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We present a mathematical programming approach to robust control of nonlinear
systems with uncertain, possibly time-varying, parameters. The uncertain system
is given by different local affine parameter dependent models in different parts of
the state space. It is shown how this representation can be obtained from a nonlinear
uncertain system by solving a set of continuous linear semi-infinite programming
problems, and how each of these problems can be solved as a (finite) series of
ordinary linear programs. Additionally, the system representation includes control-
and state constraints. The controller design method is derived from Lyapunov
stability arguments and utilizes an affine parameter dependent quadratic Lyapunov
function. The controller has a piecewise affine output feedback structure, and the
design amounts to finding a feasible solution to a set of linear matrix inequalities
combined with one spectral radius constraint on the product of two positive
definite matrices. A local solution approach to this nonconvex feasibility problem
is proposed. Complexity of the design method and some special cases such as state-
feedback are discussed. Finally, an application of the results is given by proposing
an on-line computationally feasible algorithm for constrained nonlinear state-
feedback model predictive control with robust stability.

1. Introduction

Robust controller design is a key factor for implementing controllers. Robust
design becomes particularly important, but also challenging, for nonlinear constrained
uncertain systems with output feedback, the outset for this work.

Model uncertainty can be formulated in different ways; the most common being
frequency-based model uncertainty (Skogestag and Postlethwaite 1996) and para-
meter-based uncertainty (Ackermann 1993). Frequency-based model uncertainty is
used to describe model sets of transfer functions. There exist powerful techniques like
H_, design and structured singular values for robust control analysis and design based
on this model description, see e.g. (Skogestag and Postlethwaite 1996). We focus on
uncertain nonlinear state-space discrete-time systems formulated by piecewise affine
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parameter dependent models. The motivation for exploiting this model uncertainty
class is the fact that it can be used to construct piecewise affine feedback controllers
with robust stability guarantees using BMIs, cf. (Slupphaug and Foss 1999). Moreover,
this enables the synthesis method to include input- and state constraints.

In this paper we emphasize the derivation of constructive methods, and utilize
the powerful paradigm of mathematical programming, in particular methods for
computing solutions to linear matrix inequality (LMI) and bilinear matrix inequality
(BMI) feasibility problems as well as linear semi-infinite programming.

In LMI-based control, which has gained a lot of interest in the last few years,
control system analysis- and synthesis problems are formulated as convex optimization
problems involving LMTs (Boyd et al. 1994), (Scherer and Weiland 1999). The reason
for this interest is the development of very efficient interior-point algorithms for solving
such problems (Boyd et al. 1994), (Nesterov and Nemirovskii 1994), (Wolkowicz et al.
2000). Many interesting control problems, in particular robust control problems and
multi-objective control problems, can be solved within the LMI framework. There are,
however, interesting control problems that are very hard or impossible to formulate
within the LMI framework. Some of these problems can be formulated as more general
BMI problems (Goh et al. 1996). BMI problems are in general non-convex and hence
much harder to solve than (convex) LMI problems. The efficient algorithms developed
for LMI problems, however, provide a constructive basis for developing algorithms
for solving BMI problems. Consult (Tuan et al. 2000) and (Goh et al. 1994) for global
approaches. In this paper we obtain a specially structured BMI that we solve locally
by means of an algorithm given in {(El Ghaoui et al. 1997).

Model predictive control (MPC) is a methodology that has gained widespread
industrial use (Qin and Badgwell 1997), especially linear MPC which can be viewed
as a mature field. Applications of nonlinear MPC are also coming into use as reported
in a newly published survey (Qin and Badgwell 1999). There exists a well developed
theoretical foundation for analyzing linear MPC in the nominal case, see e.g. (Morari
and Lee 1997) for a survey of this. There are also some results appearing for nonlinear
MPC as well as for robust MPC as reviewed in (Allgdwer er al. 1999). The surveys
(Morari and Lee 1997), (Allgower et al. 1999) and (Bemporad and Morari 1999) all
suggest, however, that nonlinear- and robust MPC are areas open to significant future
advances. In this paper we will show how the methodology developed herein can be
used to guarantee stability for the robust and constrained nonlinear state-feedback
MPC case with very low on-line computational demands.

The outline of the paper is as follows: In Section 2 we present the uncertainty class
that is considered. It is comprised of a set of affine parameter dependent models,
where each affine parameter dependent model is valid in some subset of the state-
space. In Section 3 we show how the synthesis of a stabilizing piecewise affine static
output feedback for this uncertainty class can be formulated as an LMI feasibility
problem under a spectral radius constraint on the product of two positive definite
matrices. The formulation is based on a quadratic parameter dependent Lyapunov
function. The design problem can become quite complex, hence, complexity issues are
discussed. Additionally, we show how to embed dynamic output feedback into the
design method. Next, in Section 4, we present a local solution approach to the
nonconvex feasibility problem. The derivation of the uncertainty class from a given
nonlinear system with uncertain parameters is the topic of Section 5. We develop an
algorithm and highlight its use by a simple example. In Section 6 we apply the control
design method developed in Section 3 to obtain a nonlinear MPC controller with a
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robust stability guarantee. This result is limited to the state-feedback case. Finally we
make some concluding remarks.

2. Uncertainty characterization

In the controller synthesis, cf. Section 3, we assume that the uncertainty model is
given as the following difference inclusion with an uncertain output mapping
Xpr1 € Ui gy M (11, ©)

VkeN,x,eX,,uelU, (1)
Vi€ Ui s H (%, ©) } "

where U, = R™ and X,,:= U, X{ < R" denote the model validity sets which are
assumed to contain the origin in their interiors. Note that X,, throughout the paper
will denote the state constraints, while U,, will denote the input constraints. We do
not consider explicitly constraints on the output, but note that these can be mapped
to the state-space. X} denotes local model validity set 7, which is the part of the state-
space in which uncertainty model i is valid. The local model validity sets may be
overlapping. N, denotes the number of local uncertain models (and associated validity
sets). Further, I;:={1,...,j} and #(x):= {iely,|xe X}}. As usual, xe R" denotes
the states, # € R™ denotes the inputs, and y € R” denotes the outputs. The initial condi-
tion 1is x.

In (Slupphaug and Foss 1999), which only treats the state-feedback case, the .#;s
are given by polytopic affine difference inclusions. Here we will instead use affine affine
parameter dependent (affine APD) models' (Apkarian et al. 1996), (Gahinet et al.
1996). These two uncertainty classes are equivalent in the sense that any system
described by affine APD models can equivalently be described by polytopic affine
difference inclusions, and vice versa. The reason for introducing the affine APD models,
is that using this model class provides a more natural way of introducing quadratic
parameter dependent Lyapunov functions. Using such Lyapunov functions will reduce
conservatism in the stability tests compared to the tests given in (Slupphaug and Foss
1999), where quadratic parameter independent Lyapunov functions were used.

