can be based on
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which of the local output sets Y%, je 1, , the output y, is in, or by choosing them
based on which subset X the observer state %, is in (i.e. replace j with ). The latter
approach will typically simplify the complexity of the resulting inequalities.
For the X¥s and the ¥*s containing the origin in their closure, k. and k7 are zero.
Note that other feedback/observer structures that are affine in y,. X, and y, will
result in similarily structured matrix inequalities.

3.2. Closed-loop dynamics

Inserting the feedback and observer correction terms into the affine parameter-
dependent ‘open-loop’ equations describing the system and the observer, we obtain
the closed-loop dynamics, for x, € X¥, %, € X and y, € Y%, and for some 6} € ©* and
Ge®’, O:=[(0)" (01"

X1 P Xy -
l:, ]=A(K‘s, Kﬁ,f’k)l:, :|+0(k§,KiJf£,9k) )]
Xe+1 X

with

o EXCARNY B ] . 0] . .
A(K,, K}, 6,):= + K0 I+ , KI[C'(6;) —C'(0p))

| 0 AU Boy) |
S (@] [B@)] . [o] . . o] .
k;"Ki’ki‘la = . e ki— g d'(0) —d'(6} k;
C( ) _5(93)]+[B,(9:):| +|:1_K'( (6%) —d'( L})+|:!i|

3.3. The subsets of the state-space with the same observer and feedback

For use in the stability analysis, we need to identify subsets of the total state-
space where the same observer and feedback is used. We have the local model
validity sets X%, iel, v, the local observer model validity sets X%, fe wg, and the local
output sets Y}, jely,, covering the state-space, X, observer state-space, X and
output-space, ¥, respectively. We will define subsets X; on X x X such that, loosely
speaking, the closed-loop dynamics on X;; is associated with open loop dynamics
A, observer dynamics .#; and observer state feedback i and observer output
injection j. These subsets will be denoted intersection sets, and the union of all of
them will exactly cover X x X since Y covers all the possible outputs from X. The
intersection sets may be overlapping.

Formally, the subsets X;; are given as
Xirji = (XF0{x]30€@°st. C*(O)x + ' (O)e YE}) x X*

Note that when choosing observer matrices based on the observer state instead of
the output, the desired subsets are no longer intersections, but simply defined as

Xi":zX‘iL X X',!L,

which typically are much simpler to handle.
The sets defined above will form the basis for using the -procedure when
deriving the stability conditions for the closed-loop.
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3.4. Set approximations

This is done as in (Slupphaug and Foss 1999). The X;;s containing the origin in
their closure are outer approximated by unbounded polytopes {x|E;x <0}, and are
indexed with [ely , the X;;s not containing the origin in their closure are outer
approximated either by possibly bounded polytopes {x|E,x + ¢, <0}, and indexed in
{N°+1,...,NF}, or by ellipsoids

E] € X
bl el Loy
I 1

indexed in {N? + 1,..., N}. With this indexing, for each / there exists a unique triple
(i, 7,j) which will be denoted (i, f;, j;), thus intersection set number /is X, ;;. Note
that A° denotes the number of intersection setscontaining the origin in their closure,
while N7 is the number of intersection sets outer approximated by polytopes, and N
is the total number of non-empty intersection sets.

Furthermore, assume that the state-space model validity- and constraint set X is
inner approximated with an intersection of N, ellipsoids defined by the matrices H, ,
and the centers x, .. The control model validity- and constraint set U is assumed
inner approximated with an intersection of N, ellipsoids defined by the matrices H; ,
and the center u; .

3.5. Combined synthesis based on quadratic stability

1t is common in observer design to use the error variable %, = x; — %, and design
an observer for convergence of %, % — 0 (i.e., £, — x,). Stability of the origin in the
variables [x7 £7]7 is equivalent to stability of the origin in the variables [x{ %{1".

We want the origin of the closed-loop system to be affinely quadratically stable
(Slupphaug et al., 2000), meaning that a quadratic, affinely parameter-dependent,
Lyapunov function x; P(6,)x, exists, and that the region of attraction is larger than
a given ellipsoid R,. The affine quadratic stability of equation (9) implies that the
origin of the nonlinear system equation (2) with observer based output feedback is
exponentially stable.

Based on the stability definition, we can state matrix inequalities which implies
that the closed-loop is affinely quadratically stable. Below, we will use 6 for
0, 0c®: = 0° x O° = RN, Ny: = Nj + Nj.

