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Convergence Properties of an Extended Least Squares (ELS) Variant*

R. HENRIKSENTY
Keywords: ELS methods. convergence analysis, udaptive control

By factorizing the A- and B-polynomials in an ARMAX model and filtering the
input/output data with the appropriate factors thereof, the parameters of the model
can be estimated in a decentralized fashion. This may improve the robustness of
some estimators significantly, e.g., when applied to very stiff systems. Earlier work
on these techniques has established both local and global properties for some LS,
IV, and PE variants. An ELS variant has, however, never been considered, and a
variant of this type is introduced. Local and global convergence properties of this
variant are analyzed.

1. Introduction

The extended least squares (ELS) method, also known as pseudolinear regression
(PLR) or the approximate maximum likelihood (ML) method is a well-known and
popular identification method which often is employed for ARMAX models. Consist-
ency and convergence properties of this method were derived quite some years ago,
and in addition to the usual consistency conditions which apply to all LS methods,
some additional conditions have to be satisfied in order to ensure convergence of the
parameters to the true values, These conditions put restrictions on the C-polynomial
in the ARMAX model, and for local convergence a sufficient condition is that C
be strictly positive real (in the appropriate frequency domain), whereas for global
convergence a sufficient condition is that [1/C — 1/2] be strictly positive real. the latter
condition naturally being more restrictive,

Parameter estimators based upon standard estimation techniques, viz. least squares
(LS) methods, instrumental variable (IV) methods, and prediction error (PE) methods,
or adaptive controllers based upon them, do occasionally have difficulties with systems
that have a somewhat ill-conditioned nature, e.g. stiff systems. By prefiltering the input/
output data in a specific way, utilizing factors of the A- and B-polynomials, and
estimating the parameters in a decoupled fashion it is, however, possible to improve
significantly the robustness of the estimators and of their ultimate use in control, i.e.
in controller design or as part of an adaptive controller.

Another application of these estimation techniques could be the following. Assume
the underlying process, described by an ARMAX model, contains a very slowly
varying part and or more rapidly changing one, the latter needing continuous updating.
By factorizing the polynomials in accordance with these two parts, the slowly varying
one, described by factors of the 4- and B-polynomials, can be ‘filtered out’ in order
to get a lower order model which often is more robust both for estimation purposes
and for controller design, see, e.g., Clary and Franklin (1984) where this concept is
utilized in connection with self-tuning control. Whenever the slowly changing model
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needs updating, the full model estimator can be employed using the schemes described
herein.

Previous papers on these methods have treated robustness and local convergence
properties, see Henriksen (1988, 1989) and Young et al. (1987), global convergence
properties, see Henriksen and Weyer (1990) and Weyer (1991), and accuracy aspects,
see Henriksen (1991, 1992). In those references it is shown that local convergence can
be guaranteed for all the variants (LS, IV, and PE) provided the 4- and B-polynomials
were factorized into coprime factors, whereas global convergence could be guaranteed
for the LS variants provided the same coprimeness conditions were satisfied.

In this paper an ELS variant based upon these techniques is introduced, and its
convergence properties are analyzed. Since the LS variants turned out to have the
same convergence properties as the ordinary LS method, provided the coprimeness

convergence properties as the ordinary ELS method. It turned out, however, that this
is not quite true.

The paper is organized as follows. In Section 2 a brief outline of the system and
the estimator is presented, including previous results concerning local and global
convergence properties, robustness and accuracy. Section 3 is devoted to analysis of
local and global convergence of the particular ELS variant presented herein. Conclud-
ing remarks are given in Section 4.

2. System description and previous results

We consider a system described by the ARMAX model
Alg™ ")y =Blg™ Yu+ Clg™ e, 0y

where y, is the output at time ¢, , is the input, whereas ¢, is (zero-mean) white noise.
The processes {u,} and {e,} are assumed to be independent, and the system assumed
to be asymptotically stable (the latter being assumed only for the purpose of simphfying
the analysis). The polynomials 4 and B are written in the following factorized
forms, viz.

