MODELING, IDENTIFICATION AND CONTROL, 2000, voL. 21, No. 4, 241-253
doi:10.4173/mic.2000.4.3

Catalyst Deactivation: Control Relevance of Model Assumptions
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Two principles for describing catalyst deactivation are discussed, one based on the
deactivation mechanism, the other based on the activity and catalyst age distribu-
tion. When the model is based upon activity decay, it is common to use a mean
activity developed from the steady-state residence time distribution. We compare
control-relevant properties of such an approach with those of a model based upon
the deactivation mechanism. Using a continuous stirred tank reactor as an example,
we show that the mechanistic approach and the population balance approach lead
to identical models. However, common additional assumptions used for activity-
based models lead 10 model properties that may deviate considerably from the
correct one.

1. Introduction

The loss of activity is an important problem in catalysis (Fogler, 1992). Many
mechanisms have been proposed to explain the observed deactivation (Butt and
Petersen, 1988). Fogler (1992) divides catalyst deactivation into three categories: deacti-
vation by sintering, deactivation by coking or fouling, and deactivation by poisoning.
Levenspiel (1972) gives a similar classification of deactivation mechanisms. Other
mechanisms that occur in commercial reactors are, e.g., deactivation by volatilization
or leaching, deactivation by thermal excursions, and changes in catalyst oxidation state.

The two main principles for modeling catalyst deactivation, are (i) to describe the
mechanisms that take place and model them accordingly, and (ii) to model the catalyst
activity and how it changes with the catalyst age, combined with a population/residence
time balance (RTD) for the catalyst. Usually, both the activity of the catalyst and the
RTD of the reactor are found experimentally. The idea of activity and population
balance is relatively mature (Danckwerts, 1953; Hulbert and Katz, 1964; Himmelblau
and Bischoff, 1968), and it is usually assumed that the catalyst age distribution is in
steady-state (Franks, 1972; Petersen and Pacheco, 1984; Sarkar and Gupta, 1992,
1993). However, much less information is available on its use under unsteady-state
conditions (Fernandez-Sempere et al., 1995).

The aim of this study is to gain insight into control relevant consequences of
common assumptions used in activity-based models of catalyst deactivation. The
article is organized as follows. In Section 2, a comparison is given on the two principles
of describing the dynamics of catalyst deactivation, and the consequences of various
assumptions are discussed. In Section 3, the models are analyzed with regards to time
response, time constants, and controller synthesis. Finally, the results are summarized,
and some conclusions are given.
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2. Descriptions of catalyst deactivation
2.1. The example process

Consider a process where component A is moved by an inert transport material
into the reactor at a molar flow rate W, ;. The molar content of component A in the
tank is denoted n,. The molar efflux of component A from the reactor is denoted
Wa .- Traditionally, catalysts are described as speeding up the reaction without being
consumed, which can be expressed as A + K — B + K. The molar rate of generation
of component A through the catalyzed reaction is denoted W, ,; here W,,.<0.

In addition to component A (and the transport carrier), a catalyst K flows into
the reactor with mass flow rate wy ;. The catalyst in the reactor consists of active
catalyst K, and deactivated catalyst K, with accumulated masses my, and my,,
respectively. The total mass of accumulated catalyst is denoted my = my_+my,. The
catalyst entering the reactor through wy ; is assumed to be active, and as long as the
catalyst resides in the reactor, it is transformed into deactivated catalyst: K, — K. The
mass based effluxes of the catalysts are wy_, Wiger and wy . =wy .+ wg, .. The
mass based rate of production of active catalyst is denoted W, .r» With wg_ <0,

For this process, assume that we are not interested in product B per se; this may
be the case when, e.g., A is a pollutant that is reduced to an unharmful product B.

2.2. Deactivation mechanism model

Material balances for components 4 and K, are expressed by

dn

d;\‘z Wai=Wat+ Wy, 1)
dmy .,

dr = lll,l(,..l — Wk,.e + Wi, (2)

Here, the influxes will typically be given by upstream conditions. The effluxes will be
given by the hydraulic flow through the reactor, while the reaction rates will be given
by the reaction mechanisms that take place.

