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An integration scheme for stiff solid-gas reactor models*
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Many dynamic models encounter numerical integration problems because of a
large span in the dynamic modes. In this paper we develop a numerical integration
scheme for systems that include a gas phase, and solid and liquid phases, such as
a gas-solid reactor. The method is based on neglecting fast dynamic modes and
exploiting the structure of the algebraic equations. The integration method is
suitable for a large class of industrially relevant systems. The methodology has
proven remarkably efficient. It has in practice performed excellent and been a key
factor for the success of the industrial simulator for electrochemical furnaces for
ferro-alloy production.

1. Motivation and literature survey

There are many dynamic models that encounter numerical integration problems
due to the fact that the span in dynamic modes is very large. Some examples are
atmospheric phenomena models such as air pollution models; process models for
distillation columns, catalytic processes and solid-gas reactors; multi-body models
that include both rigid and elastic modes as encountered in detailed models of
satellites; and dynamic models of power distribution systems e.g. an electric grid, or
fluid or gas network. See de Swart ef al. (1999) for a collection of some of these types
of models. In the case of a catalytic process the span in dynamic modes stems from
the fact that a commercial catalyst may have a life-time of 1-5 years while the
reaction(s) that the catalyst catalyzes may be in the order of seconds or minutes.
Likewise, in a solid-gas reactor the residence time of the gas phase may be in the
order of seconds while the residence time of the solid phase(s) may be in the order
of hours. Dynamic models that stem from spatial discretizing of a distributed model
representation, e.g. partial differential equations, often exhibit a large span in dynamic
modes. A typical example of the latter is the process model of a Kamyr digester, i.e.
a commercial pulping process, described in Michelsen and Foss (1996).

Dynamic models that exhibit a large span in dynamic modes are usually denoted
stiff models. For linear systems this property can be checked by computing the ratio
of the largest absolute eigenvalue to the smallest absolute eigenvalue of the system
matrix. There is no equivalent test for nonlinear systems. One descriptive definition
is, however, given in Lambert (1991):

If a numerical method with a finite region of absolute stability, applied to a
system with any initial conditions, is forced to use in a certain interval of integra-
tion a step-length which is excessively small in relation to the smoothness of the
exact solution in that interval, then the system is said to be stiff in that interval.
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This definition pinpoints the major problem with stiff models, the fact that the
computational effort to compute a solution may be prohibitive.

In this study we will assume a model structure as a set of differential-algebraic
equations (DAEs) with known initial conditions.

X =f(x.y2) m
y=8(x,y,7) 2
h(x,y,2) =0 (©))
x(to) = Xg ©)
o) =yo )

x and y are the system states, and z is an auxiliary variable. X denotes the derivative
with respect to time. In a chemical process model z might include the partial
equilibrium pressure for the modelled reactions, the partial pressures and enthalpies,
or z might include the temperature if the inner energy is used as a state variable. The
functions f, g and A are assumed to be Lipschitz continuous to assure existence and
uniqueness of a solution of equations (1)—(3) on a finite time interval 7, to 1,, i.e.
(o), (1), (1), te[ty, t,]). The states are divided into two parts, x and y, so as to be
able to treat these states independently. In the sequel we assume that we can classify
the dynamic modes into slow and fast dynamic modes associated with x and y,
respectively.

There exists many integration methods for handling stiff systems. The main
approaches are:

e Neglect the fast dynamic modes by converting the differential equations for the
fast dynamics into algebraic equations.

e Slower the dynamics of fast modes.

e Use an integration method for stiff systems.

The first method changes equations (1)-(3) since equation (2) becomes an
algebraic equation.

g(‘x’ Vs 2) =0 (6)

This implies that the DAEs become non-stiff. It is usually impossible to compute
y and z prior to the numerical integration of equation (1). Hence, the computational
load may far exceed the computational load to integrate equation (1), since it is
necessary to iterate between equation (1), and the two algebraic equations (6) and
(3). A disadvantage of this approach is that model errors are deliberately introduced
into the model.