Alg™ ) =A,(g" V420D (2)
B(g™")=Bi(q” )B,(g™") A3)
where
Alg ) =1+dig ' +dsq  +... +aq™™ i=1,2 4)
Blg H=1+bg ' +bg 2+... +bl,q™ i=1,2 (5)

and where by =1, b} =0. Moreover, n, + n, =n,, the degree of A(g~ 1), whereas
m, + m, = ny, the degree of B(g~'). The C-polynomial is assumed to be of the form

g =1+cg ' +eq7 +.. +ag™ 6)

Assuming for 2 moment the two polynomials 4,(¢™ ') and B,(g ') to be known,
we can define two new variables which are moving averages of respectively the output
and the input of the system, viz.

we=A¢" W n=Balg Du ()
and (1) thus takes the form

Ay (g™ Yw,=B(g" Dr,+ g™ e, ®)
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This model will in the sequel be referred to as model .#,.

Similarly, assuming for a moment the polynomials A4,(g~ ') and B,(¢™ ") to be
known, we can define two other variables which also are moving averages of respectively
the output and the input, viz.

z=Ay@q@ . s=Bg W )
and (1) in this case take the form
Ay(q" Nz,= Ba(g™ s, + Clg™ Ve, (10)

This model will in the sequel be referred to as model .#,.

Equations (9)—(12) form the basis for the estimators which have been treated in
the aforementioned papers and for the estimator considered herein. Note, however,
that estimation of the C-polynomial was never considered in the previous papers. This
implies that C(¢ ™ ')) = 1 had to be assumed for the LS variants, whereas C(g ™) # 1
could be allowed for the IV variants.

We rewrite model .#,, i.e. (10) in the form

W, = lf'r)xl;f -+ ry + €, (ll)
where
) Y > > T
Yp=[—w,_;—w,. 200 W F e Fe e gy €16 €y ] (12)
B=laia;...a} bib;...b) ¢ c;...c,]" (13)

An ELS estimator for model .#, will take the (batch) form

8 N B -1 N i J'\"‘ ) ) 1 1 f\:
B= [ Z Yoy { Z Yelw,—r) | = [}V l. A | |:\.f 2‘ Yo(w,— r[):|
B i i =1 Y=

1=1 r=1
(14

where we have to utilize
Ye=[—w_y... — WeemFi—ae o Ve E—1-- . & n(JT (15)
because the e-terms are unknown, but can be estimated from
£ =W, — gb;r,’;’ —r, (16)

Similarly, we can write model .#,, i.e. (12) in the form, assuming the C-polynomial
Llﬂd thC e-terms to be knO\\"l’l.

z=¢,0+[Clg" ) —1le,+e, (17)

where
djf _[_ Sp—1 T E-2e s T Eopy St Sy e St —my d (18}
0=[aia;...a,bib3. . . b2]" (19)

An ordinary LS estimator for model .#, now takes the (batch) form

N - ~
Z ‘.f’)i(i’);r:| |: Z. ';-'hr(zr . l(-(fj 1} E l]er)—l

| 1=1 r=1

I
|

N -1 N
= ;\ 2 ¢,¢T:| |;i 2. dlz.—[Clg 1)—‘1(’;)} (20)
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We could of course have chosen to estimate the C-polynomial with model .#,, but
the whole matter Is in this respect symmetric.

Now, the above estimators are both based on the assumption that factors in the
A- and B-polynomials are known. This is normally not true, i.e. generally we will have
to estimate both factors of the 4- and B-polynomials. In order to utilize the above, we
therefore have to calculate the moving averages of the input and the output by using
estimates of the appropriate factors, i.e., we calculate the moving averages as

wi(=w, ) =457y, rd=r(0)=B2(g" M, @1
z(=z (M) =4, "W,  s(=s(B)= B¢ Du, (2)

where
AgH=4,"5h)  BilgH=B.¢ "B (23)
A (g Y =A,(¢g75%0)  By(g"=By(g ") 24

Furthermore, the e-terms can be calculated from

e(=2(B,0) =w (&) —r(O)— i p (25)

where
V(= (B, 0)) =[— w1 (0)...r,— (D). .. 1 (B, 0)....& . (B, O)" (26)

Likewise, we will make use of
d(=bB)=[— 21D .- 501 B). . .50-my(BIT L@~ =Clg:h) @7

We now write down the expressions for the two estimators with the modifications
introduced above:

o
I

L v (B, Oy (;’3’,(5)—1 [ N Z V(B O) 11,(0)—r(-‘)‘)}—| (28)

r—]. =1

5_ ;V z (,b,(ﬁ)@'J}"(f})J |:;l\ Z b () iz —Cla ) — 11, !‘j)}j| (29)

Of course, in the form depicted above, constituting a set of implicit equations in the
unknowns f§ and 0, the common way to solve the system is to do it iteratively, i.e., to
implement the above as a bootstrap estimator. However, by doing a few approximations
we can write down the above equations in a recursive fashion which greatly simplifies
the computational effort.