The ideas used in this article can be applied to any flow pattern. To illustrate the
ideas, we choose to apply them to a well mixed reactor. In that case, the effluxes are
given by

1)

WA, e = q:_; (3)
m

e, = G @)

where ¢, is the volumetric efflux from the reactor, and ¥ is the reactor volume.
If the reactions A + K,— B + K, and K, — K, are elementary reactions (Leven-
spiel, 1972; Laidler, 1987), the rates of generation of A and K, are
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and the complete continuous stirred tank reactor (CSTR) model, with wg, ; = wg ;,
becomes

dn, n M
TA W, — gk 5
dr A e % 0 me_ ( )
dmy, my,
- df -= ”'!K,i — e v - kdea (6)

In practice, heterogeneous catalysts are rarely either active or deactivated; usually
they exhibit a site activity distribution, e.g. (Zucchini and Cecchin, 1983). In this case,
it may be necessary to formulate a mass balance for every site activity. Good model
predictions can, however, still be achieved assuming a single-site activity, e.g. in modern
polymerization reactors with homogeneous catalysts (Soares and Hamielec, 1996).

2.3. Activity based model

Often, it is convenient to not directly distinguish between active catalyst (K,) and
deactivated catalyst (K,); instead the catalyst is considered as a single component
K with accumulated mass my where a part of it, /i, participates in the reaction
A + K — B + K. The concept of activity is used to describe to what degree the catalyst
actually is active or deactivated. The fraction of my participating in the reaction 1s
called the (average) activity a:
a= g lmy
The activity varies with the age o« of the catalyst. Let p denote the age distribution of
total catalyst mass g such that

Mg = J~ p (@) dot
0

and where lim,_; px =0 denotes fresh catalyst that has still not been deactivated,
while lim,_, _ s is the catalyst fraction of infinite age—which should be zero. Then
the activity distribution a of a catalyst at age « is defined as a(c) £ dmy/dmy, which
yields

Wy = ‘[“3 alo) pg (o) dot (N

In order to describe the catalyzed reaction using activity, the mole balance for
component A is unchanged, (equation (1)). However, this time, the reaction rate W,
in equation (1) depends on n, and the amount # of active catalyst.

In practice, the activity distribution a(a) and the age distribution g (o) are often
found experimentally, and /i is given by equation (7). However it is also possible to
compute afx) and p(e) theoretically from deactivation mechanisms and flow patterns
in the reactor. For the analysis in this paper, the latter approach is chosen.

First we find the age distribution. The population balance for catalyst mass in the
reactor at age o is:

dpge .
= We - — H 8
df Wi Wk, e ( )
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where Wy ; and Wy . are influx and efflux rates of catalyst K at age o, respectively,
defined by [y ;da=wy ; and [y .do=wy . Furthermore, when only fresh
catalyst is assumed to enter the reactor,

Wy i = 00wy ;
where &(2) is Dirac’s é distribution. Also, since i is a function of both time and age,
dpx(t,0) _Oux dt | dpg do
dt ot dt Jdo dt

where the speed of aging by definition is unity, da/ds = 1. Thus, the population balance
becomes

op ug . "
r?-;_( + H = 5('1)“"1(,5 — Wk, e &)

The boundary condition for this equation is

Iim p(t,0) =0 (10)
a—0~
which means that there can not be catalyst with negative age.
In the case of a well mixed reactor, W, . is given by equation (3). For the population
balance in equation (9),

[

‘T,K.e = qt_V (I ])
If in addition the reaction rate A + K — B + K is an elementary reaction, then
WA.r = - knn_li.\”_ﬁ(
and the material balance for A, equation (1), becomes
dn, n M
——=Wai—q.2—ko—=m 12
d Ad e % 07 M (12)

Next, we find the activity distribution a(). If the deactivation follows K, — K as
an elementary reaction in a CSTR, the activity distribution will be

a(e) =e k= (13)

which follows from equation (6) modified to be a batch reactor, where time develops
with the same speed as age.

The model of the CSTR with elementary reactions now consists of equations. (7),
(9), (10), (11), (12) and (13) .

If the deactivation is more complicated than the elementary reaction K, — K4 and/
or if the reactor is not well mixed, then a different age distribution a(x) will be found
experimentally.

2.4. Overview of models and common assumptions

Model 1: Mechanistic description To illustrate the two modeling principles and prepare
models for analysis of dynamic properties, we assume that the reactor is well mixed,
and that the reactions that take place are elementary reactions.