It is a well established technique to slow down the dynamics of the fast modes.
As an example the fast dynamic modes are typically linked to the gas phase in the
case of chemical reactors. By increasing the residence time for the gas phase the
integration load will be lowered since the DAEs become less stiff. A disadvantage of
this approach is, again, that model errors are deliberately introduced into the model.
In particular the effects of the interaction between the “slowed-down” gas phase
dynamics and the rest of the model can be detrimental.

The disadvantage of having to use an integration method for stifl systems is the
fact that these methods require a high computational load. Typically an implicit
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solver is used, e.g. an implicit Runge-Kutta method, or a backwards-difference
algorithm. Numerical solvers for stiff systems are treated in detail in Aitken (ed.)
(1985), Lambert (1991) and Hairer and Wanner (1991).

2. Problem formulation

In this paper we will study systems that include a gas phase, and solid and liquid
phases. The systems are spatially discretized into compartments with homogeneous
conditions. This is shown in Figure 1 in which the system is discretized into N
compartments. We make the following assumptions:

Al There is a unidirectional gasflow in the vessel.
A2 There is a unidirectional flow of all liquid and solid phases.

A3 External flows can be injected or withdrawn from arbitrary places on the
surface of the vessel.

A4 The vessel can be modelled with sufficient accuracy by dividing it into
compartments with homogeneous conditions.

We will develop an integration scheme, applicable to the model structure defined
above, in which, to the authors’ knowledge, the computational load for numerical
integration is dramatically decreased compared to all conventional methods. This
will be achieved by explicitly solving the algebraic equations, y = g(x, y,z) =0 and
equation (3) in an efficient way, prior to the integration of equation (1).

The methodology is based on the following procedure:

1. The gas dynamics, i.e. the holdup or concentration of gas species, are neglected
by converting the differential equations for the fast dynamics into algebraic
equations. This is done by associating y with the holdup or concentration of
gas species.

2. y and z will be computed prior to the integration of equation (1) by exploiting
the structure of the model equations.

3. The dominant dynamics equation (1) are integrated using a numerical integra-
tion method for non-stiff systems.

The critical issue is to establish an efficient method for computing y and z since
stage 3 involves the use of some standard integration method for non-stiff systems.
Such integration methods are not computationally intensive.

3. Method

In this section we develop a numerically efficient method for solving equations
(6) and (3), i.e. compute y and z. Some additional assumptions will be made in order
to establish the algorithm. The assumptions are discussed, and finally the algorithm
is analyzed.

3.1. Theory

We start the derivation by viewing compartment i in Figure 1. It exchanges gas
components through an inflow F, ;. , from compartment i + 1 and an outflow F, ; to
compartment i — 1. It exchanges solid and liquid components through an inflow
F ;- from compartment i — 1 and an outflow F,; to compartment i+ 1 . Further,
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Figure 1, A system is spatially discretized into N compartments. Each compartment can
interact with the environment through external mass and energy flow.

the compartment may exchange mass with the surroundings ¢, ; and g, ;. There may
also be a pure energy transport O; between the compartment and the external
environment. V] is the volume of compartment i.

The component mass balances (in moles) for compartment f are given by

A i=F i —F ;+q;+ S Q]

Hyi= —Fy i+ Fp 01+ Gy + 8,7 (8)

n,; € R*n, ;R r,R
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where S and S, denote the stoichiometry matrices for the reactions and phase
transistions, e.g. melting of a solid or vaporisation of a liquid, that take place within
compartment i.

