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Computational Performance Analysis of Nonlinear Dynamic Systems
using Semi-infinite Programming*
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For nonlinear systems that satisfy certain regularity conditions it is shown that
upper and lower bounds on the performance (cost function) can be computed
using linear or quadratic programming. The performance conditions derived from
Hamilton-Jacobi inequalities are formulated as linear inequalities defined pointwise
by discretizing the state-space when assuming a linearly parameterized class of
functions representing the candidate performance bounds. Uncertainty with respect
to some system parameters can be incorporated by also gridding the parameter
set. In addition to performance analysis, the method can also be used to compute
Lyapunov functions that guarantees uniform exponential stability.

1. Introduction

This work describes a procedure for computing upper and lower performance
bounds in terms of solutions to Hamilton-Jacobi inequalities, including Lyapunov
functions as a special case. This is an interesting problem because it may give informa-
tion about to what extent a controller meets its performance specifications in terms of
a cost function when the system is subject to uncertainty, the control design is sub-
optimal or based on a simplified model.

Consider the equilibrium point x = 0 of the non-autonomous non-linear systems

x(t+ 1) =f(x(),6(0)) DT (M
W) =fx(n,6() CT 2

where x € X is the state vector, 0€® is an unknown possibly time-varying parameter
vector, f{0,8) =0 for all 6e® and fis Lipschitz. D-T denotes discrete time, while
C-T denotes continuous time. Let X = R" be a compact and connected region of the
state space such that the origin is an interior point in X, and ©® < R? a compact region
of the parameter space. The problem is essentially to compute a smooth function
V': X — R that satisfies some Hamilton-Jacobi inequality in addition to non-negativity.
By assuming a linear parameterization of V¥, this leads to two linear inequalities that
must hold for every xe X and 8e®. By discretizing the compact sets X and ©, the
candidate functions are now characterized (approximately due to the discretization)
by a finite number of linear inequalities.

The present work extends (Johansen 2000) in the sense that more general perfor-
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mance measures are considered, not just Lyapunov stability. Compared to Rantzer
(1999) who represent the performance measure through pointwise function values, a
smooth parameterization of V is assumed. Further differences lies in the analysis of
the discretization, and the procedure in the present paper allows somewhat more
flexibility in specifying the objective through a convex quadratic cost funciton. In
Johansson and Rantzer (1998), Rantzer and Johansson (2000), Petterson and Lennart-
son (1997) and Johansen (1999), who mainly consider performance and Lyapunov
function computations for various classes of nonlinear systems the solution is com-
puted using semi-definite programming. Piecewise linear Lyapunov function are com-
puted using linear programming in Ohta and Onishi (1999) and Julian et al. (1999),
and solutions to Hamilton-Jacobi-Bellman inequalities for hybrid systems using linear
programming are investigated in Branicky (1995) and Hedlund and Rantzer (1999).

2. Parameterization of the performance bound

In this section a linearly parameterized set of functions is introduced. Consider a
function ¥': X— R of the form

V(%) = xTP(x)x 3)
where the matrix valued function P: X — R"*" is defined by the following linear
parameterization

N
P(x)= 3, Pipi(x) )
i=1
where p,: X— R are smooth basis-functions for all i=1,2,...,Nand P,,P,,..., Py
are parameter matrices. The attention is restricted to positive semi-definite basis-
functions that form a partition-of-unity:

N
Y p0=1, forall xe X (5)
i=1

The set of functions V defined by (3)—(5) and fixed basis-functions p;,p,,...,pn 18
denoted

N
Vy= {xn—r Y x"Pxpi(x)
i=1

Pl,Pz,...,PNeR"”}

In the procedure developed below, we will make no further assumptions on the set of
basis-functions. However, in order to argue something about non-conservativeness of
the approach, one may assume that they are selected from a complete basis (in a
Sobolov norm) (Johansen 2000).

3. Performance bound computations

3.1. Upper and lower bounds
Consider the performance of the system (1) or (2) with respect to a cost function

(0 = )f wx®) DT ©
Jx(0)) = I Wi CT ™
0
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where w(x) >0 is the penalty associcated with the state xe X, with w(0) =0. This
means that if the trajectory x(z) converges to the origin from some initial state x(0)
with a sufficiently high rate, the accumulated cost J(x(0)) is finite and upper and lower
bounded by solutions to the Hamilton-Jacobi inequalities:

P30 P(f(50) - Fe)< —w(x)  UBD-T ®)

V>0, V/(x.0)— V3> —w(x)  LB,D-T ©

7o) >0, < —wx)  UBCT (10)
dav

V(x) =0, 2 V0> —wx)  LBCT an

for all xe X and 8¢ ©. LB denotes lower bound, while UB denotes upper bound.
Next, define L, L: X x ®—> R