The affine APD models are given by that Vie {1,...,N,}

M(x,u, 0):= {£|30,€ ©, %= A(O)x + B(O)u+ (6,)} 2
Hi(x,0):={y|30.e ©,y=C(6)x +d(0.)} Q)

where
Ng No N0
Aifﬁk} = A:) + Z Ajﬁ,‘_,-, .B‘(ﬂk):= .Bio + Z B}Hk,j and c‘(ﬂk) = Cf;) + z Ciek.j
i=1 j=1 i=1
and
Ny Ng
C(6,):=Ci+ Y. Cib; and d'6,):=ds+ Y di6,,

i=1 i=1
where 0, =(0,,,...,0, y,)" is the possibly time-varying parameter vector and N,
denotes the number of parameters. The parameter vector is assumed to be in a hyper-
rectangle (also called parameter box)

©:={0=(0,,...,0y)7|Vjely, 0,0, 1]} = [0, 1]".
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It may seem restrictive to allow all the parameters only to be in the interval [0,1] but
a simple scaling argument shows that this can always be obtained (assuming, of course,
that the parameter is indeed partially unknown with known upper and lower bounds).
The same scaling argument implies of course that the parameters’ bounds can be
made equal to © in all the local model validity sets. Note that in the discrete-time case
considered herein the parameters’ rate-of-variation will be bounded whenever the
parameters are, in fact they will be contained in [ — 1, 1]. Thus, as opposed to the
continuous-time case, using quadratic parameter dependent Lyapunov functions will
be less conservative than using quadratic parameter independent ones even if explicit
bounds on the parameters’ rate-of-variation are not known. It should be noted that
the associated rate-of-variation in real time of course will depend on the sampling
period associated with the discrete-time model.

It may also seem restrictive that the .#;s and the ;s have equivalent local model
validity sets, but if they were different, one could just use the same local uncertainty
models for the dynamics part and/or the output part in (appropriately chosen) different
new local model validity sets.

If 0 € Closure X*, the associated c’s and d’s must be zero. This requirement means
that the equilibrium control input for the state set-point is assumed to be known.

3. Controller synthesis

In this section, we will develop a controller for (1) that stabilizes the origin in the
state space using output feedback while obeying control- and state constraints. First
we treat the static output feedback case, second control constraints are considered
before we show how to embed dynamic output feedback.

3.1. Affine quadratic stabilization

3.1.1. Piecewise affine output feedback Analogous to the state-feedback case treated
in (Slupphaug and Foss 1999), we will finitely parameterize the output feedback as a
piecewise affine output feedback. With the first M7 feedback validity sets—the feedback
validity sets containing the origin in their closure—we associate a linear output
feedback

.ut:= ;J"k Whel‘l yILEYJ!"jEIME‘ (4)
With all other feedback validity sets, we associate an affine output feedback
=Ky, +k; when yeYije{Mi+1,..., M.} &)

The feedback validity sets Y} are assumed to partition the output space R", meaning
that the controller is indeed well defined. If one has the special case of state feedback,
one can of course replace Y} with X7 was done in (Slupphaug and Foss 1999).

3.1.2. Connecting output feedback to the state-space We have the local model validity
sets X7,i€ly,, and the non-overlapping local feedback validity sets Yj‘, Jj€ly,,
covering the state-space, X,,, and output-space, R", respectively. Obviously, the open-
loop dynamics is associated with the local model validity sets, and the choice of
feedback is associated with the local feedback validity sets. We will define subsets X;;
of X,, such that, loosely speaking, the closed-loop dynamics on X;; is associated with
open loop dynamics .4#; and feedback j. We will name these sets inzersection sets. These
subsets will exactly cover X,, and may be overlapping.
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Formally, the intersection sets are given as
Xy:= X n{x|30€©, C{O)x + d'(O) e Y*}.

The states in X;; are affected by the dynamics defined on X* and possibly, depending
on 6, by the feedback used in Y%. Note that several of the intersection sets might be
empty. Also, note that even if X{ and Y} are polytopic, X;; will in general not be
polytopic or even convex when output model i is uncertain. This is due to the multiplica-
tion of the states and parameters. If, however, output model i is certain (independent
of 0), then X;; will be polytopic.

The intersection sets will form the basis for using the S-procedure when deriving
stability conditions for the closed-loop in Section 3.1.5.

3.1.3. Set Approximations This is done as in (Slupphaug and Foss 1999), but we
repeat it here for completeness. When formulating the conditions for affine quadratic
constrained stabilization, it is sensible to approximate the intersection sets and the
state- and control constraints using polytopes or ellipsoids?. We index only the non-
empty X;;s: The X;;s containing the origin in their closure are outer approximated by
unbounded polytopes, and are indexed with /€ Iy, the X};s not containing the origin
in their closure are outer approximated either by possibly bounded polytopes and
indexed in {N°+1,..., N?}, or by ellipsoids and indexed in {N” +1,..., N}. With
this indexing, for each / there exists a unique pair (i, /) which will be denoted (i, ),
thus intersection set number /is X; ;. Note that N° denotes the number of intersection
sets containing the origin in their closure, while N? is the number of intersection
sets outer approximated by polytopes, and N is the total number of non-empty
intersection sets.
Thus, for Ie Iy the polytope

{x|Ex<0} =D 6)

is used as an outer approximation of X, ;. For le {N°+1,...,N?}, assume that the

polytope
{x [E, el [’;] < 0} =P o (7

is used, and, finally, for /e {N? + 1, ..., N}, assume that the ellipsoid

x T EI' (<] X <0 (8)
s M RS
is used.

Furthermore, assume that the state-space model validity- and constraint set X, is
inner approximated as follows®

Oe () xllx—xicllf, <1} € X, ©

ie ’Hﬂ

i.e. by an intersection of ellipsoids where x; . denotes the centers of the ellipsoids, and
N, denotes the number of ellipsoids.
Similarly, we assume
Oc () {ulllu—ullf, <1} = Uy, (10)

ieln,
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where U,, is the control model validity- and constraint set. Note that any of the outer
approximations (6), (7), and (8), exists for any set, and that they are the natural outer
approximations to choose when formulating LMI problems for piecewise linear (and
affine) systems (Hassibi and Boyd 1998), (Johansson 1999).

The inner approximations (9) and (10) also exist for any X, and U,, with the origin
in the interior, and the origin can and should be placed in the interior of each of the
intersections.

3.1.4. Stability definition We will use the following stability notion, see ¢.g. (Slupphaug
and Foss 1999) and (Scherer and Weiland 1999) for similar definitions.