Model 1 is based upon the mechanistic description given by equations (5) and (6).
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Model 2: Activity and full population balance The full population balance is given by
equation (9). It is quite common to normalize i (o) and Wy () to Ho) = py () my
and E(a) = Wy  (o)/wg ., respectively, where [¢° I(e)da =1 and {§° E(¢)da = 1. Here,
K«) is the internal-age distribution of the reactor while E(a) is the exit-age distribution
of the reactor (or the residence time distribution, RTD). When these expressions for
g and W . are inserted into equation (9), the full population balance leads to

2 [50) — 1)k (B — 1) e (9
1

y
t du Mg i

(=]

In the case of a well mixed reactor, the population balance is

A 7} .
ﬂ+ﬂ—_b(a)wx_i—qc“—; (15)

ot Jo

If we choose to use a normalized population balance, assuming well mixedness leads
to E(x) = (o) and

1 A .-
T+ T — o) — s (16)
or oo My

where uy(2) is found as discussed above. Himmelblau and Bischoff (1968) developed
this normalized population balance directly.

In the sequel, it is useful to introduce the hydraulic time constant 6, which we
define to be

ga ¥ _mx (17
de Wk
When @ is a constant with respect to time, Laplace transforming equation (15) with
respect to time leads to an ordinary differential equation (ODE) in « (e.g., ref 15),
which can be solved to yield pug(o;s). Next, mig(s) is found from equations (7) and (13).
Finally, inverse Laplace transforming the resulting expression #ig(s) yields

A e — (g + 16)rig (18)
dt ’
which together with
a8 110 |, (19)
dr ! v

constitutes model 2. Note that models 1 and 2 are equivalent except for the notation

for the active catalyst mass, hence these models are collectively referred to as models
1-2.

Model 3: Activity and steady-state catalyst mass In their classic article, Hulburt and
Katz (1964) developed a description of how the RTD evolves to its steady-state value.
On the basis of a population balance, they found that the number of particles of age
¢, denoted f{(t,e), must satisfy the following equation (using our notation):

E‘;f+ Q - l [NS(ex) — £ (20)

ot da 0O
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where {§° fda = N. Utilizing My fIN, = px where My is the molar mass of the catalyst
and N, i1s Avogradro’s number, the model in equation (20) can be changed to
describe g :
Outey O L () — ] 1)
ot doo 0
which differs from equation (15). The reason for this discrepancy is that Hulburt and
Katz assumed a ‘fixed inventory of N particles’, in other words that the accumulated
mass of catalyst in Vis in steady-state. With this assumption and assuming a CSTR, we
find wy _; = gomy/V = my 10, which relates Hulburt and Katz’s model to equation (15).
With constant hydraulic time constant 6, using the Laplace transform on equation
(21) leads to

dri 1 _
d—fK =gk~ (ka + 1107y (22)
Assuming a CSTR, mass balance for m becomes
dg:“ =Wy ;— :}mK (23)

We let model 3 consist of equations (19), (22) and (23).

Because Hulburt and Katz assumed my = constant =my /0 = wy ;, model 3 can
actually be reduced to model 2. For comparison, we prefer to still keep the somewhat
artificial model 3.

Model 4: Activity and steady-state RTD In introductory reaction engineering books
(Levenspiel, 1972; Fogler, 1992), it is assumed that the age distribution is in steady-
state, i.e., d1/0t =0, or duk /0t = 0 in equation (15). This assumption leads, via Laplace
transformation, to the following model for i :

iy =M+ 1/6 (24)
d
which inserted into equation (19) gives
dn, ko mgl0
—L2=W, - 4+ 10 25
dt At ( V ky+ 116 A (25)

Model 4 thus consists of equations (23) and (25).

Model 5: Activity with both catalyst mass and RTD in steady-state If we add the
assumption that my is a constant in model 4, then the total model reduces to

dn, ko wg;
- =W, .—| =- L 4+ 1/0 26
dr A (V ko + 10 )”" (26)

which we name model 5.

3. Analysis of the models
3.1. Comparison of time responses

Based upon the assumption that ¥/g = constant = 0, we developed five finite dimen-
sional dynamic models for the CSTR system with catalyst deactivation in section 2.
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Table 1. Parameters and initial values (f = 0) used in the simulations.