L0 = Mf(x,0)— P(x)  UB,D-T (12)
L(x,6)= Wf(x,0))— V)  LB,D-T (13)
L(x,6) =‘g Cf (%, 6) UB,C-T (14)
L(x,6) =%/(x)f(x, 0) LB,C-T (15)

A sufficient condition for existence of a performance bound is now that there exist
matrices P, P,,..., Py (upper bound) or P,, P,,..., P (lower bound) such that the
corresponding inequalities

7x)>0 L(x,6)< —w(x) UB (16)

V(x)=20 L(x,60) > —w(x) LB a7
are feasible for all xe X and 0e®.

Theorem 1 (Upper bound) Let X be u compact and connected set. Suppose (8) (discrete-
time) or (10) (continuous-time) holds for all x e X and 0 € ©. Define X by

EfedX

X={xeX

(x) < inf V(C)} (18)

Then for all parameter trajectories 6(1) € ©. and x(0) e X = X, J(x(0)) < F(x(0)).

Proof. The result follows since w(x) = 0 together with (8) or (10) implies that X is an
invariant set.

Theorem 2 (Lower bound) Let X be a compact and connected set. Suppose (9) (discrete-
time) or (11) (continuous-time) holds for all xe X and 0 ®. Then for all parameter
trajectories O(f) € © and state trajectories with initial conditions x(0) such that x(t)e X
Jor dll 1, V(x(0)) < J(x(0)).

For initial conditions x(0) when both bounds are well definied we have
V(x(0)) < J(x(0)) < H(x(0)).




18 Tor A. Johansen

3.2. Stability
If w(x) = y#(x) for some constant 0 <y <1 (discrete-time) or y >0 (continuous

time), 7 is a Lyapunov function that ensures exponential stability, see also Johansen
(2000):

Theorem 3 (Exponential stability) Let X be a compact and connected set. Suppose (8)
(discrete-time) or (10) (continuous-time) holds with w(x) =yV(x) and V(x) = ¢, | x|13
for all xe X and 0€®, where 0 <y < | (discrete-time) or y > 0 (continuous time), and
¢, > 0. Then for all parameter trajectories 0(f) € ® and initial conditions xOeXcX,
the equilibrium point is uniformly exponentially stable, i.e.

1|x(t)||z-~<-.\/EEIIJC‘IO)IIz(l—?)‘“r2 D-T (19
Ix(@) 12 < \/ZEIIJC(O)J]z-‘?—ﬂz CT (20)

where ¢, = max,;6(P).

For time-invariant 6(f) € ©, if w is such that the system is zero-state observarable
(Lin and Byrnes 1995), existence of ¥ ensures asymptotic stability with region of
attraction X.

Theorem 4 (Asymptotic stability) Let X be a compact and connected set, and suppose
6(1) € ® is time-invariant. Suppose (8) (discrete-time) or (10) (continuous-time) holds
with V(x)= ¢, | x| 2 for all xe X and 6€®, where 0 <y <1 (discrete-time) or y >0
(continuous time), and ¢, > 0. Moreover, assume the system is zero-state observable, i.e.
for any trajectory x(1) € X, w(x(1)) =0 for all t implies x(t) =0 for all t. Then for initial
conditions x(0)e X c X, the equilibrium point is asymptoticially stable.

Proof. Consider the continuous-time case. Note that ¥(x)>c,| x| is radially
unbounded, and stability follows from

& < —wx) <0 @n

Let S = {xe X|w(x) = 0}. Zero-state observability implies that the only solution that
stays in Sis x(f) = 0 for all 2. Thus, by LaSalle’s invariance principle, e.g. Khalil (1992),
x(f)—0 as t - oo. The discrete-time case is similar.

3.3. Linear parameterization

Notice that L is in general a non-linear function of x and 6, but a linear function
of the parameters of ¥ (the elements of the matrices P,, P,, ..., Py). In other words,
it can be represented in the form L(x, 6) = 5"I(x, 6) where the function I: X x © - R™
does not depend on the parameter vector peR™ defined by p=(P},
pt2  pinm p2i p22 PpwmT and PI* is the (j, k)-element of the P; matrix.
This parameter vector has m= Nn? elements, and the function / can be derived
from (3) and (4). Furthermore, V has a similar linear parametric representation
V(x) = pTv(x) where the function v: X — R™ can be derived easily from (3) and (4).
Hence, the condition (16)-(17) can be written as linear inequalities in the parameters p:

——
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PTv(x) >0 Tix,0) < —w(x) UB (22)

P
pv)=0  plx,0)>—-wx) LB (23)

for all xe X and #e®, where the functions and parameters involved in the lower
bound are defined in an analogous manner. The constraints (22) or (23) are state- and
parameter-dependent which implies that there is an infinite number of them. This
leads to a so-called semi-infinite programming problem, e.g. Tanaka et al. (1988) or
Polak (1997). In section 4.3, finite discretizations of the state and parameter spaces
are introduced in order to reduce this infinite number of linear inequalities to a finite
number of linear inequalities at the cost of an approximation. The effect of this
approximation is analysed in section 4 and related to some characteristic parameters
of the system and performance bound parameterization.

3.4. Convex objective functions and constraints

The linear inequalities (22) or (23) characterize a convex subset (a polyhedron) of
the parameter space R™ of ¥ or V. Assuming this set is non-empty (a performance
bound exists), then even for very simple parameterizations of ¥4 (i.e. small N) there
will exist an infinite number of performance bounds. Additional objectives may thus
be specified in order to find a performance bound with some desirable properties, for
example a simplest bound, least conservative bound or largest region of definition or
attraction. This can be acheived within this framework by specifying a convex objective
function that should be minimized subject to the constraints (22) or (23). Below,
we will formulate linear and quadratic objective functions corresponding to these
objectives. They can be selected individually or combined in a multi-objective optimiza-
tion when appropriate.

3.4.1. Simple function objective The objective of finding the simplest possible function
characterizing the performance bound can be formulated as follows. With the selected
parameterization ¥y, it is natural to think of the set of quadratic functions as the
simplest possible ones, corresponding to a constant function P,i.e. P, = P, =... = Py.
Hence, a natural objective would be to seek matrices P,, P,, ..., Py that are as similar
as possible. Mathematically, this is captured by the convex quadratic objective

N N n n
)= 3 lZ Y Y (P —PYVW, (24)
i=11=1j=1k=1

where W; ;> 0 is some weight that in the simplest case is equal to one for all (i, /), but
may in general be tuned to reflect the topology of the basis-functions.

3.4.2. Minimal upper bound and maximal lower bound The average value of the upper
performance bound ¥ over X x © is minimized by minimizing

d(p) = j L(x, 0)s(x)dxdO (25)
=@

i.e. the linear objective ¢(5) = p’¢ where & = [ y o (l(x, 0) + w(x))s(x)dxdf and s(x) > 0
is some weighting function, for example s(x) = 1/(¢+ || x||3) where £ >0 is a small
parameter. This also corresponds to minimizing the average decay rate when ¥ is a
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Lyapunov function. Maximization of the lower bound in achieved by changing the
sign of (25), i.e. minimizing the linear function

dp)=— ,[ L(x, O)s(x)dxdb (26)
xxe

3.4.3. Region of definition objective and constraints Suppose we impose the following
linear constraints

pv(x)=q forallxeX—X*
px)<q forallxeX”

g=0

where X? < X* < X. The motivation is that V is enforced to have a level curve V(x) = ¢
in X* — X° which means that the performance bound (or Lyapunov function) is valid
for all initial conditions x(0) e X*. The regions X“ and X can be defined freely. The
region of definition can be maximized by letting X — X* and X® — X“ become small.
If X* and X® have simple geometries such as balls or hyper-rectangles, this can be
implemented easily by a line search for the maximum size of X“ and X when X is
kept fixed.

3.4.4. Average decay rate objective and constraints The objective of determining the
Lyapunov function with the least conservative bound on the average decay rate can
be formulated as maximization of y > 0, which can be implemented as a simple line
search subject to feasibility of the constraints (22) or (23). Specification of a fixed y
is similar to a constraint on the acceptable minimum decay rate predicted by the
Lyapunov function.

4. Discretization
4.1. Finite linear inequalities

The state- and parameter-dependent linear inequalities (22) or (23) define an
infinite number of linear inequalities in the finite number of parameters p. A finite
number of linear inequalities results from discretization of the compact sets X and ®

by defining finite sets X and ©, containing points where the following constraints on
the parameters p are imposed for some o> 1and ¢, =0

P zoc|xl3 pTlx0) < —ow(x)  UB 27
prvx)zocxlz  pix,0) = —aw(x) LB (28)

for all (x, ) € X9 x ®,. These inequalities are stacked in matrices as follows
Pp=é and Ip<—aW UB 29)
Vp=é and Ipz—aW LB (30)

where the rows of ¥ corresponds to v"(x) for each xe X3, the elements of éare ¢, || x || %
for each xe X9, the rows of L corresponds to /"(x,6) for each (x,0)e X x ©,,
and the rows of W corresponds to w(x) for each (x, #)e X? x ©,. Additional linear
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constraints may be due to other objectives, such as a required region of definition as
discussed in section 3.4. Hence, (29) or (30) define a finite number of linear constraints
in a finite number of variables, which are computationally feasible using convex linear
or quadratic programming,

4.2. Computational Procedure

e Input data: The system function f, performance objective function w, a compact
and connected set of states X that contains the origin as an interior equilibrium
point, and a compact parameter set ©.

e Step 1: Select a set of basis functions p,, p,, ..., py for ;.