The energy balance for the compartment, provided shaft work is neglected, is
given by

UI= H:(z—l)ﬂ,i—l —HE(TE]F;_1+ H;(T;+1)F;,i+1 —HJ(E)F;;,‘
+H{(T, 1), + Hi(T;, T.)g,, . + AH (T)r; + O

H,, H, denote the enthalpy content for the solids and liquid phases, and gas
phase. AH denotes the reaction enthalpy. If there is an inflow of gas, H, should be
computed on the basis of an external temperature. If there is an outflow of gas, H,
should be computed on the basis of the internal temperature T;. Likewise, H, can be
computed on the basis of an external temperature or the internal temperature.

We focus on the gas component balance equation (8) and make the following
assumptions:

©)

A5 The gas dynamics are neglected, i.c. ri, ;=0.

A6 The reaction kinetics are independent of or linear in the partial pressure of
one of the gas components.

A7 The gas phase can be treated like an ideal gas.

The gas balance equation is rewritten component-wise using assumption A5.
¥
Fri=Fpis1 + it X Sgarwijedl,.... B} (10)
k=1

Assumption A6 implies that the reaction rates are given by

P =Jilhs, i T)(Prgy, s — Prag (1)), ke {1, .., v} (11
This implies that reaction k is linear in the partial pressure of gas component
I(k). piay(T;) is the equilibrium partial pressure for reaction k at temperature 7;. A
typical structure for f; is fu(n, i, T;) = apng; ;€ /%"t where a,, usually is denoted the
frequency factor and e " E/RTi is the Arrhenius term. E; and R are denoted, the
activation energy and the ideal gas constant, respectively. For basic theory on reaction
kinetics we refer to Fogler (1986) and Levenspiel (1972).
From assumption A7 we make use of Dalton’s law on partial pressure within a
confined volume,

Pii_ _Mgji  iceq (12

Pi.i zf=l'n§1.i Jed B )
and on Amagat’s law for partial volumes within a confined volume.

V.. i .

ALl = 8Lt je{],..., (13)

Voi  Zf-ang /et &

Combining equations (12) and (13), and noting that the ratio of the gas flow
from compartment i equals the ratio of the partial volumes, gives the following
relation:

s _Pu e, (14)
(19""1)‘F;j_i p}'_,i
- denotes the scalar product.
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The ratio of the component-wise outflow to the total outflow equals the ratio of
the partial pressure to the pressure. Equation (14) can be rewritten by using (10).

¥
(ng,i+1+qgj.i+ Z ng.krk,i)pz,i=pj,i(]-’---’1)
k=1 (15)

¥
Fyjivr +Ggji+ 2, Serand)
k=1
Inserting equation (11) gives:

¥
(Fijiv1 + G55+ Z SgiSihs,is T (Prgo,i _ﬁlm('}:‘))Pz.i (16)
k=1

B ¥
=p;.il,.. ., 1) (Fpiv1+4,0) +p;.a-j): Z Sgiadins,i T (P — Pu(T))
=1k=1

We introduce the following assumptions:

A8 The pressure py ; is known.
A9 The gas inflow F;;, is known.
A10 The external gasflow g, ; is known.
A1l The solids and liquid component mass n,; are known.
A12 The temperature 7; is known.
The five items above imply that only p; is unknown in equation (16). Inspection
of equation (16) shows the following:
e The terms F; ;. and g,; ; are independent of p;.
o The term X} _ ;5,; i 7x,i = Zk = 150). & iy i> T)Pigy.i — Pro(T2)) is linear in p;.
e The term p; «(1,...,1)- F, ;1 is linear in p,.
e The term p; (1,...,1) g, is linear in p,.
e The term p; /(1,..., 1)- S,r; contains bilinear and linear terms in p;.
These observations imply that equation (16) can be written as a scalar quadratic
function in p;.
fip) =0, jell,.... B} a7

Assumption A8 implies that one of the partial pressures is linearly dependent on
the others. Hence, the equations for computing the partial pressures in compartment
i can be formulated as a quadratic vector function

Ji)
Hp) = : (18)
5-1(2%)

where F: R®~ 2 R¥ =1 _and p} denotes the vector with the partial pressures, except
Dy.i» In compartment i.
The quadratic function F will be analyzed closer later in this paper.
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3.2. Assumptions and extensions

In the above derivation we made four assumptions A 5-A8. These will be discussed
closer in the following. Assumptions A9-A12 will be elaborated on in the Integration
Scheme section.

