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A Logarithmic-Amplitude Polar Diagram
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A polar diagram where the amplitude of the transfer function is on a logarithmic
scale, is presented. This gives a one-size-fits-all diagram with no need for zooming
in and out, and no need for additional reasoning about infinite-radius encircle-
ments when there are poles on the imaginary axis—as opposed to what is usually
neccessary with the standard polar (Nyquist-) diagram. All properties needed for
stability considerations are upheld, such as encirclements, gain and phase margins.
The path for s in the loop transfer function is carefully chosen with regard to
possible poles on the imaginary axis. Small excursions into the right half plane in
the form of arcs of different-sized logarithmic spirals result in corresponding large
but finite arcs that do not overlap in the logarithmic polar plots.

1. Introduction

The standard polar or Nyquist plot is a powerful tool to examine closed-loop
stability. But this plot is often difficult to employ when the system is stiff, has poles
on the imaginary axis or is open-loop unstable. The large span in amplitudes for the
open-loop transfer function over the relevant frequency range forces the user to zoom
in and out to inspect different-scale plots of the same system, thus losing the system
overview, and making it difficult to correctly count encirclements.

A polar diagram where the amplitude of the open-loop transfer function is plotted
on a logarithmic scale, is a very effective means to remedy these problems. We will
introduce such a diagram through an example: Consider the transfer function,

KQ+Ts)(1+Tps)
s(1+715)(1+ To8)(1+ Tas)(1 + Tis)’

with T, > T, > T, > T3 > T,. (This transfer function corresponds to entry 14 in Table
9.6 in Dorf and Bishop (1998).) The system is open-loop stable, and will therefore be
closed-loop stable following the Nyquist criterion if it displays no net encirclements
around the point (— 1,0).

We choose numerical values such that

] 20001 +3s9)(1 +2s)
s(1 4+ 505)(1 + 10s)(1 + 0.55)(1 + 0.15)

This 1s a fairly stiff system. The MATLAB function nyquist (h0) results in the
plot shown in Figure 1. The same graph is shown at successively zoomed scales. The
polar curve has a fractal-like self-similarity—“bulges” and corresponding crossings
of the negative imaginary axis emerge as we zoom in. The total picture is confusing;
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Figure 1. Different enlargements of the polar plot of &,.

is the system stable? By zooming in and out and perhaps taking notes, we are able
to ascertain that it is indeed stable at the current gain, but that stability is conditional:
Starting with a sufficiently small K and increasing, the closed-loop system passes
through the stages stable, unstable, stable, unstable.

Now consider Figure 2a. Here the radius vector is plotted not as |hy(s)|, but as
20logolfe(5)], i.€. on a dB scale. Any value lower than 10~ is set to 10~ ¢ = —120 dB,
which is located to the centre of the diagram. The phase angle, / Ag(s), is the same
as in the ordinary polar diagram.

The path for s close to the pole in the origin is chosen as a small half-circular arc
into the right half plane, resulting in the large arc for Jh(s)| in the figure.

We now note that all information needed to immediately establish the stability
properties of the closed-loop system can be extracted from Figure 2a. No zooming
or alternating between plots are neccessary. And gain and phase margins may be
extracted from the figure, except that the gain margin will be in dB. We will from
now on call this a log-polar (I.P) diagram.

Figure 2b shows the LP diagram for 40 dB higher gain. The corresponding
feedback system will now be unstable.
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Figure 2. Log-polar plots of h, for gains K =200 and 20 000.

2. Implementation of a log-polar MATLAB function

The LP plot is implemented as an experimental MATLAB function' 1ognyq (h0).
We will discuss some of the ideas and problems of this implementation. The case
with no poles on the imaginary axis is straightforward. The path for s in Ay(s) is
chosen with logarithmic spacing from —jw,,., t0 jo,.., Where @,,,, is some multiple
of the absolute value of the largest pole or zero in Ay(s), whichever is the largest.

The case with poles in the origin or somewhere else on the imaginary axis is
more complicated. The idea is to make the imagined “infinite (half-) circles™ described
by ho(s) when s passes imaginary poles, finite. This is achieved by literal use of the
textbook argument in connection with presenting the Nyquist criterion for this class
of systems: the path of s is given a small detour into the RHP around any pole(s)
on the imaginary axis. One must then ensure that the radius R is significantly smaller
than the distance from the nearest pole or zero to the imaginary pole in question.
This is to avoid the frequency response of Ay(s) being noticeably distorted.

At the same time R must not be roo small, because this will make the correspond-
ing arcs described by hy(s) so large that the interesting part of the LP diagram is
dwarfed (see Figure 2b, where this is slightly the case). This problem is exacerbated
if some poles are multiple, since hy(s) is proportional to R™* when s is close to a
pole with multiplicity k. So in the case k > 1, the procedure is to first choose R as if
k =1, and then substitute R with R' = R*, but at the same time ensure that the first
condition of R not being too large, is still satisfied.

A further issue is that arcs of hg(s) may overlap, so that they cannot be
distinguished from each other when checking encirclements. This is solved by not
using half-circles into the RHP, but half-circular arcs of logarithmic spirals for each
pole on the imaginary axis. One such arc of s around a pole in (0,1) is illustrated in
Figure 3.

