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Stabilization of Stable Manifold of Upright Position of the Spherical
Pendulum

H. LUDVIGSEN}], A. SHIRTAEVY} and O. EGELAND+
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The stabilization problem of the upright position of the sherical pendulum is treated
in detail. This problem is reduced to the stabilization of the stable manifold Q,, of
the upright position of the unforced spherical pendulum. It is shown that for any
smooth feedback control derived by the speed-gradient algorithm with the objective
to stabilize Q) the closed loop system has a limit cycle T, which does not belong
to the desired attractor Q. It is shown that I' is hyperbolic.

1. Introduction

This paper is devoted to the further investigation connected with the problem of
the swinging up of the spherical pendulum. The controlled spherical pendulum is a
passive nonlinear system with two equilibrium points. These points, in contrast to the
equilibriums of the planar pendulum, are only relative equilibriums. The vector field
of the unforced spherical pendulum does not have any linear approximations in these
points. The last property does not depend on the parametrization and is caused by
the topological properties of the sphere.

The unforced spherical pendulum has two independent first integrals (the total
energy H, and the generalized moment p,, corresponding to rotation in the horizontal
plane) and is a completely integrable nonlinear system. The upright position belongs
to the invariant subset of the phase space defined by H, = 2mgl and p, = 0, where m,
[ are mass and length of the pendulum; g is the acceleration of gravity. By proposition
2.1 this subset is a stable manifold Q,, of the upright position. Thus the most natural
way to solve the upright stabilization problem is trying to stabilize by the speed-
gradient-energy algorithm, see [3,4], the compact set of the cylindrical phase space
defined by H, = 2mgl, p, =0.

As theorem 3.1 in part (a) states, see also [8], for any smooth feedback control
derived by the speed gradient algorithm with the objective to stabilize Q,, the closed
loop system will always possess a cycle I, which does not belong to the desired
attractor Q). Following these arguments a natural questions arise: When is this cycle
unstable? or When does this cycle correspond to the exceptional set of initial conditions,
for which the trajectory of the closed loop system does not tend to Q.,?

The present paper complements the results of [8] and answers these questions. It
is shown that I" is always hyperbolic and, moreover, the dimensions of the stable and
unstable manifolds of the cycle I are defined, see theorem 3.1 part (c).

The arguments developed in the paper can be applied, to attack a slightly more
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general problem: to stabilize a given invariant set of the unforced spherical pendulum
corresponding to H,= H*, p,=p*, where H* >0, p*eR", see the results in this
direction for the general nonlinear systems in [4, 5, 6, 7]. As it is shown in proposition
2.4 the closed loop system, with any feedback control providing the strict passivity,
will have at least one cycle outside the desired attractor for any constants H*, p*
mentioned above. But for the case p* # 0 the number of these exceptional cycles cannot
be found analytically. By this reason the main results cope only with H* =2mgl,
p* =0, having in mind the possibility to extend them for /H* > 0, p* = 0.

The paper is organized as follows. In section 2 the important auxiliary results are
collected. Section 3 contains the main results of the paper. The results of the computer
simulation are presented in section 4. All proofs are brought to section 5 and in section
6 some conclusions are given.

2. Preliminaries and Problem Statement

The motions of the controlled spherical pendulum are described by the Euler-
Lagrange equations

d 04(q,9) _9%(g,9)

22000 _2G) g (g, g, 0
d 0£(9,9) _
dr aqz - gz(q7 4)“2 ? (2)

where ¢ =1(¢:,4,), §=1(4,,4,) are the coordinates and velocities of the spherical
pendulum; #(g, ) is the Lagrangian function

1 .
L(q,9) = 5ml *[(¢1)* + (g2)* sin” g, ] —mgl(1 — cos g, ); 3
m, [ are mass and length of the pendulum, g is the acceleration of gravity; g,(g, §),

£,(g, §) are scalar smooth functions; u,, u, are control functions; see Figure 1.
It is convenient to choose as a phase space for the spherical pendulum the cylin-

)

Figure 1. The spherical pendulum.
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drical space with a sphere of radius / in the base, i.e. 0< ¢, <7, 0<g, <2n. The
unforced system (1), (2) is completely integrable. Indeed, the functions

Ho(g,9) = %mfz[(qn)z +(g2)* sin® g, ] + mgl(1 — cos ¢,) )

(9, 9) = mF@z) sin? q: ®

are the independent first integrals of the unforced spherical pendulum with
Hy(g,4) >0, po(g, g) € R". Take the constants H* > 0, p* e R* and introduce the scalar
function ¥ and the dummy output y =(y,, y,)" of the system (1), (2) as follows

Vg ) =" THo(g ) — H*T + 2 [0 —p*T’. ©
Yi=r1"4:81(4.9) [Holg, 9) — H*), )
Y2=82(4,9)(r1-G2-[Ho(g,9) — H*] +72-[polq. 9) — P*]), (7.2)

where 7, r, are some positive constants. The functions ¥, y possess an important
property: the controlled spherical pendulum (1), (2) with output function y is a passive
system with nonnegative storage function ¥, see definition 2.4 [1]. In particular, the
derivative of the function V along the solution of the system (1), (2) takes the form

d
;1,‘ (g, q) =y, + youi;.