3.2.2. Stationary gas dynamics Normally the residence time for the gas within a
vessel is far shorter than the residence time for the liquid and solids. To provide a
concrete example the residence time for gas in an industrial 20M W furnace for ferro-
alloy or silicon production is less than 5sec while the residence time for the solids
and liquids is several hours. Further, if the purpose of the model is to recreate the
system dynamics, i.e. the dominant dynamics for the vessel, the gas dynamics can be
approximated by AS5. This is the reason for the widespread use of this assumption in
numerical simulation.

3.2.2. Reaction kinetics We consider a single reaction where two components 4 and
B react to R and S, and assume constant volume.

nA + pB—-voR+ &S (19)

1, 1, v, & are positive integers given by the stoichiometry of the reaction The mole
reaction rate r will typically be determined by the concentration of the reactants A
and B according to the following rate law

r=kT)ngng, ¢>0,{=0 (20)

where k(T is defined by the Arrhenius equation k(7)) = Ae ®/RT. If one of the
components, say B, is in the gas phase, its partial pressure is proportional to the
molar mass as shown in equation (12). In this case equation (20) can be rewritten.

r=k(T)w;p 21

Equations (20) and (21) should be viewed as ideal rate description laws. To
exemplify deviations from this, a gas-solid reaction or a gas-liquid reaction in which
the reaction takes place on the solid surface or liquid surface, the reaction rate is
often controlled by the mass transport to and from the reacting surface. Another
deviation arises when there is an excess of some component, e.g. gas in equation (21).
In this case the concentration of gas does not influence the reaction rate. Hence,
equation (21) may be reformulated to

r=k"(T)m, (22)

In many modeling problems there is a lot of uncertainty linked to the kinetics,
especially in gas-solid systems. In such cases it very often suffices to choose the
kinetics as linear in the partial pressure or independent of the partial pressure.

r=k"(n,, Tp%, Le{0,1} (23)

We observe that equation (23) is a generalization of equation (11), i.e. the rate
law used in the derivation of the general algorithm for computing the partial
pressures. Hence, equation (11) may be generalized to

P i =Jil(Rs, i, Ti)(pl:k}.i _.ﬁlﬂ;}(z)}“a kefl,...,y} 24)

In the case where {, =0 the term Z}_, s,; ;i ;, cf. equation (15), is independent
of p;. Further, the term p; ,(1,...,1)- X} _, s.;,r; will be linear in p,. This implies
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that the corresponding function element f; in equation (17) will be a linear function
in p;.

In some cases the linear dependence on the partial pressure is too crude. This
situation especially arises in bidirectional reaction schemes

nd + uB==vR+ ¢S (25)

with different reaction mechanisms in the two opposite directions. This may give a
rate law that is piecewise linear in the partial pressure as shown below.

— {ﬁ;(ns.e, T)(Puy,i = Pu(T)) i Pry,i > Praar(T2)
“U &0 T Prgos — P (T i Prgeyi < Py (1)

This bidirectional kinetics law gives raise to more than one quadratic equation
(18). If one rate law is piecewise linear, two independent quadratic equations will arise.

Equation (26) can be included in the derived method in a straightforward manner
as shown later in equation (28).

In cases where the rate laws are nonlinear in the partial pressure(s) the derived
methodology fails. Experience shows, however, that a linear approximation often
suffices. Hence, the methodology may still be used in these cases.