If there are several distinct poles on the imaginary axis, each arc associated with

I'This function may be downloaded as a zipped file containing a MATLAB function.
Access http://www.itk.ntnu.no/mic/
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Figure 4. a.: LP plot of hy(s) = 1/s®. b.: The corresponding Nyquist plot.

a pole is given a somewhat different size. This ensures that corresponding large arcs
in the logarithmic polar plots of Ag(s) never overlap, and encirclement counting is easy.

The effect of using logarithmic spirals for the small excursions into the RHP may
be illustrated through an LP plot of

|
hol(s) = (©)
s
See Figure 4a. Note that the encircling arcs of have constant distance between them.

This is a consequence of the logarithmic scaling of the LP diagram. For small s the
logarithmic spiral arc around the origin results in a corresponding inverse which is
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Figure 5.  hy(s) corresponding to entry 9.6-3 in Dorf and Bishop (1998).

also a logarithmic spiral, doing three complete turns because the system is of order 6.
The logarithm of the radius vector of a logarithmic spiral gives an Archimedes’
spiral (Bronstein and Semendjajew (1966), p. 92) which is characterised by the radius
being proportional to the angle; we have »=k¢. This implies constant distance
between LP arcs of h(s) that comprise several revolutions.

3. More examples and discussion

We will illustrate the use of the LP diagram with three additional examples. The
first two stem from Dorf and Bishop (1998), with numerical parameter values chosen
here. The right-hand part of the figures contains corresponding MATLAB Nyquist
plots, not zoomed. The first example is

10

This stiff but simple system is open-loop stable. It becomes closed-loop unstable for
large gain. From the LP plot in Figure 5a we see that the gain and phase margins
are approximately 40 dB and 90° respectively. The inner “bubble” used for these
considerations in the LP plot, is so small in the unzoomed Nyquist plot—indicated
by arrows——that it disappears.

The next example is shown in Figure 6:

hos) = L+ 3900 +3) ®)

By inspection of Figure 6a we establish that Ay(s) has no net encirclements for the
gain shown. If the gain is reduced with around 30 dB we get two encirclements; the
feedback system becomes unstable. One has to zoom in and out in several stages to
extract the same information from the corresponding polar plot in Figure 6b.

The last example is an open-loop slightly unstable system with a time delay. In
the time delay case a graphic method is indispensable, since charting of eigenvalues
in the feedback system cannot be done.

ko(s} _ (S + 0'04) _e— 0.5s

s+ 2)(5—0.1) ©
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Figure 7. hy(s) as in (6).

Since hg(s) is now open-loop unstable with one pole in the RHP, the Nyquist criterion
tells us that the LP plot must encircle (— 1, 0) counterclockwise one time for closed-
loop stability. By inspection of Figure 7a we establish that f,(s) satisfies this condition
for the gain chosen. Some of the needed information may be extracted from Figure
7b without zooming, with some difficulty. But with this polar plot one has to
additionally reason out (based on the open-loop pole 0.1 in the RHP) whether the
infinite arc due to the pole in the origin goes into the LHP or the RHP. This is not
neccessary with the LP plot, since such arcs are finite and therefore clearly shown.

There is some similarity between the plots in Figures 7a and 2a. In both cases we
have stability when the (— 1, 0) point is in the “middle bulge” of the LP plot. But in
the 2a case we have no net encirclement, as opposed to for 7a.

Counting net encirclements for higher order systems is facilitated by employing
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the following rule (Bélanger (1995), p. 206): Define clockwise rotation as positive
direction. Call the number of encirclements of /y(s) around (— 1, 0) for N. To find
N, assign an integer to each real-axis crossing to the left of (— 1, 0). Count clockwise
crossings as + 1, anticlockwise crossings as — 1. Sum the integers for all these
crossings. The result is N. The number of open-loop poles in the RHP is P. Then
Z = N + P, where Z is the number of closed-loop RHP poles.

Since arcs for due to imaginary poles are finite in the LP plot, this counting-of-,
crossings rule is easily applied. For the two cases we get:

Figure2a: Z=N+P=(—1—-1+4+1+1)+0=0 )
Figure7a: Z=N+P=(—1—14+1D+1=0 (8)

Finally, a remark on the relation of the LP diagram to another diagram, the
log-magnitude-phase curve (Dorf and Bishop (1998), p. 443); in MATLAB plotted
with the command nichols (h0). Figure 8a shows the the log-magnitude-phase
curve of equation (4).

Open-Loop Gain (dB)
|§

a. -270 -225 -180 -135 =90 —45 0

Figure 8.  h(s) as in (4); log-magnitude-phase curve (a.) vs LP plot (b.).
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The dotted rectangle in Figure 8a corresponds to the dotted annulus piece in the
LP plot in 8b. In Figure 8b we have used a mirror image of the curve with respect to
the real axis, so that decreasing phase from 0° to —225° is now defined in a
counterclockwise direction. This is done to facilitate the comparison with Figure 8a.
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