Definition 3.1 (Affine quadratic stability)
Given the system
X1 = A0, X )% + A0y, X)), 1)

where keN, x,eX, < R", x, given and c(6,,0)=0 for all 6,€® < RY. Define the
(affine) Lyapunov matrix function P(60,)= Po+ X3¢, 0, ;P;. The origin is an affinely
quadratically stable equilibrium for the system (11) if there exists & > 0 and symmetric
matrices M >0, Po, Py,. .., Py, and N(¢)* = X,, such that for all x, € N(g), Oy, 0+ 1 €©

(A(Oy, x; ) + by, xk))TP(Gk+ 1 (A(O, X )x,+ C(Bk, x*)) - x{P(GIc)xk < — xif Mx,

P(6,) > 0.

If, in addition, there exist scalars og,d,,...,0y, rendering the affine function
o0): =0 +ZNe, 0,0, > 0 for all 0 © such that for a given set R,,

R,c {x|30€0©,x"P(0)x < a(6)} = N(e),

then the origin is said to be an affinely quadratically stable equilibrium for the system
(11) with a region of attraction associated with R, of at least {x|30€®©,

xTP(0)x < ofB)}.

3.1.5. Synthesis: Robust output feedback Next we derive LMIs subject to a spectral
radius constraint on the product of two positive definite matrices (a specially structured
BMI) for affine quadratic stabilization of the origin of the closed loop (1) with (4),
(5). This extends the results in (Slupphaug and Foss 1999) to the output feedback
case. In addition we use a parameter dependent Lyapunov function making it possible
to take into account the implicit bounds on the parameters’ rate-of-variation that are
present in this discrete-time case (cf. the discussion in Section 2). This will make the
current approach less conservative in the state-feedback case than (Slupphaug and
Foss 1999) where a parameter independent Lyapunov function was used.
In the following result we will need the affine functions:

No
wio):= W' + Z BJW}
i=1

Ny

70):=+ ) 67}
i=1

—
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BO:= o+ X 036,

No

pO) :=pb+ Y 0
i=1

The W's are symmetric matrices whose dimension are the row dimension of the
corresponding E;s. denoted r,. The !s, f;s and s are scalars.

Theorem 3.1 Let #; index those parameters in local model i that enters quadratically in
(12), (14) and (16), and let ©y be the corners of the parameter box ©, i.e.
Oy ={0,1}%. Then, if IM >0, T; =0 for {(I,0)|Iely,t€ §,}, symmetric matrices
{P;}Ye0, S, matrices of appropriate dimensions {K;} ey, {k;} o p 11, ({5} 00},
{t)} 2o} onrs 1 ViETye, 0€@,

[S A (6) + B"(G)K,nc {(6) :| — Z T:G,z =0 1z
. PO-M-ETWOE] 5,
I:O B"K;}Cr'il_ Ti<OVie g, -
% 0

VIe{N°+1,...,N"},0€0,
S AYW6) + BO)K,C(0) B O)K,d"(0) + B (0)k;, + c(6)
* P(0)—M— E] W(O)E, — ET W' (0)e, — Y Ti07>0 (19)
* * — e W(O)e, e
0 BiK,Ci BiK,d!
* 0 0 |- Ti<oviey, (15)
* * 0
Vie{N°+1,...,N},0€0,
S AU6) + BYWO)K,;, C(0) B(0)K,d"(0) + B (O)k;,+ ()

*  P(O)— M+ (O)E, (), — Y T62=0 (16)
* * 11(6)31 tefy
0 BIK,Ci BiK,d}
* 0 0 —Ti<0Vte g, 17)
* * 0
VGE @0
0O<PO<S ! (18)
and® Ve Iy, 0€©,
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W' (0)e R'E> ", (19)

then the origin is an affinely quadratically stable equilibrium for the closed-loop system.
If, in addition, there exist reals {o;} Y and {B;}} o such that V0e®,

[HB) —POR, 0 ] <0 20
0 P(O) — (D)
and reals {{1}}e, Yiety, such that Viely, ,0€©,
[ﬂ‘(ﬂ)Ha,x — P(6) — O H, . x,, ] <0 o1
* #O) T Hyoxc— ) +o0) |

then the origin is an affinely quadratically stable equilibrium for the closed-loop system
with a region of attraction associated with {x]|x||z, <1} of at least x|30€®,

xTP(0)x < o(6)}.

All % are to be induced by symmetry. Now, the proof of this Theorem is similar to
and along the same lines as the proof of Theorem 1 in (Slupphaug and Foss 1999),
the main differences being that we now incorporate uncertain output feedback and
hence need arguments that are based on multi-convexity and the results of (Gahinet
ar al. 1996). Also, the S-procedure variables are now parameter dependent.

Proof. By Definition 3.1, the origin is an affinely quadratically stable equilibrium for
the closed loop if IM >0, {P;}Y,, (K}, {ki}¥2pss1,VIElye, X €Xyj, 0k,
0.+,€0©

{(A(6,) + BHB)K;, C(0,))x} "P(Byv 1)+ — xil POIX < — X Mx,,  (22)
VIE{N°+1,...,N},x €X,;, 0k, 0,4, €0

T
{[A"(Gx) + B (6)K; C(6)  BU(6)K;d"(O:) + BBk + ()] [?]} POy 1)

R [ e [
1 0 Ol 1 1 0 0|1
and V0, ©

P(6,) > 0. (24)

Next, by using the S-procedure to cover the different intersection sets (or, X;s)
(see (Slupphaug 1998) for details, we here extend the S-procedure in a natural way by
using parameter dependent S-procedure variables), we get that (22)(24) are implied
by IM >0, (P}, (K30, e Meaeg vy W01, (T30 nras VIE Lye,
aelR", 0y, 0,,,€©

{(A1(6,) + BY(0,)K;, C(0))a) "P(0y 1) * — a"P(0,)a + a"Ma + a"Ef WH(0,)E,a <0

Vie{N°+1,...,N?}, aeR",0,,0,,,€0
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{[A"f(m+B*(Bk)f<,~.c'*wo B0, d(0)+ B0y + (0] [l]} PO )
al"[PB) 0][a alIM 0]]a

BE o o] [0 0] [1
a|"[EF a

+|:1:| [eF]W(Gk)[El e] Iil]-éﬁ

and Vle {N”" +1,...,N},aeR",6,,0,,,€0©

T
{[Ai'(ﬂk) + B HOK;, Cci(6,) B (6:)K;,d "“(6,) + B(6, )k, + ¢*(6,)] [‘:]} P(Oy4,)*
al"[PO6) 0][a alIM 0]]a
LU IR el
T
o]0 ][
1 e g ||l

V0, ®
P(6,)>0
Vielyr, 0,0
W(6,) e R"E > "=,
and Vie {N*+1,...,N},0,e©
7(6,) = 0.