The analysis of the qualitative behaviour of the closed loop system solutions with
the feedback regulator formed by the speed-gradient algorithm is essentially based on
the detailed investigation of the motions of the unforced spherical pendulum. The rest
of this section is devoted to such important auxiliary results.

Proposition 2.1 ([8]) Denote A, as the maximal set of the trajectories (q,q) of the
unforced spherical pendulum such that the point p of the cylindrical phase space is an w-
limit point of any motion from A, Then

(1) the set A, 0,0,0)={(0,0,0,0)}, i.e. there is no other trajectory except the point
(0,0,0,0), for which this equilibritam is its w-limit point;
(2) the set Ay, o.0.0) has the form

Ar.0.0.00= {41(8), 42, 4:(1), 0),
where q, is any constant from [0, 2n); the pair §,(), §,(1)) is a solution of the equation
mi?*-§,(f) = — mgl - sin §,(¢)
subjected to the constraint

1
2

Moreover, the upright position is a unigue w-limit point of any trajectory from A, o, 0,0,

mi?q,(0)* + mgl(1 — cos ¢,()) = 2mgl, Vt=0.

Consider the motion (g, §) of the unforced spherical pendulum with ¢, # 0. By
proposition 2.1 this trajectory does not belong to the sets Ao, 0.0)> Agn, 0, 0,0y There-
fore the smooth function g, (¢) is strictly bounded away from zero and 7. By this reason
the trajectory (g, ¢) satisfies the equations
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gy = sin gy -cos g (¢2) —%'Siﬂfh, (8)
s _n.C084; . . 9
3 sin ¢, 4q1°42, ©)

which is well defined for all 1 > 0.

Theorem 2.2 Suppose that the smooth functions g, g, are not identically equal to zero
along any solution of the unforced spherical pendulum. Let (q,q) be any motion of the
unforced spherical pendulum consistent with y(t) =0 jor all t = 0, where y is defined by
(7.1), (7.2). Then only the following cases are possible:

(1) Ho(g(0), 4(1) = H*, po(a(1), 4(D)) = p*;

) (g(.4() = (7,0,0,0) or (¢(2), 4(1)) = (0, 0,0,0), p* = 0;

(3) (4(0), §(1)) = (g%, g% - t mod 2x, 0, g% ), where the constants ¥, 3 satisfy the equation

ry g% [Holg, §) — Hx] + 12 [po(d, §) —p*1 =0

(10)
(g5)7-cos gt =4
Remark 2.3 The assumptions of theorem 2.2 imposed on the function g,, g, are not

restrictive. In particular, they are satisfied by g, =¢;, g, = ¢;, where ¢, ¢, are any
nonzero constants,

Proposition 2.4 (Existence of cycle) Let p*eR' and H*, r,, r, be any positive constants,
then equations (10) has at least one solution. If p* =0 and H*, vy, r, any positive
constants then equations (10) has exactly one solution. If, in addition, H* = 2mgl the

solution is
1 g AF g ra ra g
)2 _ 35 _272 &_272 124825 |,
@) 2[( ] r,)+\f(3l r,) + rllil

1
* = arccos g .
“ (f (qz‘f)

Remark 2.5 Strictly speaking there are two solutions (+¢%), but they represent the
same set in the phase space. When p* # 0 this symmetri is lost, and there might be
several solutions.

Remark 2.6 It follows from the proof of proposition 2.4 that for p* # 0 the solvability
of the equations (10) is equivalent to the solvability of some 6th order equation. Thus
even the definition of the number of soultions of (10) with an arbitrary admissible
parameters H* > 0, p* e R! encounters substantial computational problems and can-
not be solved analytically.

3. Main Results
Let ¢4(z), ¢,(z) be any scalar smooth functions satisfying the inequalities
£11z12 < {z01(2), 202(2)} <&5lz|?, VzeR', an
where &£, > ¢, > 0, and take the regulator of the form

O —
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Uy =—,(31), t;=—(y2) a12)

The following theorem reflects the qualitative behaviour of the solutions of the closed
loop system (1), (2), (12) with the objective to stabilize the stable manifold of the upright
position of the unforced spherical pendulum, which by proposition 2.1 coincides with
the compact set Vo = {(g,9): Ho(g, §) = 2mgl, po(q, g) = 0}.