(26)

3.2.3. The gas law A7 assumes an ideal gas. The additivity of the partial pressures
and the partial volumes is based on the assumption that the gas molecules do not
interact with eachother in the gas phase. This is a good assumption at low pressures,
typically below 10 bar. It should be noted that A7 can be relaxed by introducing the
compressibility factor in the equations of state, i.e. pV'=ZnRT, where Z may be a
function of pressure, temperature and composistion. The use of the compressibility
factor does not influence the derivation since Z will be included in identically the
same way as the right hand sides of equations (12) and (13).

3.2.4. Constant pressure The constant pressure assumption will be met if a vessel
operates under atmospheric or close to atmospheric conditions, or if there is tight
pressure control on the vessel. Tight pressure control means that the pressure control
loop is much faster than the residence times of the solids and/or liquids. These are
conditions that are satisfied in many industrially operated reactors or furnaces.
Typical examples are electrochemical furnaces and blast furnaces, and pressure-
controlled reactors, e.g. polymerization reactors.

3.3 Solving the quadratic equation

It is well known that there are multiple solutions to a vector quadratic function.
Some of these solutions will be non-physical. To avoid this equation (18) is changed
50 as to exclude non-physical solutions.

Si(h)
Fpp) = : =0, pie Py;
So-1 () (27)

g1
Pm={_pe@“" V:pie[0, prilVjefl,....,f—1} A Yy pJ-E[O,pm]}

i=1
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We are not able to rigorously show that this equation has one, and only one
solution. It does, however, seem reasonable to believe that there is only one set of
partial pressures, and hence one set of reaction rates, that satisfies equation (27) if
the model description is based on sound physical knowledge of the process in
question.

The coupled quadratic vector function equation (18) must be solved using an
iterative algorithm. Newton algorithms use the inverse of the Jacobian. The Jacobian
is defined by

J(p):= d‘g{)

An iterative Newton algorithm will have quadratic convergence close to the solution
provided J ~(p) exists in an open set close to the solution, see e.g. Nocedal and
Wright (1999). In practice a Newton algorithm may perform erratically far from the
solution. Further the inverse J ~!(p) may not exist or it may be ill-conditioned.
Hence, some approximate Newton solution such as Broyden’s method is usually
applied. An approximate Newton method also has the advantage that the Jacobian
need not be computed at every iteration, hence its computational load is lower than
for the Newton method. This latter point is, however, not important in low-
dimensional problems as will usually be the case for equation (27).

In the case with piecewise linear reaction rates equation (26) there will be a set of
quadratic functions that are valid in subsets of Py ;. Equation (27) should be
formulated as follows:

Fp)=0,pi}e Pt kedl,...,2°
(7)) =0, pf} e Pk ket } 05
Pé“U... UPzzn, =P}:,i

9 is the number of quadratic equations that are piecewise linear, cf. equation (26).
Hence, if two rates are piecewise linear, four independent quadratic equations
will arise,

Equation (28) is solved by solving the quadratic equations F* consecutively until
a solution is found. In practice it is usually possible to solve the equations in an
intelligent order in the sense that it may be known in which subset P% ; the solution
most probably lies. This will obviously reduce the computational load.

A remark should be made to the case of two gas components ( =2). In this
case pj € &, i.e. F (or F*) is a scalar quadratic function. Thus, there exists an explicit
solution to F(pf) =0 (or F¥(pf) =0), and hence, there is no need for an iterative
solution algorithm.

4. Integration scheme

In this section we show how the derived theory can be used to construct
a consistent and highly efficient integration method for a vessel divided into N
compartments. The exposition is based on one possible realistic configuration of a
vessel. Alternative configurations will be discussed at the end of this section.

4.1. Vertical vessel

The vessel vertically is divided into compartments as shown in Figure 1. There is a
(unidirectional) upwards flow of gas from compartment N to 1, and a (unidirectional)
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downwards solids and liquid flow from compartment 1 to N. We assume that there
exists equations for the flow transport of solids and liquid. An example of such
equations is based on the assumption that all vacant volume of a lower compartment
immediately is filled by solids and liquid from the above compartment. The structure
of these equations become:

F;.i- 1 =hl{ﬂ,i)riSQ&i)9 iE{Z,...,N_l} (29)
F, n-1=h{gs,nsTN) (30)

Compartments 2 to N all have constant volumes while the volume of compartment
1 may vary. The gas phase volume ¥, ; occupies a constant ratio of the volume of
each compartment V..