Using the fact that [z7 1]Q[z" 1]" > 0Vz<>Q >0, this is equivalent to IM >0,
P
(P12 0, 1K 0, (K3 g0, AW} 20005y, {5} 2ot ionrs 1 VIEIye, 6;, 0,4, €0

(4%(0n) + BYOK;, CH(0)) P(Oy11) = — P(O,) + M+ Ef WHO)E <O (25)

Vie{N°+1,...,N?},0,,0,,,€0©
[4°(8) + BH(O)K;, C(0)  BUONK;d"(6,) + B O, )kj, + (0] PO+ 1) *

P6,) © M 0 ET
_[ 0 o]+[0 Ojl"'[e?:lW'(&)[E; €] <0

(26)

andVle{N?+1,...,N},0,,0,,,€©
[4"(6,) + B4(6,)K;,C"(6,) Bi‘(ﬁx)Kj,di‘(ﬁx) + Bll(ek)kjr + O POy 4 1)

P6) 0] [M O] , [E e
_[ 0 0:|+[0 O] T(Ht)[el 3!]$0

27
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and V0, e ©
P(6,)>0
Viely,0,e®
W(6,) e R ™"

and VIe {N*+1,...,N}, 0,0
7'(6;) = 0.

By applying Schur complements on equations (25)—(27) (note that 7'(6,) >0
necessarily since P(6,) > 0 and ¢ > 0), introducing a new symmetric matrix variable
S, and noting that (see Corollary 7.7.4 in (Horn and Johnson 1992))
0<SKPO,,) "=0<P(B,,)<S 1, this is equivalent to IM >0, {P;}}2,, S,
(Y0 (K} Mg s (VRN L, ({13000} oo VIE Do, 0€O°

[S A(0) + BY(O)K;, C(B) ]
=0 (28)
*  P(0)— M—E[ W(O)E,
Vie{N°+1,...,N"},0e0@®
S A"6) + BHOK; CH(0) B0)K,d"(0) + B (O)k;,+ c'(0)
«  P(O)—M—EfW(O)E, — E{f W!(0)e, =20 (29
* * —ef W'(0)e,
Vie{N°+1,...,N},0e@
S A"6) + BYO)K;C(6) BYO)K;d"(0) + B(O)k),+ "(0)
x  PO)—M+7(O)E T(0)e; =20 (30
* * 7(0)e
Ve ®
O0<PO)<S ! 31
and that Vie Iy, 0 e ©®
WY(0) e R, ™ ", (32)

Now, all these matrix inequalities are parametrized in the continuous set . To get
a finite number of matrix inequalities, we find conditions that allow us to replace ©
with the finite set ®,. One such condition is that the matrix inequalities are multi-
convex” in the parameters (Gahinet et al. 1996, Lemma 3.1), (Apkarian and Tuan
2000a). Multi-convex essentially means ‘convex in each of the parameters’ in our case,
where © is a hyper-rectangle.

If the matrix inequalities are affine in the parameters, then they are always multi-
convex, meaning that we can replace © with ®, without conservatism. If, as (possibly)
in our case, some of the matrix inequalities are quadratic in the parameters, they can
be written as (when keeping all parameters constant, except one particular 6, that
enters quadratically)

X+ Y0, + Z62.
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Convexity with respect to this parameter is ensured when Z = 0 (Gahinet ar al. 1996),
and this can be added as an extra LMI constraint. This might of course introduce
conservatism.

In some cases, this constraint can be difficult (in our case, in fact impossible except
in the trivial case) to satisfy. We can get a less conservative constraint by instead
of requiring that Z+ V6, + Z0? <0, require that the overbound X+ Y0,+
(Z + T,)6? <0, for some T, > 0. The constraint then becomes Z + 7, > 0. This idea is
from (Gahinet at al. 1996).

The 6,s that enter non-trivially in both B'(6) and C¥(6), or both B'(6) and d*(f), for
some i will appear quadratically in (28)—(30). For these, we must add an extra LMI
constraint as explained above. Let these 6,s in local model i be indexed in _#. Thus,
the inequalities (12)—(19) in the theorem implies (28)(32), and the first part of the
theorem follows. The last part follows from (Slupphaug and Foss 1999) and a similar
argument (based on affinity in the parameters and multi-convexity) as above. [ |

3.1.6. Discussion We will comment on some issues regarding the above theorem:

e Compared to the result for the state-feedback case in (Slupphaug and Foss 1999)
the quadratic (in ) uncertain terms B4()K;, C'(0) and BWO)K,d"(0) give rise
to a possibly large set of additional LMI conditions (and extra LMI variables):
(13), (15) and (17).

e The symmetric matrices 7} will possibly introduce a great number of scalar LMI
variables, depending on the size of the _#s. This problem can be reduced by
instead letting 7! = ¢! I, where the o}s are scalars. Of course, this will generally
be more conservative.

e If there are no quadratic parameter terms in equations (12), (14) and (16) (that
is, 7;,iely, is empty), the extra LMI conditions ((13), (15) and (17)) which
introduce conservatism, vanish. This is the case when the same parameters do
not appear in both C(f) and B'(0) and in both d*() and B'(0). Special cases
where the quadratic terms disappear is when the input model is piecewise affine
and known, i.e. the Bi(6) = B, or the output model is piecewise affine and
known, i.e. the C*(0) = C*. A special case of the latter is state-feedback implying
that C' = I.

e Even though we do not use explicit information on the parameters’ rate-of-
variation in the theorem, due to the implicit sampling and the bounds on 6, we
still implicitly take into account that the rate-of-variation is bounded (we know
that 6,,, —6,€[—1,1]"). This is as opposed to the continuous time case
(Gahinet at al. 1996), where no information on the parameters’ rate-of-variation
forces P, =... = Py, =0.

e In addition to a parameter dependent Lyapunov function, other variables are
also chosen to depend affinely on the parameters. This reduces conservatism
compared to the case where these are not parameter dependent, but of course
one has to pay by having more LMI-variables.

3.2. Handling control input constraints

It is possible to handle control input constraints in Theorem 3.1 by adding a
number of LMI constraints. The approach we use here is the same as in (Slupphaug
and Foss 1999), but we will adjust it to fit the new model uncertainty class and output
feedback.