Theorem 3.1 Let H* =2mgl, p* =0 and r,, v, be any positive constants, and the
Sunctions g,, g, not identically equal to zero along any solution of the unforced spherical
pendulum. Let ¢, ¢, be any scalar smooth functions satisfying the inequalities (11).
Define the regulator by relation (12). Then

(@) for any solution (q,q) of the closed loop system, which does not coincide with the
equilibrium points (0, 0,0,0), (7,0,0, 0), only the following alternatives are possible:
(1) lim,., ; o, Ho(g(?), ¢(1)) = H*, lim,_, , o, po(q(1), ¢()) =0
(2) the trajectory (4(t), ¢(?)) tends as t - + oo to the unigue for any ry >0, r, >0

cycle T of the unforced pendulum defined by motion (g%, g% - tmod 2z ,0, g%),
where the constants ¥, ¢ satisfy equation (10),

(b) for any solution (q(t), 4(1)) of the closed loop system (1), (2), (12), which corresponds
to the case (al), the unstable equilibrium point (g, §) = (n,0,0,0) of the unforced
spherical pendulum is a relative w-limit point, i.e. Ve > 0 there exists a time sequence
{Tu}a=T, T,— + 00, such that |g(T,) — n| <&, |¢:(T,)| <e.

(¢) If the smooth functions g,, g, are constants on I, then for any functions ¢, ¢,,
satisfying (11), the limit cycle I is unstable. Moreover, the dimension of the stable
manifold of T" is equal to 2 and the dimension of the unstable manifold of T is equal
to3.

Remark 3.2 Theorem 3.1 does not guarantee that even in the best case, when the
solution (g, §) of the closed loop system (1), (2), (12) tends to the set V, = {(g, §):
H(g,q) =2mgl, pi(q,§) = 0}, the trajectory (g, ¢) will be in some relative neighbour-
hood of the upper equilibrium point for all sufficiently large moments of time. But
this trajectory will be an infinite number of times in any relative neighbourhood of
the upright position, see also the results of the computer simulations. Moreover, it is
possible to show that the w-limit set of the closed loop system (1), (2), (12) is always
larger than just the upright position, see [9].

Remark 3.3 The functions g,, g, will be constants on I if, for example, they do not
depend on ¢, Le. gl'(qls q2 ‘jl ’qZ) = gi(qls q"l& qz)s i= -l’ 2.

Remark 3.4 Thus the detailed analysis of the closed loop system (1), (2) with the
feedback control (12) derived from the standard speed-gradient algorithm, shows that
for almost all initial conditions the solution of the closed loop system will tend to the
desired compact attractor, stable manifold of the upright position. Moreover, the set
of the exceptional initial conditions, corresponding to the trajectories with undesirable
behaviour (winding to the limit cycle I), is only a 2-dimensional smooth manifold.

Remark 3.5 It is worth to recall that for an autonomous system the sum of the
dimensions of the stable and unstable manifolds of the cycle is equal to n + 1, where
n is the dimension of the phase space. The phase space of the spherical pendulum
equals to 4, hence the sum of the dimensions of the stable and unstable manifolds of
Tis 5.
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The proof of theorem 3.1 in parts (a) and (b) can be found in [8]. The main
contribution of the paper is concentrated in part (c) of theorem 3.1, which states the
unstability of I'. The proof of this statement is technical and consists of several
standard steps, which are formulated in the form of the separated propositions.

Proposition 3.6 Let H* =2mgl, p* =0 and ¢,, ¢, be any smooth functions. Then
the linear approximation of the closed loop system (1), (2), (12) around the cycle
I' =(q%,¢% - tmod 2n,0, g¥), where g%, g are defined by (10), has the form

Xy 0 0 l 0 Xy

d|x| |0 0 O 1] x,
dr | x, o, 0 o, o3 || x5
Xa 1 0 B2 Bsdlxs
where
= —(g3)*sin® gf,

. %32 . gin g%
oy = — g3(gt. gt - 1mod 21,0, %) - $:(0) -, [%'E o g +cosq?)],

o3 =2-4¢3-sin g} -cos g7,

2qg*, g% -t mod 27,0, g%) ;
Br= —&aldi Q#@)”%(O)‘?‘ﬁ'["1'%4"’2‘005 Qf],

e
= 9.g%.99%

ﬁ 2 qz Si.n q’T,

By = —g3(g*. q% -t mod 27,0,4%) - $,(0) -1y - (¢3)*.