Parameter Value Dimension ~ Comment

0=Vig 1 time hydraulic time constant, time invariant

V 1 volume reactor volume

kq see T 1/time 1/k, = catalyst deactivation time constant

L Oi(Lik,) dimensionless; 7e{0.1. 1, 10, 100}

ko 1 1/(time - mass) preexponential factor for reaction A + K—B +K
Wi ; 1-2 mass/time unit step from1to2att=1

Wy 1 mol/time constant in the simulations

g ss mass in the steady state: my = wy ;0

Hig ss mass in the steady state: Hig = ni /(1 + 1)

My, s mass in the steady state: my_, = iy

na ss mol in the steady state: n, = Wy /kotfix/ V + 110)

@I the table cells, ss indicates that the initial value is chosen to be the steady value for wy ;= 1.

Models 1, 2, and 4 are of order 2, model 3 is of order 3, and model 5 is of order 1.
Thus, not all of the models can simultaneously be equivalent. Although model 1 and
model 2 appear to be different, they are in fact identical; my and 77 play identical roles.

Models 1-5 can be compared via simulation to give a qualitative picture of the
differences among the models. In doing so, it is useful to introduce the dimensionless
ratio © between the hydraulic time constant 6 and the time constant for catalyst
deactivation, 1/k,:

0

Fay

Ta e k40 27
This ratio () is the Damkohler number for the catalyst deactivation. When 7 is small,
the catalyst deactivates slowly compared to the hydraulic time constant (the common
case). When 1 is large, the catalyst deactivates relatively fast.

The simulations show the time evolution of n, resulting from a step change in the
catalyst feed rate wy ;. Table 1 lists the parameters, initial values, etc., which were used
in the simulations (ss = steady-state). Figure 1 shows the responses r,(f) for each of
the five models.

For the case in which 1 = 0.1, the responses of models 1-2 and model 4 in Figure
1 are virtually indistinguishable. When 7 = 100 > 1, the responses of models 1-2 and
model 5 are indistinguishable; the same holds true for model 3 and model 4. These
results indicate that in the desired case of a relatively slow catalyst deactivation, the
common assumption of steady-state RTD is relatively good; i.e. in the case of time
response, models 1-2 =~ model 4 when t is ‘small’. However, when 7 =1, there is a
marked difference between models 1-2 and model 4.

3.2. Comparison of eigenvalues

The dynamic characteristics of the models can be compared using the eigenvalues
of the linearized models. Let A4; denote the Jacobian of the vector field of model j,
with respect to its state. The eigenvalues of 4; are displayed in Table 2. It is of particular
interest to study the eigenvalues as t is small or large; these eigenvalues are also
displayed in Table 2.

Table 2 shows that three distinct eigenvalues occur in the various models. When 1
is small (t —0, the desired case), these three eigenvalues collapse to two different
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Case t=0.1 Case 1=1
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Figure . Number of moles #, as a function of time for 1e{0.1, 1, 10, 100}.

Table 2. Eigenvalues for the Jacobians (4 ) of the Models (j) at Steady State®

eigenvalue 4 lim__ 24 lim A A,_, A, Ag A,
o (-_P'an I——{:—‘:HJK‘i + I:‘(J) - (k—; Owy ;4 l.-'()) — 118 X X X X
—(1+ )0 —1/0 - X X

—1/0 — 110 — /0 X X

“If a specific eigenvalue belongs to Aj, this is marked by x.

eigenvalues, while when 7is large (t — o0), a single eigenvalue dominates (the eigenvalue
at — oo indicates a mode that reaches steady-state infinitely fast).

When 7 is small, models 1-2 and model 4 share dominating eigenvalues, while
model 5 has one eigenvalue and model 3 three eigenvalues. This is consistent with the
simulations for t=0.1 in Figure 1. When 1 is large, models 1-2 and model 5 share
eigenvalues, while models 3 and 4 share eigenvalues. This is consistent with the
simulations for 7= 100 in Figure 1.