-
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We have to satisfy the control constraints, U,,, in all the Xj;s. For this to be the
case, it is sufficient that V(p,l)e Iy, x Iy,0€©

| K;(CO)x + d"(0)) + kjy— e 7, < 1. X E X (33)
Note that this condition is not necessary because of the inner approximation of U,,.
When outer approximating the X;;s for formulating LMI conditions for satisfying

control input constraints in this manner, it is only sensible to use ellipsoids, see
(Slupphaug and Foss 1999). Thus, we assume that8

NI E TR

Using the S-procedure and Schur complements on (33), we get that the LMI
conditions: V(p, eIy, % In,0€©3 {1f, ;} 120

OE 0,08 (K, C0)"
¥ 14+<E,008 (k,+ K, d"(0) —u, )" [>0 (34
* * H,, S
Ny
(0 :=Tp0+ ) 0;15,,;20 (33)
ji=1

imply the sufficient condition (33) for satisfying control input constraints. Since these
LMIs are affine in 6, we can indeed exchange © with ©®,. From this, we get:

Theorem 3.2 If the hypotheses (12)21) of Theorem 3.1 as well as the LMIs (34)—35)
are satisfied, then the origin is an affinely quadratically stable equilibrium for the
closed loop with a region of attraction associated with {x| ||x||ﬁ‘ <1} of at least
{x|30€O©,x"P(0)x < o)}, and the control input constraints, U,,, are satisfied on all
closed loop trajectories within X,,,.

3.3. Dynamic output feedback

The problem of finding a (linear) dynamic output feedback controller can be
transformed into the problem of finding a static output feedback controller by a
systern augmentation technique (see e.g. El Ghaoui e al. 1997). In our case, we
want a piecewise affine dynamic output feedback controller, and the same system
augmentation technique can be used.

Parameterize the dynamic output feedback controller in feedback validity set
Yi,jely, as

Zk+1 =rijzk +Bj}’g +é}
U, = C',-z,‘ + ﬁjy|‘+ 31"’

wherg z,€R™ and 4 i E’J, - ,(31 are matrices of appropriate dimensions (of course, ¢;
and d; are zero in the first M7 feedback validity sets). The controller order is denoted
n,. Note that we can choose n, < n, thus this dynamic controller design could be called
a reduced- (or fixed-) order controller design.
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D, ¢ . d
Ke=|." k="
B, A4 é;

The dynamics in model validity set XL,
Xy 11 = AO)x, + BB )uy + ¢'(6,)

Now, define

= Ci(O)x, +d I(Gk)
can then be augmented with the controller dynamics in feedback validity set Y7 as

follows:
I:xh 1 ] _ [A'(Gn) 0] |:xt + I:B'(Bk) 0:| i+ I:C'(ﬂk):l (36)
Zk41 0 0]z 0 I 0
_ [ciey o= [
S ] M e e

ﬂk = ‘EJ /& + J* (38)

. Uy, . Y
Uy = s Vi = .
Zk+1 Zk

This closed loop dynamics ((36) and (37) with feedback (38)) are seen to be on the
same form as (1) with feedback (4) and (5), hence Theorem 3.1 can also be applied
for dynamic output feedback.

As before, we have to cover the different validity sets comprising the state space
with ellipsoids and/or polytopes. For the augmented states, this is most easily done by
not imposing restrictions on the controller state z, , in which case the matrices defining
the ellipsoids/polytopes from the static output feedback case is simply augmented
with properly placed blocks of zeros.

This method prevents us from handling control input constraints as in the previous
section. This can be seen from the controller parametrization; if z, is unbounded, then
also u, will be unbounded (if C‘,— # 0, that is, if the dynamic part of the controller is in
effect).

Therefore, if we want to include control input constraints in the synthesis, we will
need to impose bounds on the controller states, that is, we have to decide on a bounded
Z,, such that z € Z,,, and cover Z,, in the same manner as X,,. It is not clear to us if
such a restriction in itself will introduce conservatism.

with the feedback

Note that

4. A Local Solution to the Synthesis Problems

In (Slupphaug and Foss 1999) we gave a global branch-and-bound based algorithm
based on (Tuan ez al. 2000) for solving the nonconvex feasibility problem associated
with the controller synthesis. Herein, we present a local approach.
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The (nonconvex) feasibility problems associated with the synthesis theorems can
be locally approached by using the algorithm for rank-minimization subject to LMI
constraints developed in (El Ghaoui et al. 1997). To get in a position to apply that
algorithm, we note that 0 < P(6) < S ~ 'V0e®, is equivalent to

P(6,) 0 S 0

O<P:= < =:8§"1,
0 P(ezno) 0 S

where 0, , ..., 0,% denotes the corners (or, ®) of the box ©. Now, certainly P<S7Y,
if P=(»S) ! and 5 > 1. Replacing the matrix inequality P> (#5) ™! > 0 by the LMI

(Schur)
B >0 39
I a8 |? (39)

where n > 1 is a given constant, we may use Algorithm 1 in (El Ghaoui et al. 1997).
Algorithm | is devised at satisfying the synthesis LMIs, while saturating the constraint
(39). This gives P = (35) ! and hence a solution to our controller synthesis problem
since 1 > 1. In the present context where only an inequality need to be satisfied it is
straightforward to find an exit condition, namely £, <S$,” ! (7 denotes the iteration
index). If equality was needed as in (El Ghaoui et al. 1997) it would not be as easy to
find an exit condition. However, for the more structured problem in (El Ghaoui et al.
1997) this can be done (El Ghaoui et al. 1997, Theorem 2.3).

Before we present the algorithm we will show that there are LMI feasibility prob-
lems providing nontrivial necessary conditions for the nonconvex synthesis problems.
Now, if there are feasible $* and P* to the synthesis LMIs with P*(0) < S$* 'V0e®
(or, S* < P*(6) 'VOe®), it can be seen that S satisfying S* < S=min, o P*(6) !
also solves the problem. Also, ming.eP*(0) ' =5 "max,. e P*(0) ! for some finite
H=1tmx>1 due to compactness of ® and continuity of A.,.(P*(+) ') and
Aenax (P*(+) ™ ') since P*(0) > 0 V0 e ©. This means that a necessary condition for feasi-
bility is the synthesis LMIs plus the LMI equivalent S > (1,,,,P(0)) " 1¥0e® (or
P> (120x8) ™ 1). When N, = 0, any #,,,,, = 1 will do. When N, > 1, computing a lower
bound to min,_g P*(#) ™! should be possible via LMI optimization using as viable P*s
the ones that satisfy the LMI part. These, of course, contain the P*s feasible for the
total problem. The same goes for an upper bound to maxg.e P*(0) ~*. This issue will
not be considered further herein, and we assume that a sufficiently large finite 7,,,, is
found. Thus, in our context Algorithm 1 in (El Ghaoui et al. 1997) reads:

Algorithm 1’

Step 0 Let =1, > 1

Step 1 Find feasible P, and S, for the synthesis LMIs and (39). If there are none, the
problem is guaranteed infeasible, exit. If P, < S, !, exit. Otherwise, set = 0.

Step 2 Solve the LMI problem £,

I,:=IT1inTI'(P,S'+ S';P)
subject to all the synthesis LMISs in addition to the LMI (39) to find B, ,

and S‘,H.
Step 3 If £, , < S}, exit. Otherwise, set / =1+ 1 and go to Step 2.