The assumption that the functions g,, g, are constant on I' results in that the
linear system (13) with periodic coefficients becomes time-invariant. This simplifies
the stability analysis of the cycle I'. Indeed, it is sufficient only to define the eigenvalues
of the constant matrix involved in (13).

Proposition 3.7 The characteristic polynomial p(2) of the linear system (13) has the form
PR =222 +yy- 22 4y, 2+ p3), )
where

71 =283 6,00)-r, - (¢¥)ig2- $1(0) - r; - sin® g%,

v2=(g%¥)*-[1+3-cos® ¢t —(g:-82)* $:1(0) ¢(0) - ry -1y sin’® g¥),

73 =83 $2(0)(g3)*-[r1-(¢%)*- (1 +3-cos? g}) +4-r; - cos® gf],
where g; = g{q7.q% - tmod2n,0,43),i=1, 2.

Proposition 3.8 Suppose that the smooth functions ¢,, ¢, satisfy (11) and r,, r, are
positive constants. Then the set R of the roots of the polynomial p(2), defined by (14), is

@={Os _)*09’11s11}s (15)
where io >0 and Re A, > 0.
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Figure 2. System states with initial conditions on the cycle.

4. Computer simulations

Simulating the unstable cycle is difficult. Computational roundoff errors sum up
very fast, and the system will leave the set. An example of this behaviour is shown in
Figures 2 and 3, where after 80 seconds the controller has taken the system to
the stable energy level. In this simulation (the simulations were made in Matlab 5/
SIMULINK, a trademark of The MathWorks, Inc.) the parameters were:

m=1,l=g=98L,ri=r=1,g,=g=1¢»=y
Using proposition 2.4, we find that the cycle is given by (G(s),4(t) =
(n/3,0.5-1,0,0.5). The initial values used in the simulation were (g(0),4(0))=
(n/3,0,0,0.5). Figure 5 shows how an error ¢,(0) = /3 — ¢ affects the response. The
error used in the simulation were £ = 0.000001.
Notice that I1, and p, are not going monotonically to the final values.

5. Appendix

Proof of theorem 2.2 It is easy to see that if the trajectory (g, §) of the unforced
spherical pendulum is one of the equilibrium points or along this motion Hy(g, §) = H*
and po(g, §) = p*, then this motion is consistent with y(£) = 0, y,(f) =0 for all ¢ >0,
where y,, y, are defined by (7.1), (7.2).

Suppose that (g, §) is some different trajectory of the unforced spherical pendulum
which satisfies y;(f) =0, y,(#) =0 for all £ > 0. The functions Hy(q, §), po(q. ) are the
conserved quantities of the unforced spherical pendulum, hence they are equal to the
constants Hy(g(0), ¢(0)), po(g(0), ¢(0)) for all = 0.
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101 -

Figure 3. Control signal with initial conditions on the cycle.

Let po(g(0), 4(0)) # p* and Hy(g(0), §(0)) = H*, then the relation y,(1)=0, >0,
implies, see (7.2), that g,(g(?), 4(1)) - [Po(g(), ¢(£))] =0, t = 0. But assumption g,(g, §)
is not identically equal to zero along any motion of the unforced spherical pendulum.
Thus po(g(0), 4(0)) = p*.

Let Hy(g(0), 4(0)) # H*, then the relation y,(f) =0, t >0, implies, see (7.2), that
4(0)- g4(q(2), g(1)) =0, t = 0. By assumption g,(¢, §) is not identically equal to zero
along any motion of the unforced spherical pendulum, then ¢(f)=0, =0, ie.
q,(¢) = const. By virtue (8) the last relation means that

sin ¢, '(COS 91 (¢2)° —%) =0.

By our temporary assumption g, # 0, «, hence the value of §,(7) is uniquely up to the
sign defined and ¢,(7) is a constant.

Thus if (g, ¢) is any motion of the unforced spherical pendulum consistent with
y:1(0 =0, y,() =0, t =0, and (g,¢) does not satisfy the conditions (1) and (2) of
theorem 2.2, then this motion has the form ¢,(¢) = g%, ¢.(¢) = ¢% - ¢, where the constants
q%, g% are the solution of the equations (10). [ ]

Proof of proposition 2.4 Substitute H, and p, from (4) and (5). and use (g(¢),
4(1) = (g1,9, 1.0, g,) to write (10) as
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Figure 4. Integral values with initial conditions on the cycle.

rlt}z(;mfzqi(l —cos? g;) + mgl(1 —cos g4) -H*)