® Step 2: Select finite sets X; < X and ®, = © and possibly a minimum region of
definition X c X*c X.

e Step 3: Solve the convex optimization problem of determining a feasible (or
maximum) & > o, > | while minimizing one of the linear or quadratic objectives
described in section 3.4 subject to the linear constraints (29) or (30) with respect
to g or p (there may be additional constraints if a minium region of definition
is specified). I no solution was found, go to either Step 1 or Step 2.

e Step 4: Generate ‘sufficiently dense’ but finite checking sets X, < X and ©, c ©.

e Step 5: If L(x,6) < —w(x) (upper bound) or L(x,0)> —w(x) (lower bound)
does not hold on X x ®, or ¥(x) =0 (or ¥(x) > 0) does not hold on X,, go to
either Step 1 or Step 2.

e Output data: If the procedure terminates, a performance bound has been found.

4.3. Discretization theory

Important information about the required granularity of design and checking
pointsin the state and parameter spaces can be determined by analyzing the complexity
of fover different regions in the state subset X. The idea is that if fis a highly nonlinear
function in some regions of the state or parameter spaces, a useful heuristic may be
to allow large variations in P in these regions, and to increase the density of design
and checking points in these regions. Define the checking set granularity function &:
Xx@O®-R

ex,0)= inf (O, 6)—( Ol (3D

EDeX x8,
The usefulness of the above mentioned heuristic can be seen theoretically by assuming
w, f, p; and dp,/dx to be bounded and locally Lipschitz functions in the sense that for

every (xy,01), (x2,0,) € By, 0)((x, 6)) there exist bounded functions L,: X—R, L,:
Xx©®—-R,L,:X—Rand L, : X— R that satisfy

Iwx,) —wlx) | < Lo(x) |1 x; — %2 |2
1/ (xy, 01) —f(x2,02) 2 < Lf(x, 0) |Gy, 01) — (x3,6,) I,
[pi(x1) — piCe) | S L, (X) | %y — x5 ||,

dp;
dx

dp;

E(xZ)

SLy(x)x; —x,1l;
2

xy)—
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and define

d,
Kl (x) B) = Sup({,{)eﬂgum{lx.ﬂ” “f(é’ C) ” 2s KZ (x) = Snge Beyxylx) £ (‘f)

E]
2

P = max;6(P,), and X0 = Supzex llx —&ll2-

Theorem 5 Suppose X and © are compact sets, w, f, p; and dp,/dx are bounded and
locally Lipschitz functions. Assume there exists an o.> 1 such that for all (£,0)e X, x ©,

LEOD<—am(() UB (32)

L&)z —om(d) LB (33)
and the checking grid granularity &(x, 0) is so fine that
oy )

0 <@-1) 5O (34)

where in the continuous-time case
Q(x, 0) = aL,(x) + X°P(2 + NK,(x)X°)L(x, 0)
+ K, (x, )P(NXO(L, () X° + 2K5(x) + 2L, (x)) + 2)
and in the discrete-time case
O(x, 0) = aL,,(x) + A X°)?P(X° + K, (x, )L /(x, 6))
Then for all xe X and 6e®
L(x,0)< —w(x) UB (35)
L(x,0)> —w(x) LB (36)

Proof. The proof is similar to Johansen (2000). Consider first the upper bound:

Lx,0) = L(E, ) + (L(x, 0) — L(E, D)) (37
< —ow(§) + (L(x,6) — L(£, {)) (3%)
= —w(x) — (@ — Dw(x) + o(w(x) —w(0)) + (L(x,0) — L, () (39)
< — w(x) — (e — Dw(x) + Q(x, )e(x, ) (40)

where the last inequality can be verified from the definition of Q(x,0) using the
Schwarz inequality and the Lipschitz properties. The result now follows due to (34).
The lower bound can be verified in a completely analogous manner.