I EEEEEEEEEEEE——————
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Theorem 4.1 The sequence (1,);>¢ is bounded below by 2n(2V¢/y) and nonincreasing.
Thus, (t})1>o converges to some value t,, =>2n(2"ly). Equality holds if and only if
SP =)L

Proof. See (El Ghaoui et al. 1997). [ |

We have tested Algorithm 1’ on examples using P(6) = P, and although we find
feasible solutions to the controller design problem for a wider range of input data (e.g.
for more R, > 0) when using the global approach mentioned above, computations
show that Algorithm 1’ finds a feasible solution to the controller design problem for
a comparable range of input data. This is in accordance with the computations
reported in (El Ghaoui er al. 1997). In addition, a solution is, if one is found, typically
found much faster than is the case when using the global approach. Thus, this local
algorithm seems to provide a good alternative for problems with a ‘high’ number of
states (more than, say, 3).

Recently, other approaches to the rank-minimization problem treated in (El Ghaoui
et al. 1997) have appeared, see e.g. (Apkarian and Tuan 2000b), (Fares et al. 2000).
These approaches will of course also be of interest when solving the synthesis problems
herein. In particular the algorithms based on sequential semidefinite programming
(SSDP) seem promising (Fares et al. 2000).

5. A set of affine APD models encapsulating a family of nonlinear systems

In this section we will provide a procedure for obtaining the uncertainty model
used in the feedback synthesis. We assume that the uncertainty is due to parameter
uncertainty, and that the nonlinear structure is known. The approach consists of
affinely upper- and lower bounding each of the nonlinear uncertain elements of the
vector functions defining the state transition map and the output map. First, we
describe how to construct the uncertainty model given these bounds. Second, we
describe how to find the bounds; this involves solving a set of continuous linear semi-
infinite programming problems.

5.1. Composing the APD models given affine bounding functions
Assume that

X1 €F (g, iy, V)< R”
WEeC(x, V) =R,
where
F(x,u,W):= {£|X=f(x,u, ) for some e ¥}

E(x,¥):= {y|y = h(x, ) for some y € ¥}

and f, h, and ¥ are assumed to be known. Also, assume that Yjel,, jel,, iely,,
(up)eXt x U, x ¥

Aix + Biu+ ¢ < fi(x,u,§) < Aix + Biu + ¢}

Cx+d;<hix. < Cx+dj,
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where 4}, B}, 4}, B}, C} and C?} are row vectors with appropriate dimensions, while
the corresponding cis, ¢is, dis and dis are scalars. Superscript i is introduced to sepa-
rate the different local model validity sets.

Thus, for all xeL, ue U,,,y€'¥

6 0 - Al B o]
fxuyy=0 " 0 o B I R
oo e f\la] [B] L&
l—Gil 0 4}1‘ _&l_ Qil
+ 0 . 0 A R N RS
: 0 1-6 4, LB ct
and
0y O (o] 3‘1_
heeg)=| 0 "0 N
: 0 B:vl-r C: 3:._
=6, 0 - (rGT [
+ 0 0 D lx+]
0 1064, 1\LG d,

for some (6%,...,6.,6,,,...,0.,,)e[0,1]"*". Collecting the terms, we can write
this as

™=

03¢

f(x,u,l}/)=(A{}+ Y 9}A})x+(83+ Y B;';Bj)u+c'.;+
i=1 i=1

h(x,w)=( b+ Y 95-+,.C})x+d5+ Y O,
i=1 ji=1

i=1

where
- 0 —
4 0
A= i |and 4i=| 72— 4; | jel,
: 0
- 0 —

and similar for the Bjs, cjs, Cjs, and djs, je {0, 1,. .. ,n}, je{0,1,...,r}.
Now, it follows that
Fx,u,¥)c ) H(x,u©),¥xeX,, uecU,

ie Fx)

¢ ¥ | Hlx©)VxeX,,

ie ¥(x)
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where the .#;s (#;s), see (2) and (3), are defined by the above given A%s, Bis, and cis
(Cis and dls), and © = [0, 1]"* ", This means that the uncertain system associated with
F is contained in the uncertain system associated with the .#;s, and likewise for the
uncertain output map. Thus, if we can stabilize some point x, of the latter uncertain
system using feedback from the output, we will at the same time stabilize it for &
(cf. Section 3).

Next, we describe one way to find these affine bounding functions.

5.2. Finding the upper and lower bounds

We will now show that finding the N;(n + r) upper bounding and N, (n + r) lower
bounding scalar affine functions can be formulated as 2N, (n + r) continuous linear
semi-infinite programs (Goberna and Lopez 1998). These are proposed solved by a
series of ordinary (finite) linear programs (LPs). We only show the upper bounding
for the elements of f, as the other bounding problems are essentially equal.

The affine upper bounding function for state equation j in local model validity set
i should approximate as closely as possible the nonlinear uncertain function from
above. Let Vje{l,...,n}

gilx,u):= 1;'1&;5 i u, YIV(x,u) e Xt x U,

then this can be transformed into the following linear semi-infinite optimization
problem

V*:= min L(p):= -[ .. J}ljx + Biu+ & — g;(x, uydxdu (40)
pi= (A, B, )
Xf' % Upy

subject to Vze Z:= Xt x U,
h(p;z):=Aix+ Blu+ ¢t —g;(x,u) =0,

where z =(x,u). Note that, assuming the multiple integral in (40) exists, the cost
function L is indeed linear in the unknowns p. However, we have an uncountable
number of linear constraints parameterized in z.

By using a well known fact from calculus we can conservatively transform this
uncountable number of linear constraints into a finite number of linear constraints.
From calculus we know that if #e C? where h: Z - Rand Zconvex, thenforallw,zeZ

iiw) = F(z) + Vi) (v — 2) + % v —2)"V2i(z + w — 2)) (w — 2)

for some t€(0, 1). Meaning that for all z, we Z

1ii(z) + Vi(2)T(w — 2) — h(w)| < ”—*’;’-*—' yliw—z|2 @1

if |V2(z2)|; <7y for all zeZ. This follows from the Hélder inequality, that
lzllo<vn+m+1(zlle, and that [[Gllie:=max, (| GX |/l x],) for any
matrix G.

Now, define a finite set %(e) (associated with Z) denoted an e-grid that satisfies
VzeZA{wy, ..., Wyams1} © %(e) such that ze Co{w,, ..., Wyup+,} and |w; —w;| <

eVi,jel,, uay- In the following we will for simplicity assume that Z is such that

- @@
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e-grids exist for it satisfying %(¢) < Z for all £ > 0. Note that e.g. a standard é-grid on
a box satisfies this when the border (or, box surface) is gridded as well.

Lemma 5.1 Assume g;€ C?, Z convex, and |V*g;(2) i, <7y for all ze Z. Then it holds
that, if for some peR"*™*1

h(p;2) =" *%’L] 1e2VZE%(E)

then
h(p;z)=0VzeZ.