In the following result we will need the affine functions defined by

Ng
a(ﬂ)::ao-i- Z gjaj" ae{P,oc, W!,Tl,ﬁ,ﬂ!}-
i=1

The W!'s are symmetric matrices whose dimension are the row dimension of the
corresponding E;s, denoted ng,. The o;s, tis, f;s and pis are scalars.
In the theorem below,

e[ o o]l 2

depending on if R, is given in the (x,, £,)-coordinates, or in the (x,, %)-coordinates,
respectively.
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Theorem 1 Let O be the corners of the parameter box ©, i.e. ©¢= {0,1}. Then, if
AM >0, symmetric matrices {P;} Yoo and S, matricesp of appropriate dimensions
(KL, {k;}ﬁ.v"h +1s {K‘;}f‘—ﬂs i}, 10 (€ W,,i}?rio}?r:l , LT Yo we s o such that
Viely, 0c©,
[S QA(K;, K21 0) ] -0
s QTPOQ—M—E'WOE, ]~

Vie{N°+1,..., N}, 0e©,

S QA(KY!, Ki; 0) Qc(kl, Kit ki )
x QTPOQ—-M—EfWYO)E, —E'W' (), |>0
* * —ef W'(0)e,

VIE{NP+1,..., N}, 0€®,
S QA(KY, K2 0) Qc(ky, K2, ki 0)

+ QTPOQ— M- (O)E, o (0)e, =0 (10)
* * 2(0)e,
VOe®,
O0<PO)<S !
andVlely, 0e@®

WHO) e R n,

then the origin is an affinely quadratically stable equilibrium for the closed-loop system.
If, in addition, there exist reals {o;}}¢ o and {B;} Y such that V0e®,

[P(G)—ﬁ(ﬁ)RA 0 ] <0

0 B(6) — o(0)
and reals {{u}} 7 o}tery, Such that Viely ,, 0€®,
[Hl(ﬁ]Hx,x —QTP()Q — (O Hyox, ] <0
» KO Hyaxi =) +o0) |

then the origin has a region of attraction containing {x|||x||3, <1} of at least
{x|30e€®, x" P(O)x < o(B)}. A

All * are to be induced by symmetry. Note that these matrix inequalities are all
LMIs, with the exception of equation (10).

The proof is very similar to the proof of Theorem 3.1 in Slupphaug et al. (2000),
noting that the model has only affine terms in 6, and omitted for brevity. Briefly
outlined, the proof starts with the definition of affine quadratic stability by formulat-
ing the Lyapunov inequality for all the X, s. By using the &-procedure and the set
approximations in section 3.4, these inequalities are made matrix inequalities. Further,
by utilizing Schur complements, the inequalities becomes BMIs. By noting that these
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inequalities now are affine in 6, feasibility for all 6€ © is implied by feasibility for all
0e®,.

3.6. Input constraints

It is rather straightforward to extend Theorem 1 to take input constraints into
consideration. This is done by inner approximating U by intersections of ellipsoids
as explained in section 3.4, and provide conditions that ensure that u, = KL s + KL is
inside these intersections. These conditions can be posed as LMIs (Slupphaug and
Foss, 1999, Slupphaug ef al., 2000) that can be added to the inequalities in Theorem 1.

We have to satisfy the control constraints, U, in all the XEs. For this to be the
case, it is sufficient that V(p, )ely, x I, ,0€©

| KL%+ Ko —u, 5, < 1, £ XF. an

Note that this condition is only sufficient because of the inner approximation of U.

When outer approximating the X*s for formulating LMI conditions for satisfying
control input constraints in this manner, it is only sensible to use ellipsoids, see
Slupphaug and Foss (1999). Thus, we assume that’

(O G ) G)=cfer

Using the % -procedure and Schur complements on equation (11), we get that the
LMI conditions: ¥(p,))e Iy, % I3tf,

TEpEl Tipli (K)"
* L+ 17,8 (ks — up«:)T =0

1
* % Hp,u
7,20

imply the sufficient condition equation (11) for satisfying control input constraints,
and can be added to the LMIs in Theorem 1. Note that these conditions imply that
the constraints are satisfied for all %, € X, not only the %, inside the resulting region
of attraction.