As Table 2 shows, the assumption of steady-state RTD applied in model 4, intro-
duces a change in one of the eigenvalues of models 1-2, while the other eigenvalue is
unchanged: Eigenvalue 4, _, = — (1 + 1)/ is changed into 1, = — 1/0. It is of interest
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Figure 2. Polar plots of transfer functions n,(s)/ —wy (s) for ze{0.1, 1, 10, 100}, using
frequency we[107?, 10%] as a parameter. For @ = 10?, the phase-amplitude pair for models 1-2
is marked with O, while for model 4 the pair is marked with x.

to have a measure of the relative change in the dynamics caused by the steady-state
RTD assumption; we choose to measure the relative change ¢, in time constant |1/4 |

1174 5] — [1Ag |
|1/, 5l

&

Hence, for 7 = 0.1, the relative change &y is 10%, while when = = 1.0, & is 100%.

3.3. Comparison of transfer functions

It is of interest to compare the models with respect to controller synthesis. The
four different models are linearized around their respective operating points at ¢ =0
as listed in Table 1, yielding a linear description of form % = Ax + Bu, y = Cx, where
u 1s the deviation of wy ; from its steady-state value at t =0, and y is the deviation of
n, from its steady-state value at = 0. Matrix A equals the Jacobians A4; discussed in
section 3.2. Because the steady-state gain from wy ; to n, is negative, we study transfer
functions A(s) = —C(sI-A) 'B. With s=jw(j2 J_—Ll) and parameter
we[1071,107 %], the amplitude of /(s) (in decibels) can be plotted as a function of
the phase of /(s) (in degrees). The results are shown in Figure 2 for the cases in which
te{ 0.1, 1,10, 100}.

As seen from Figure 2, at high frequencies the phases of the models approach
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— 90 x model order. Although the polar plots of the transfer functions for models
1-2 and model 4 are almost indistinguishable at T = 1, there is a marked difference in
their time responses as indicated in Figure 1. While the time responses for models 3
and 4 appear to be almost identical at 7 = 100 in Figure 1, their transfer functions are
equal only at low frequencies.

Figure 2 shows that the shape of the polar plots of models 1-2 and model 4 are
almost indistinguishable unless © becomes relatively large (z = 10); to distinguish them
their phase-amplitude pair at @ = 10* are marked with O (models 1-2) and x (model
4). From a control point of view, it is the shape of the polar plot that determines the
stability of the controlled system. This has the important consequence that assuming
steady-state RTD may have relatively little impact on the stability margins of a
controlled system for manipulating », via wy ;. What will be changed, though, is the
bandwidth of the closed loop system: this is seen by the way the polar plot for model
4 is stretched relative to the polar plot for models 1-2 when 7 increases, see the point
on the polar curves where w = 10* in Figure 2.

4. Discussion and conclusions

We have studied two different principles for modeling catalyst deactivation. Several
simplifying assumptions are common to all models in this study, and it is relatively
straightforward to relax most of them. To remove the CSTR assumption, it is necessary
to introduce a distributed parameter model of the flow pattern. If the deactivation
mechanism is more complicated/non-elementary, the relevant modifications must be
introduced. If product from the reactor is refluxed to the inlet, it is necessary to modify
the models to allow for deactivated catalyst in the feed. If a site activity distribution
1s important, the sites can be considered belonging to different catalysts, each with a
single-site activity. The common assumptions were chosen to highlight the various
aspects of additional assumptions. Five dynamic models were developed. Model
I (second-order model) was based upon a mechanistic description of the catalyst
deactivation, while models 2-5 were based upon a catalyst activity/RTD principle with
various levels of additional assumptions.

In model 2, it was assumed that the hydraulic time constant of the system was
constant; the resulting model is identical to model 1. Model 3 (third-order model) was
based upon the classical dynamic population balance model/RTD in Hulburt and
Katz (1964) but did not take advantage of their assumption of a constant accumulated
catalyst mass. If this additional assumption is applied to model 3, then this model
becomes identical to models 1 and 2 for a CSTR, which is interesting. To arrive at
model 4 (second-order model), model 2 was restricted with the assumption of a steady-
state RTD. Finally, in model 5 (first-order model), both constant accumulated catalyst
mass and steady-state RTD were assumed.