+ ry(mi?g,(1 —cos? ;) —p*) =0

[ ==

cosq,=‘%q

bk

Substituting for cos ¢,, multiplying and collecting terms gives
fla2) ="+ ol + gl —r g — rap*qi — S g’ — ramg? =0

In order to have a solution for g,,cosq, <l<>g3>(g/l). Evaluating f(g,) in
(g%)*= (gl
2
fgh) = —r H* 5 —rap*(gs)* =0
Noting that f(c0) > 0, there is at least one solution if f(g%) < 0. If p* > 0 the solution
is with g, > + sgrt(gl/l), and for p* <0, g, < — sgri(gll).
Let
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Figure 5. System states with error in the initial condition.

and rewrite the equation in these variables as
SN =1 +2+ ~g—H)A2—35%). - 2/3*=0

The requirement for a solution is now that A > g. Since f(g) = —2Hg* <0, f(c0) >0
there exists at least one solution for 1. Given a general third order polynomial

A=A =2A)A = 23) =23 — Qg + Ay + A3)2% + (g + Mads + A323) 2504274
(lls A-Z ] j'3 > 0)'

Comparing with f(2) and noting that f(0) <0, the posibilities are that there is exactly
one positive (real) solution, or all three solutions have positive real part (at least
one real). The linear term in f{4) is negative, and rules out the last posibility. For
H* =2mgl <> H =28, one solution for the third order equation is 2= — & and it
reduses to

S =@GA+8) (A% + (2F — 381 —278)
The positive root for the second order equation is

z=%[(3§~2f)+ JBz— 277 + 87

This proves proposition 2.4. |

.
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Proof of proposition 3.6 Let ¢,, ¢, be any smooth scalar functions and let the feedback
control be defined by (12). Then by smoothness and implicit function theorem there
exists sufficiently small neighbourhood of the cycle I such that for any solution of the
closed loop system (1), (2), (12) with initial conditions from this neighbourhood will
be strictly bounded away the download and upright equilibriums within the time
interval [0, 27]. Hence any solution of the closed loop system with such choosen initial
condition will be well defined on [0, 271] by the equations

0, ]
q1 g,
d| 4 . . L
il g |~ snaicos i@ =8 sing, ~E8%D 4.5) [ = Fa.00. (16)
42 COS g3 £2(9,9)
_2. - .
sing, mi*-sin?gq, 92(32)

where y,, y, are defined by (7.1), (7.2). The linearization of the system (16) about the
cycle I is a linear 27-periodic system

9 sty = ST IMOAIE0GE) w1y — p(e)x(e), Ae) = AQr+1).

&g,9)
The straightforward computations lead to the system (13) with the coefficients
mentioned in proposition 3.6. |

Proof of proposition 3.7 Follows from the straightforward computations of the
coefficients of the characteristic polynomial p(J). [ ]

Proof of proposition 3.8 In the origin the polynomial p,(2) = p(1)/1 is equal to y; and,
hence, positive. Then p,(4) has at least one negative real root, i.e.

PAD) =+ 20) (A2 +py- 2+ ps),

Where Aq, p;, p, are real constants, 1o > 0, p, > 0. Suppose temporarily that p,(2) is
a stable polynomial. This assumption implies that the coefficients y,, y,, ¥, see (14),
satisfy the following conditions

1>0, 72>0, 93>0, y;-y,—73>0.
Calculating the value of y, -y, — 75, we have
V1'72—7a=—a- By —f-sin? g -(1+3-cos? gf) — -4 -« cos’q <0,  (17)
ra

where o = (g,)?- $,(0)-r; >0, f=(g;)* $,(0)-r, > 0. This shows that p,(1) cannot
be stable polynomial. The same arguments show that p,(1) cannot have pure imaginary
roots. Indeed, in this case p,(4) should have the form

i) = (A+ Ao} - (A% + ps).
and, in particular, y, - y, — 73 = 0. But this contradicts with (17). Therefore,
PN =0+ 20) (A—2)-(A—1y)
and Re 4, > 0. [ |




14 H. Ludvigsen, A. Shiriaev and O. Egeland

6. Conclusions

The paper deals with the stabilization of the stable manifold Q, of the upright
position of the unforced spherical pendulum. This spesial problem is naturally arised
from the problem of the stabilization of the upright position of the spherical pendulum,
see [8]. It was shown that, for any smooth feedback control derived from the speed
gradient method with the objective to render the compact set £, being attractive, the
closed loop system has a cycle I', which lies outside Q.

It was shown, and this is the main contribution of the paper, that the cycle I" is
hyperbolic. Moreover, the dimensions of the stable and unstable manifolds of I" were
obtained.
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