Solids and/or liquid are fed into the vessel at compartment 1 (g, ) and gas
escapes from the vessel at this point (F,,). Note that F, ; =0, g,,,=0. Solids and/or
liquid are tapped from compartment N meaning that g, y<0. Note that F, y=0,
F, x+1=0, g, y=0. The external power supply is set equal to zero (Q; = 0), except
the power supply to the lowest compartment (Qy # 0). The external fiows, except
F, 1, can either be specified as exogenous variables, or they may be controlled. As an
example of the latter the power supply Oy may be controlled by the temperature in
compartment 7. Note that F, , is computed by the model.

The integration scheme at a time instant ¢ is given as follows:

1. The mass of solids and liquid components, the inner energy, the pressure, and
the external solids and liquid flows, and power supply are given at time ¢, i.e.
ng, Unps i€ {l, ... ,N}, 45,1, G5, On-

2. The temperatures 7;,ic{1,...,N} are computed from thermodynamic equa-
tions or tables.

3. The equilibrium partial pressures are computed using f(T)iedl,..., N},
ke{l,...,y} using the same thermodynamic tables as above.

4, Compute the partial pressures (py) using equations (27) or (28), the reaction
rates (ry) using equations (11) or (26), and the gasflow (F, y) using equation
(10) with 5, y=0 in compartment N .

5. Compute the partial pressures (p;) using equations (27) or (28), the reaction
rates (r;) using equations equation (11) or (26), and the gasflow (F, ;) using
equation (10) in compartment N — 1 to 1 (in this sequence).

6. Compute the flowrate of solids and liquid (F, ;) for i={N—1,...,2} (in this
sequence) using equations (30) and (29).

Items 1-6 provide the necessary input to compute the right hand side of the
differential equations, equations (7) and (9).

Equations (7) and (9) are integrated, i.e. the states at the next time instant are
computed, using an integration method for non-stiff systems, e.g. a Runge-Kutta
method.

If the energy balances for each compartment is specified on a temperature explicit
form, item 2 is not necessary since the compartment temperatures will be states.
Hence, the tempearture will be specified in item 1 instead of the inner energy.

Linked to the initial section of this paper, in this vertical vessel example equations
(7) and (9) are equivalent to equation equation (1), while equation (8) is equivalent
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to equation (6). 4 in equation (3) is equivalent to equations (26), (27), (29) and (30)
in addition to thermodynamic equations or tables. z in equations (1), (6) and 3)
include the temperatures 7;, the equilibrium partial pressures Pk the partial pres-
sures p;, the reaction rates r;, and internal solids and liquid flows F, ;.

It is important to note that the merit of the proposed method is caused by the
fact that equations (6) and (3) are solved in a sequential and decomposed way. In
particular the computation of the partial pressures in item 4 and 5 above is critical
for efficiency.

4.2. Alternative vessels

The method derived in section 3 can be used to numerically integrate alternative
systems to the vessel system described above. The important issues are that the
reaction rates, and the internal solids and liquid flow rates can be computed prior
the integration the integration of equations (7) and (9).

Some alternative configurations are:

e Gas injection or gas withdrawal at one or several of the intermediate
compartments.

¢ Solids and/or liquid injection or withdrawal at one or several of the intermediate
compartments,

e External power supply to more than one compartment.

¢ Concurrent flow directions for solids and liquid, and gas,

o Time-varying compartment volumes.

5. Case study

The derived methodology will be highlighted by reporting on industrial experience
using the methodology. Due to confidentiality issues only limited information can be
supplied on the industrial case.