Models 1-2 represents a relatively complete dynamic model under the common
assumptions, while model 4 represents a widespread additional assumption. Thus,
special emphasis is put on comparing models 1-2 and model 4. An important para-
meter in the study is the catalyst Damkohler number 7, which is the ratio between the
hydraulic time constant 0 and the time constant of catalyst deactivation 1/k,. When t
is small (r < 1), the catalyst remains active for many residence times of the reactant.
This is a common case in practice, and the catalyst is often fixed within the reactor.
When 7 is large (> 1), the catalyst will decay in fractions of the reactant residence
time. This case will only be acceptable when the catalyst is inexpensive compared to
the product.
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It is shown that when 7 —0 (no catalyst deactivation), models 1-2 and model 4
become identical. As the catalyst deactivation becomes more pronounced (7 increases
towards unity), models 1-2 and model 4 show more and more differing time responses.
[tis shown that the relative change &; in one time constant of models 1-2 by introducing
the assumptions leading to model 4, is given by &; = z. Thus, when 1 = 0. 1, the relative
change in the time constant of model 4 is er=10%. With =1, this change is
e = 100%.

An interesting result from the study is that introducing a steady-state RTD assump-
tion appears to be less critical when it comes to stability margins in a feedback system:
In spite of the sensitivity of 7 in the time constant as discussed above, the shape of the
transfer function in a polar diagram does not change much until 7 is rather large. This
indicates that by basing the control design on the assumptions of model 4, the predicted
stability margins of the resulting closed loop system may not be too far away from
the observed stability margins with models 1-2 being ‘reality’. However, a different
bandwidth will be achieved in practice, than what is predicted by assuming steady-
state RTD.

The insight gained from the common and additional assumptions will carry over
to more general catalyst deactivation problems: When the time constants of catalyst
decay approaches other time constants in the system, it may be necessary to include
the dynamics of the catalyst decay in the model. Often, a steady-state RTD is employed
just like in model 4, without considering the justification of this assumption (Franks,
1972; Sarkar and Gupta, 1992, 1993).
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Nomenclature
Flow rates

The following general nomenclature is used for flow rates: volumetric flow rate is
denoted g, mass flow rate is denoted w, and molar flow rate is denoted W.

Romarn symbols

a, a = actvity of the catalyst, function of age « and average activity
Ay -, A5, A4, As = Jacobian of the vector field of: models 1-2 and 3-5
A, B, C = matrices in dynamic, linearized system

Ca» €a i = Concentration of component A in the reactor and in the feed [mol/volume]
E(0) = exit-age distribution [1/time]

J{t,0) = number of particles of age «, at time 1

h(s) = transfer function from wy ; to ¢,

(o) = internal-age distribution [1/time]

J=+-1

k4 = rate constant: catalyst deactivation [1/time]

ko = rate constant: reaction A + K - B + K [volume/(mass - time)]

K, K,, K, = catalyst, active catalyst and deactivated catalyst

my, My = accumulated mass of K and effective catalyst mass [mass]
my,, Mg, = accumulated mass of K, and K, [mass]

My = molar mass of the catalyst [mass/mol]
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na, g = no. of accumulated moles in reactor: of A and of B [mol]

N, N = Avogadro’s number and number of (catalyst) particles in reactor

g. = volumetric efflux from the reactor [volume/time]

s = variable representing time for Laplace transformed quantities

{ = time [time]

V = volume of reactor [volume]

Wk e» Wi_; = mass flow rate of catalyst: efflux and influx [mass/time]

WK, .e» Wk,,r = Mass rate of active catalyst: efflux and generation by reaction [mass/time]

Wy i(a), Wy (o) =mass flow rate of the catalyst of age a: in the output and input
[mass/time?]

Wa e, Wa.; = molar rate of A: flow in the output and input [mol/time]

W,.. = molar rate of generation of A by reaction [mol/time]

W,_.(o) = molar rate of reaction of A with catalyst of age « [mol/time?]

Greek symbols

o, = age in reactor [time]

d(et) = Dirac’s é function

gr = elative difference between changed time constants in 4, _, and 4,

Ay —, A4 =changed eigenvalues of 4, _, and A, [I/time]

pix(c) = mass of catalyst that has stayed a time « in the reactor [k do = my [mass/
time]

6 = hydraulic time constant and 6 = V'/g when ¢ is constant [time]

7 = ratio 0/(1/k,) = k40 and the catalyst Damkohler number

o = frequency [H/time]

Abbreviations

CSTR = continuous stirred tank reactor
RTD = residence time distribution
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