5. Example
Consider the discrete-time double integrator

A—l : 3—0 4
“\o 1)’ _(9) “D

1

—
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where the nominal value of the paramter ¢ = 1. The control objective is defined by the
cost function

ZL(x(0)) = ZO Kx(2), u(£)) (42)
Kx,u)=x} + u? (43)
and the constraints
—05<x,<05 (44)
—1< u<l (45)

If x, is interpreted as position, x, as speed and u as force, the objective is to control
the position under constraints on the speed and force. Using the suboptimal con-
strained LQR method proposed in Johansen et al. (2000), a piecewise linear static
state feedback u = g(x) is designed, cf. Figure 1. The locally linear function near the
origin corresponds to the linear feedback u = Kx of the classical unconstrained LQ
controller, while the remaining linear pieces are introduced to avoid violating the
constraints. The closed loop system is now

x(t+ 1) = Ax + Bg(x) (46)
Note that due to continuity of the piecewise linear function g, the right-hand-side of

(46) defines a continuous piecewise linear function that satisfy the Lipschitz property.
The closed loop system performance is

oo

Jx(0)) = Y, w(x(1) 47

t=0

w(x) = I(x, g(x)) = x7 + g*(x) (48)

Figure 1. Suboptimal piecewise linear controller surface.
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Figure 2. Upper and lower nominal performance bounds.

Assuming 6 = 1 (nominal case), upper and lower bounds ¥ and ¥ on J are computed
using the procedure described above, and is illustrate in Figure 2. In this case the
function is parameterized by 16 normalized Gaussian basis-functions (Johansen 2000),
leading to 64 frec parameters defining ¥ and V. 441 grid points are used, leading to
LP/QP problems with 64 variables and between 882323 inequalities, which typically
requires computation times of a few seconds. Results for three different initial condi-
tions, with 8 =1 are given in Table 1.

The system is zero-state observable (since x,(f) =0 for all ¢ is possible only if
x,(f) =0 for all 7). Hence, the upper bound on the performance ¥ defines a Lyapunov
function, cf. Figure 3. Note, however, that ¥ is optimized to minimize the average
upper bound rather than maximize the region of attraction. Taking w(x) =y ¥(x) and
maximizing the region of attraction and the decay rate y > 0 we achieve the alternative
Lyapunov function V(x) in Figure 3, lower part, with y =0.125. It is observed that
this Lyapunov function estimates a significantly larger region of attraction, as expected.
Next, consider that case when 6(r) €[0.75, 1.25] is uncertain and possibly time-varying.
In this case, upper and lower bounds on the performance are computed using the same
parameterization and procedure as above. The performance bounds are illustrated in
Figure 4. Comparing with the nominal case, Figure 2, we observe that due to the

Table 1. Comparison of actual cost with computer upper and lower
bounds, with no uncertainty taken into account.

x(0) V(x(0)) Fx(0)) P(x(0))
(0.3, 0.3)T 0.3308 0.9084 1.0110
(—2,0)" 10.3974 11.8521 16.2764

G, D) 71.4624 77.3501 89.5806
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Figure 3. Upper; Level curves for the Lyapunov function derived from upper nominal perfor-

mance bound. Lower: Level curves for the Lyapunov function computed by maximizing regionu

of attraction for the nominal system. The arrows indicate the flow of the system, i.e. the direction
of the vector x(z + 1) — x(f). Note that the vectors are normalized to have the same length.

uncertainty, the gap between the upper and lower bounds is significantly larger than
in the nominal case. A Lyapunov function computed by explicitly maximizing the
region of attraction subject to the uncertain parameter 6 is given in Figure 5.

6. Concluding Remarks

A computational approach to analysis of performance and stability of a general
class of nonlinear systems is considered. It is shown that useful smooth non-quadratic
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Figure5. Levelcurves for the Lyapunov function computed by maximizing region of attraction

(uncertain system). The arrows indicate the flow of the system, i.e. the direction of the vector

x(# + 1) — (1), for the nominal and extreme values of the parameters 6¢{0.75,1,1.25}. Note
that the vectors are normalized to have the same length.
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performance bounds and Lyapunov functions can be computed using semi-infinite
linear or quadratic programming. The methods studied are inherently prone to the
curse of dimensionality and will certainly not be feasible for large-scale problems.
However, there are many complex nonlinear dynamical systems with a total of 2-4
states and uncertain parameters where the methods can be readily applied. In order
to extend the applicability to problems with perhaps up to 5-7 states and parameters
it is of interest to investigate numerical methods to be used to efficiently solve the LP/
QP. In particular, multi-resolution methods seems to be a promising alternative.
Moreover, in order to reduce the computational complexity of the optimization prob-
lem it would also be useful to study methods for automatically generating non-uniform
grids of discretization points.
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