5.1. Industrial experience

The industrial case is based on a widely used reactor for metal production in the
metallurgical industry, an electrochemical furnace for ferro-alloy production. Details
can be found in Schei et al. (1998). The reactor is operated at atmospheric pressure.
A dynamic model has been developed for the system. From a numerical integration
point of view the model is very demanding. The ratio of the residence time for the
gas compared to the solids is in the order of 10%. The demanding numerical
integration problem has severely limited the use of earlier versions of the model
Halvorsen (1993). The purpose of the model is to simulate time spans ranging from
some hours to several weeks. The residence time for the solids is in the range of 1-
10 hours.

A furnace has typically been divided vertically into 10 compartments (N = 10).
Solids are fed into compartment 1 (cf. Figure 1), and gas escapes from this compart-
ment to the environment. Liquid (metal and slag) is tapped from the bottom
compartment N. Further, power Q; is supplied to all the compartments. The thermo-
dynamic properties are computed using thermodynamic tables Chase (ed.) (1985).

The internal solids and liquid flows are based on the assumption that all vacant
volume of a lower compartment immediately is filled by solids and liquid from the
above compartment.
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The solution method has been applied to an industrially-applied simulator with
excellent results. This is substantiated by the following: Results from extensive usage
both by developers and users show that the integration scheme is extremely robust
in the sense that it hardly ever fails, even if the model is simulated at operating
conditions far from normal operating conditions, e.g. a start-up situation. This
constitutes a major improvement as compared to earlier schemes, see e.g. Halvorsen
(1993). Further, the integration scheme is fast. Typically 24 hours is simulated in 60
seconds on a 300 MHz Pentium II. This also represents a major improvement (more
than 10 times) compared to earlier methods. The numerical integration method has
been a key factor for the success of the industrial simulator.

5.2. Gas dynamics in the industrial model

The furnace process has two gas components (f =2) and four main reactions
(y = 4) which are linearly dependent on the partial pressures of the gas components.
Since the total pressure is always close to one atmosphere in the real process, it is
assumed that £8_, p, = 1 bar. Since only two gas components are considered relevant
in the model, and the total pressure is known, the partial pressure of gas component
2 is given by p, = 1 — p,. Hence, the gas phase has only one unknown, p;.

Each reaction rate varies proportionally to the distance from the reaction’s
equilibrium gas pressure, i.e. g, ; — Piw(T3), Or, alternatively, it is independent of the
pressure. The rate equations are different, depending on the partial pressure being
above or below the equilibrium pressure, see also equation (26). The reaction rates
in the industrial model are all given as follows

- {kk.l ng ;i P, i — P (1)) 1 pugy, i > Prgo (1)
ki .
" k2 1ilPw,i — P (1)) 1 pugy.i < Pra(T)

where k; 1,k , are the rate constants for the forward and backward reaction, and
n;,; is the amount of one of the solid or liquid components in compartment i, cf.
equation (21).

There are four equilibrium lines within the two-dimensional p, — T space. Hence,
this space may be divided into 2*=16 disjunct regions. Within each region we
construct one quadratic equation in the unknown partial pressure, cf. equations (27)
and (28). Since there is one unknown partial pressure (p,), the 16 quadratic equations
are scalar equations.

Since the reaction rates are different above and below the equilibrium pressure,
all 16 quadratic equations must in principle be checked for a solution. Since some of
the regions are non-physical, the actual number of equations is lower. Further, note
that the definition of Py ; equation (27) ensures that the algorithm chooses the
physically meaningful solution of any of the 16 quadratic equations.

€)))

5.3. Case simulation

In this section we will highlight the performance of the numerical method by
showing some simulation results.