3.7. Reducing conservatism

The synthesis inequalities guarantee a decreasing Lyapunov function in all the
subsets X;; of X x X. This will introduce unnecessary conservatism and computa-
tional complexity in the cases when some of the X; are outside the resulting region
of attraction, since the Lyapunov decrease-condition will be ensured for subsets of
no relevance for the final result. The result may be a non-succesful termination of
the algorithm in the sense that no feasible solution is found. In this case we may

omit subsets X;;; that are outside the region of attraction. This situation is sketched

"Less conservatively, we could have used unions of éllipsoids.
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Figure 2. [llustration of one combination of X% and X* which can be excluded.

in Figure 2 (for simplicity, the local output sets are ignored). A practical consequence
of leaving out some subsets X;; is a reduction of the number of LMIs.

The argument above can be made irrespectively of which space (X x X or X x X)
the Lyapunov function maps from. Informally, it says that we may omit LMIs that
imply checking Lyapunov function decrease when the observer state is far from the
real state.

Since the estimate of the region of attraction is not known in advance, one must
make an assumption about the size of it and check the assumption afterwards, but
R, will however give an indication of what it will look like. One can continue the
process by reducing the size of those X,;; that is not expected to beentirely contained
in the region of attraction.

4. Solving the bilinear matrix inequalities

The non-convex synthesis problem presented herein, is very similar in structure
to the problem of rank minimization subject to LMI (convex) constraints, which has
received substantial attention the last few years. There are reported both local and
global solvers to this problem (see e.g. Apkarian and Tuan (2000)) and the references
therein), and most of them have in common that they are based on efficient algorithms
for solving semidefinite programming (SDP) problems (for instance, Nesterov and
Nemirovskii (1994)).

The non-convex part of the synthesis inequalities presented herein, are on the form

V0e®, 0< P(B)<S™! (14)

Since P is affine in 0, this is equivalent to

P(6,) S -t
P:= : ’

A
Il
Uy

P(O3) s
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where 6,,...,0,n are the ‘corners’ of the hyper-rectangle ©. This can be made an
equality constraint by adding a ‘slack’-variable? A >0,

P+A=8"

Having achieved this, we can adapt the method in Fares er al. (2001). They denote
this method sequential semi-definite programming (SSDP), and it enjoys many
similarities with sequential quadratic programming, SQP (Nocedal and Wright,
1999). The key idea is to form an augmented Lagrangian function for the BMI
problem in Theorem 1:

O.(x,A) =7+ > Au((P+ NS —1);
ij

+52(P+MS- D
=y +trA(P+M)S—1)
+ %lr [((P + A)S — DT ((P+ A)S— )]

and minimizing this function with respect to x = (P, S, A,y) subject to x € x4 Here,
¥iar denotes a convex set given by the LMI constraints specified in Theorem 1. The
minimization is done by sequentially approximating the augmented Lagrangian
function by a second-order Taylor expansion and minimizing this by solving an SDP-
problem in x, while updating the Lagrange multiplier A and the penalty parameter ¢
in a ‘smart’” way in each iteration.

This means that at each step x'”, the next step x* ) is found by use of a (e.g.
backtracking) line search method (Nocedal and Wright, 1999),

KD = 5O p®

where o €[0,1] is a scalar stepsize, and p? is the search direction at iteration i. The
search direction is found from the following SDP problem:

min ¢
f— V@cﬁl (x(i}, A(iJ)T p(il (ptIJ)T
s.t. ) L =
[ p® (V2@ 0(xD, AD))~ ':l

The expressions for the gradient and Hessian are developed similarily to Fares et al.
(2001). They can be found in the Appendix.

5. Example
Consider the uncertain constrained nonlinear system

X1 (0) = a(t)x, (1) + x,(2)
%5(#) = sin(x, (1)) — .5x,(8) + u(t)
y(!) = xl(‘)

2A should be taken as block-diagonal, with the same structure as P.
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Figure 3. Piecewise affine bounding and approximation.

ale[—.1.—.3]
[x,(0)] <2, |x,(0)] <20
[u(r)| < 100

which has an unstable equilibrium at the origin. The objective is to find a controller
and a piecewice affine observer using the techniques developed herein that robustly
stabilizes the origin for all allowed values of a(r) and gives the closed loop system a
region of attraction R, of at least [x" *"]" e {z|z"diag(1.4, 12, .8, 5)z < 1}. To this
end, the system was discretized using forward Euler and a sample interval & =0.01.
The nonlinearity was upper and lower bounded bypiecewise affine functions for use
in the system description, while a piecewise affine approximation was used in the
observer. See Figure 3.