Proof. Take an arbitrary z e Z. By the definition of an e-grid, ze Co{w,, ..., Woi i1}
for some n+m+ l-tuple {wy,...,W,ime1} In 9(e) satisfying |w; —w;l, <evi,
jel,ims1- Now, from (41) we get

+ |
Igj(z) + Vg,-(z)r(w— Z) _gj(w)l S " ZL?EZVWECO{W“ ceosWhimed }-

Note that in particular this holds for we {w,,..., W, »+}- By assumption

h(p,w) Bn + F;-'-—l‘}'esze {wls- cesWhem+1 }-
Thus,
h(P;Z) = gj(z) + ng(z)T(w - Z) -—gj(W)VWE {wl sere s Whbmet }!
or

[4] Bilw+2i>gi(2) +Vg;(2) (w—2Vwe {wy, ..., Wyrpmuy ). (42)
By affinity (42) holds for any we Co{wy,...,W,+n+1}, and in particular for w=z
giving
h(p:z)=[4% Bilz+&+gi(z)=>0

and the result follows from the arbitrariness of z. [ ]

Based on this we propose the following algorithm for solving the linear semi-
infinite optimization problem (40).

Algorithm 5.1 (Affine upper approximation)
Step 1 If y =0, g; is affine —stop. Pick any &,, >0 and 0 <x, <1. Let /=0.
Step 2 Let & =((n+m+ 1)/2)pe?. Solve the associated LP defined by I(p),

h(p:w) =&, Ywe%(g,). Let V,p denote the optimum value and p* the
corresponding optimum point. Check so-called f-optimality by

I. . I C,d.xdu
. xlxuo,
07 <
By v <p

if so, stop. If not, go to Step 3.
Step 3 Let /=17+1, and let 0 <g <K€, return to Step 2.
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If Algorithm 5.1 halts we have a fi-optimal solution. This means that the optimal
value V'* is greater than or equal to ¥, minus fV;p, i.e. ¥* = Vyp(1 — ) upon exit.
Algorithm 5.1 terminates in finite time as proved next.

Theorem 5.1 Assume g;e C2, Z convex, and |V?g{(2) ||, <7 for all ze Z. Then, the
above algorithm terminates in finite time with a f-optimal solution.

Proof. It follows from the assumptions, Lemma 5.1, and the definition of ¢ that the
associated LPs indeed have a finite number of inequalities and that they provide upper
bounds V* = ¥, to V*. A lower bound V* at iteration / on ¥* can be computed by

F* = VLP - V[. . .j‘f;dxdu.

Xf‘x[!,,,

P* is the optimum that would be obtained if the right-hand side of the constraints in
the LP were lowered by &, giving 0, this can be seen from the Karush-Kuhn-Tucker
conditions for this specially structured LP problem (the associated optimum point
would be the same as p* apart from the last element ¢3* that would be lowered by ¢&;).
Since only a finite number of constraints are considered, it provides a lower bound on
V*. Now, f-optimality would follow if

e s
2

This is exactly the f-optimality check given in the algorithm, and hence a S-optimal
solution results if it halts. When it comes to proving that the algorithm indeed will
terminate in finite time, we note that lim,_ & = 0. Also V;, >k, > 0 since g; is not
affine due to that step 2 is reached, thus the f-optimality check will hold true at some
finite iteration. |

From a practical point of view, the size of the involved LPs is of importance, and
fairly large scale problems do indeed result as is shown in the example below. We have
not looked closely into how to alleviate these problems, but gridding with different
density, according to the Hessian information, in different parts of the local model
validity set is one obvious possibility.

It must also be mentioned, that the problem of finding g; may be hard. In some
simple real world related examples, however, it has been straightforward since the
maximizing Y has been constant over quadrants.

Finally we remark that utilizing a bound on the gradient instead of a bound on the
Hessian results in typically quadratically more grid points. In addition the associated
algorithm will be more complex since the gradient of 4 depends on the optimization
variable p.

We conclude this section with an application of the proposed algorithm.

Example 1 (Upper approximation)
Consider the affine upper approximation of

glxy,x3) =xi exp(—x,)sin(4nx,)
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%

Figure I.  g{x,, x;) = xjexp(— x, )sin(4mx, ) and a 0.1-optimal affine upper bounding function
found using Algorithm 5.1.

over [0 1] x [0 1]. It can be shown that for all (x,,x;)e[0 1] x [0 1]
1 V2g;(x1, X5) i < 167% — 1 + 87 + 3(1 + 4m) = 223.

We initialized with e, = 1, §=0.05 and «, = 0.9, and used a standard e-grid technique
to generate 4(g). We let & =k,¢ _ 1. Each LP was initialized with the solution at the
previous iteration. This resulted in the 0.1-optimal upper approximation shown in Figure 1.
We used MATLAB and the LP solver e04mbf.m from NAG for implementation of the
algorithm. On a 450 MHz PC with 256 MB RAM it took about 2 seconds to find a
0.1-optimal solution. The returned solution was p* = (0.8853 0.0000 0.0388), and the
last used € was g,4 =0.0108 which results in about 8600 inequalities in the associated
(last and largest) LP.

6. Robust Nonlinear Model Predictive Control

We will in this section show how we can use the precomputed matrix function
P(6)=Py+ X}, 0,P;, the matrix M, and the feedback matrices {K;}},
{kﬁﬁwh , from the state-feedback version of Theorem 3.2 in an MPC scheme to
guarantee robust stability. This is done by adding the hard constraint to the MPC
optimization problem that the Lyapunov function W(x;,k)=x] P(6,)x, should
decrease at each time step. This MPC problem is feasible at each time-step if x; is in
the region of attraction associated with Theorem 3.2, since an input trajectory based
on the feedback matrices {K;}1,, {k;}} L, ., then provides a feasible initial point
in the optimization. Consult (Slupphaug and Foss 1999) for the same approach using
a parameter independent Lyapunov function, and for more extensive comments.
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Define an MPC optimality criterion on the prediction horizon N:
ATy 2o Ky Xs Uy 1)
T = {us oy Ui N1 35 0= Xkt 15+ > Xean b
OR"X .. XR"XR"X...xR"XNxR"XxR">R,