The most critical scenarios in terms of model robustness and numerical robustness
is when the model state changes rapidly over a wide operating range, often out of
the normal operating area. An example of such a scenario is furnace start-up or shut
down. Then the partial pressures in the gas phase typically change rapidly, as does
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the temperatures when the power is turned on and off. Below we show how the
model, using the described calculation scheme for the gas dynamics, during a series
of rather extreme changes in operating conditions. The results are illustrated in
Figures 2 and 3.

Initially, the furnace is operating under normal conditions. After 4 hours of
simulation, the furnace power is turned off. The gas pressure drops radically. At
10 hours, the furnace power is turned on again. The changes are again quite profound.

At 19 hours, 50% of all the gas produced in compartment N is allowed to escape
directly out of the compartment (g,, 5 changes in a stepwise manner from 0 to a large
negative value) without flowing through the compartments above. This is a radical
change, which is not likely to happen to such a large extent in the real process. The
gas compositions in the above compartments are heavily influenced by the change,
while compartment N is less affected. At 28 hours of simulation the leakage is
stopped, and the process slowly works its way back to normal working conditions.
The slow return of the partial pressures is caused by severely deteriorated furnace
conditions due to the 50% leakage of gas from compartment N. This is in agreement
with what is expected to happen on a real process.

At 76 hours, a vital reaction is turned off. This has dramatic consequences for the
process. At 85 hours the reactions is turned back on. The process is now. as should
be expected, far off the normal operating conditions, and will be difficult, if not
impossible to bring back to normal operation.

Through all the rather extreme changes of the above scenario, the method
computes the fast gas dynamics with a remarkable robustness. This simulation has

p_1,Compb [solid line], p_1,CompN [dashed line]
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Figure 2. Partial pressure of gas component 1 in compartment 5 and compartment N
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Figure 3. Temperature in compartment N(7y).

been run using an ordinary explicit Runge-Kutta 4-5 method to integrate equations
(7) and (9). Compared to the advanced numerical integration methods used in
previous model implementations, this is-quite remarkable.

The robustness and speed of the simulation method is greatly appreciated as the
model can be simulated several times faster than real-time, and without the danger
of ‘crashing’ the simulation when the model state is out of the normal operation
range.

6. Conclusions

In this work we have developed an efficient and robust integration method which
is suitable for a large class of industrially relevant systems. The methodology has in
practice performed excellent and been a key factor for the success of the industrial
simulator for electrochemical furnaces for ferro-alloy production.

7. Nomenclature

E—activation energy

F—quadratic equation in the partial pressure
Fl.=[Fu.i,---,F,]—gas flow from compartment i

H] =[H,,,...,H,]—enthalpy content in gas phase
HI=[H,...,H,—enthalpy content in solids and liquid phase
AHT =[AH,,...,AH ]—reaction enthalpy i to compartment i — 1
J—Jacobian matrix
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n—mass in moles

Ny =[My1i, ... ,Ngp ] —vector with gas components in moles in compartment i

nli=[nyi-.. s My, ;]—vector with solids and liquid components in moles in
compartment

p—pressure

Pl =[p1.is- ., Pp.—Vector with the partial pressures in compartment i

P =[p1.is- .., Pp-1,}—vector with the partial pressures except Dg.; in compartment i

Px,;—DPressure in compartment i

Piw—equilibrium pressure of gas component [ for reaction k

Or—power supply to compartment i

R—the universal gas constant

rf=[ry:...,r,;]—vector with the reaction rates in compartment i

Sy = {841.m} € RP x R™—stoichiometry matrix for the gas components

Ss = {8s,m} € R* x R™—stoichiometry matrix for the solids and liquid components

—time

T—temperature

U—inner energy in compartment i

V—volume of compartment i

V,.i—volume of gas phase in compartment i

V. i—volume of solids and liquid in compartment i

x—state variables

y—state linked to fast dynamic modes

Z—compressibility factor in the equation of state

z—auxiliary variables

o—rtotal number of solids and liquid components

f—total number of gas components

y—total number of reactions

J—number of reactions that are piecewise linear
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