Using the algorithm in Section 4, we found the controller and observer parameters
as shown in Table 1. A phase-portrait of a simulation with this controller, is shown
in Figure 4.

The control input is shown in Figure 5.

Table 1. Controller and observer matrices

; e vk
0<i <1 [—36.6626, —2.6169]%, [g:?gg] "
| <5100 (359716, 2646515, e
| <%, <2 [—39.5127, —0.8942]%, +3.1701 [g:;ggg] Yot [:g:g;g;]

N . 0.1127 0.0107
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Figure 4, The state phase trajectory. The inner ellipsoid is the projection of R,, the outer
ellipsoid is the projection of an estimate of the region of attraction based on the computed
Lyapunov function.

3

=]
A
|

80 . . L _ I
1] 05 . 1.5 2 25
Time

Figure 5. The input, #,. Note that || < 100.

6. Discussion and concluding remarks

A mathematical programming-based approach for synthesizing observers and
observer-state feedback for discrete-time constrained uncertain non-linear systems is
presented. The observer-state feedback and observer output injection has a piecewise
affine structure, and an estimate of the region of attraction larger than a prescribed
minimum region of attraction is given as a Lyapunov level set. The region of
attraction can be given in the state variables and observer-error variables, or the state
variables and observer-state variables.
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A solver for the synthesis bilincar matrix inequalities is given, as an adaption of
a solver presented in Fares et al. (2001). The solver is of second order, which means
that it uses the (exact) Hessian of the augmented Lagrangian function. Our experience
is that the solver behaves well when starting reasonably close to an optimum, and
that it finds solutions to some problems where first-order solvers fail. A first-order
solver based on Apkarian and Tuan (2000) is used for providing a good starting point
for the second-order solver. This concave-programming based gradient-algorithm
converges quickly (often only one iteration is required) to a solution relatively close
to an optimum, but it requires a large number of extra LMI-variables. As is common
for gradient-methods, it is prone to zigzagging when approaching the optimum.

A major issue is the growth in computational complexity that makes the presented
approach prohibitive as the number of states and local model validity sets grow. If
parts of the system is linear and known, however, this can be exploited and may
significantly reduce the size of the feasibility problem.

The results herein can easily be specialized to the problem of designing robust
asymptotic observers. This can be combined with a piecewise affine state feedback
(Slupphaug ez al., 2000), to give an output feedback scheme. This procedure corre-
sponds to splitting the non-convex problem stated herein into two smaller non-
convex problems. Stability properties of this approach are discussed in Imsland,
Slupphaug and Foss (2001).
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A The gradient and Hessian of the augmented Lagrangian function

Consider @(P,S5,A) =t[A(PS+AS— 1)+ cl2(PS+AS—D)T (PS+AS—1T)).
The first derivatives can be computed to

2
%}A) = T?svec(ATS+ SA)
+ 5 Tsvec((P+0)S* + 5%(P+ 4) ~ 25
20,(P,5,0) T? v L
il el et e A _})AT T !
e 3 svec(AP + )+ 2 svec(AA+AAT)

+ %Tzsvec(S(P +A) +(P+A)2S—2(P+A))

P, (PS,A) T?

= ATS + SA
dsvecA 2 svec( +SA)

+ ; T2svec((P + A)S? + S*(P + A) —25).

The second and mixed derivatives can be computed to:

POPSA) _
(OsvecP)? nsenr
Z0(P,5,4) _ ,
“Osvecs)yy ~TUP+arONT
O(PSA)
(@svecpry TS @DT
2D(P,S,A
(asveép() (asvez?) =TA®I+d(P+M)S—-D®I)
+d(P+M)®S)T
POPSD) o,
(@svecP) (@svech) _ 15 @©DT
2Q.(P,S,A
(as?.récs() (asve()?g} =TIA®I+A(S(P+4) - D)

+e(S®(P + AT

The symmetric Kronecker product (Alizadeh, Haeberly and Overton, 1998, Fares
et al., 2001) defined by

(U® V) TsvecX = Tsvecil)(UXVr+ VxuT),

where svec is a linear operator S"— R""* /2 defined by

svecX =[Xi,, X12,..0s X1y Xa2, Xaay oo, Xl
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basically mapping the upper right half of the symmetric input matrix into a vector.
The diagonal matrix

T=diag[l,\/§,..., \/i l,\/i,_.., lIT

is defincd accordingly with ones on the places corresponding to the elements on the
diagonal of a symmetric matrix mapped with svec, and /2 on the above-diagonal
corresponding places.