Based on this, we can specify the following optimization problem, denoted Z,,pc, to
be found feasible or solved at each time step k:

min (1, ;™ k, Xe, th 1)
€ I

subject to the hard constraints

I Ai(ek)xk + Bi(ﬂk)“k + C'(Gk) ”lz‘(ah 0 [l x ”!2’(0.,) < —|lx ”ﬁf’ YOy, 0, €O, i€ F(x;)
(43)

and the soft constraints
mreXx.ox X

P(6) and M are given from Theorem 3.2, and [1 = U,, x ... x U,,. x4} denotes the
prediction on the N step ahead horizon, using some (possibly nonlinear) nominal
model which typically, when restricted to X,, x U, x ‘¥, is within the model uncertainty
class. The so-called soft constraints are defined by X. These should be chosen such
that X < X, since this will ‘softly’ force the state to be within the state constraints
X,.. If the nominal model is within the assumed model uncertainty class, and the
region of attraction {x|36, x" P(6)x < a(f)} is contained in X, then the soft constraints
can be satisfied for every k > 0 if the initial point x, is within the region of attraction.
If the choice of X or the choice of nominal model makes some of the soft constraints
infeasible at some k, they can be dropped (thereby the name soft constraint) while
retaining the closed-loop plant states within X, (in fact, within {x]|30, xTP(6)x <
o(6)}). This follows from the hard constraints,

The solution procedure for the MPC is defined as follows:

Step 1 At time step k, the initial choice for =, in the assumed feasible iterative
optimization algorithm is computed by the precomputed state-feedback (4),
(5), {K;} 2y, {k;} My, derived from Theorem 3.2, using the nominal model
for prediction.

Step 2 The iterative optimization algorithm for solving % is run until convergence
or, alternatively, terminated earlier.

‘We are now ready to state the following:

Theorem 6.1 (Nonlinear Robust MPC) Assume that the system to be controlled is
contained in the assumed model uncertainty class, that is, given a state x,€ X,, and an
input u, e U, the next state X, € U ¢ g Hi(Xy, Uy, ®). Then an MPC based on the
solution procedure above renders the origin of the closed loop system affinely quadratically
stable (cf. definition 3.1) with a region of attraction associated with {x|x"Rx <1} of
at least {x|30€©,x"P(O)x < «0)} < X,,, and the control input constraints, U, are
satisfied on all closed loop trajectories starting within {x|30¢®, xTP(0)x < «(6)}.
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Proof. First, note that all u, computed from the feasible (see below) MPC can be written
as 4, = Kx; + K, for some time-varying K, and k,. The reason that we emphasize this
obvious relation, is to make the MPC closed-loop fit into the stability framework of
Section 3. Also, we need the additional observation that we could have assumed the
feedback matrices to be time-varying in all transitions of the proof of Theorem 3.1.
To see that the hard constraints (43), which are guaranteed to be satisfied upon exit
from Step 2, implies the condition in definition 3.1, and thereby affine quadratic
stability, we have to replace ®, with © in (43). This can be done by using the same
steps as in the proof of Theorem 3.1. Equation (43) can essentially be written on the
same form as (22)/(23). By going from these equations to the end of the theorem, and
back to the outset, realizing that all the needed transitions are equivalences (that is,
we do not need the transitions based on the S-procedure, and because of the state
feedback, after Schur complements all equations are affine in the parameters and
hence we can replace ®, with @ without conservatism), we arrive at the definition of
affine quadratic stability.

Finally, Step 1 of the solution procedure will always provide a feasible m,ell
satisfying the hard constraints when x, € {x|30, x™ P()x < a(6)}, this follows directly
from Theorem 3.2. ]

The solution procedure utilizes an iterative optimization algorithm. We have
assumed that this is a so-called feasible algorithm meaning that if the initial choice
satisfies the hard constraints, the consecutive iterations will also satisfy these con-
straints. Thus, the iterative search improves the nominal performance within the frame
of guaranteed robust stability. As a consequence, the iterative algorithm may be
terminated prior to convergence (for example because of limited computation time)
without affecting the stability. Further, possible non-convexity of the optimization
problem (which e.g. could be caused by a non-linear nominal prediction model) does
not affect the stability result either. Also, any prediction horizon N can be used without
affecting stability. Finally, it is important to notice that the minimum required on-line
computational load is very low. An example of application of this kind of nonlinear
constrained robust MPC can be found in (Slupphaug and Foss 1998).

7. Concluding remarks

We have developed a rigorous method for computing a robustly stabilizing
piecewise affine output feedback controller for constrained nonlinear discrete-time
systems with uncertain, possibly time-varying, parameters. Moreover, the method
supports control input and state constraints. The method, which depends on obtaining
a feasible solution to a set of LMISs subject to one spectral radius constraint on the
product of two positive definite matrices, extends earlier results since the Lyapunov
matrix is parameter dependent. By this it is possible to exploit implicitly given (via
the sampling rate and the parameters’ bounds) information on the bounds of the
parameters’ rate-of-variation. Further, output feedback, as opposed to earlier results
treating the state-feedback case, is considered.

The design method will in its most general form only be solvable for very low-
dimensional systems due to that it results in possibly very large scale optimization
problems. However, if parts of the uncertain system is linear and known, this can be
exploited and may significantly reduce the size of the associated optimization problems.
The system may for example contain pure integrators, or the output may simply be a
subset of the states.
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A local solution algorithm for solving the synthesis problem is proposed. Also,
nontrivial necessary conditions in the form of LMIs are described for the synthesis
problems.

The uncertainty model that is considered is a piecewise affine parameter dependent
discrete-time state-space model. It is shown how the model class can be constructed
from a nonlinear partially unknown state-space system. The construction method is
based on the solution of a set of continuous linear semi-infinite programs using a grid
discretization approach.

Finally, an on-line computationally feasible nonlinear MPC algorithm with robust
stability properties is derived by using the result in Theorem 3.2. This result is limited
to the state-feedback case.

Important future issues related to this work are improved methods for developing
the uncertainty models, developing the design method to further reduce complexity,
and applying the methodology to examples of different complexity. Exploiting expli-
citly given bounds on the parameters’ rate-of-variation as well as improving the local
solution strategy are also natural topics to investigate further. Finally, extending the
MPC result to output-feedback is also a very challenging problem.

Notes

1. Note that affine parameter dependent mean that the model matrices are affine in the parameter
vector 6. Since the models are also affine, we get affine parameter dependent models. We will
concatenate this to affine APD models.

2. If tighter approximations are needed, one can use unions of polytopes or ellipsoids. This

extension is trivial (Slupphaug 1998).

x| gi=+xTHx, H>0.

. Ne):= {x|| x| <&}

. The condition that W'(f) must have non-negative elements, i.e. be an element of R"*"%, can

be expressed as an LMI condition on each of the elements of W(0).

6. Since the equations containing both 6, and 6, , now become decoupled, we replace #,€ ®
and 0,,,€® with 8e®. It is also noteworthy that this is the step where one looses the
possibility to exploit explicitly given bounds on the parameters’ rate-of-variation.

7. Here, we need that the matrix inequalities are mudfi-concave. The conditions for this are
obtained by reversing the signs in the conditions for multi-convexity.

8. As noted before, we could have used unions of ellipsoids.

o
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