In the above scheme, filtering of the input/output data and computation of the -
terms have to be carried out using the final values of the appropriate polynomials. In
a recursive scheme this would for all practical purposes be an impossible task to do.
We therefore introduce the following recursive approximation to the above.

Step 1
At time instant ¢ compute

=A,(g7 50,2y ro=Bayg 0=y )u, (30)
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: P ]

z=Ay g™ B0 =By %B-1) 31)
E=W— I — l:‘rf;r[}r— 1 (32)
Step 2
Compute
1 -
P'=P' 1+;{¢'f;¢»’;"""f 1:} (33)
¥ 1 L
ﬁz_ﬁf—l +'r'1)r llfh{“’:—?’:—'ﬁ:{ﬁ,—l} (34)
1
=0y +-{$¢ — Q1) (35)
0,= 0,1+ 0tz ~ 10 fu ) = Tl — $70,- ) (36)
Step 3

Replace (¥,.¢,) by (¥, ;.¢, . 1) using the values computed in (30) and (31), increase
t by 1, and return to Step 1.

In the above recursive scheme, note that we instead of (32) can compute &, from
two other alternative expressions, viz.

; L i Ty
":r::r_[(-‘(q_l;ﬁ:—l)_ l]'(:r_ @')rl Ui’ 1 =}If_[l\‘lz'j—(r'})l]][’;}r ! I (37)
-1
(34) and (36) can be written in the following simple forms, respectively,
b=+ 1P 0=0_,+ 079 (38)

Moreover, convergence of the above scheme can significantly be speeded up in the
following ways, (i) by moving (31) down immediately after (34) and changing the
expressions into

=g B s=Bi(qg5B) (39)
and (ii) by computing a new, and presumably improved, value of &, immediately after
(34) for use in the sequel, i.e. by recomputing it according to

&=w—y.f—r, (40)

In order to accommodate (36) to these modifications we have to replace C(g~*;f,_,)
by Clg™";B)-

We can write the scheme given by (30)-(36) in a more compact form as follows.

Define
B, P 0
=] R.= (41)
0, | 0 0,
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-_ Y, O 2 W, —r, 4
o ¢ L [P S 42

where we have introduced the simplified notation C_,=Cg ‘;ﬁ,_ 1 ). The scheme
can then be written in the form given below, omitting obvious details which are given
before.

Step 1
At time instant ¢ compute
1T/ $T 4T _ﬁ‘—l 1T 4T
g=w,—r—Y, by =y — [ ol i =y, —[¥ (r'!)f ]Kt—l (43)
=1
Step 2
Ro=Ro 1[I = R,,] (44)
K =K_+ :lr R MNL[p, — IR, ] (45)
Step 3

Replace IT, by I, ,, increase ¢ by 1, and return to Step 1.

The above scheme will be used in the convergence analysis which will be the topic
for the next section, but before we go into that some previous results about LS
(‘ordinary’, i.e. not extended), 1V, and PE estimators based upon the polynomial
factorization described herein are summarized in what follows.

Fact

The bootstrap LS, IV, and PE variants converge locally, and the LS variant converges
globally, if and only if the polynomials A,(q™ '), A,(g™ "), Bi(q™ '), and By(¢™ ') are all
mutually coprime.

As the stiffness of the system tends to infinity, local convergence of the bootstrap
LS, 1V, and PE variants tends to becoming instantaneous.

The accuracy of the bootstrap LS and IV variants, with input u, is the same as the
accuracy of the corresponcling ordinary LS and IV methods, respectively, for the reduced-
order models .# , and .# 5 with inputs By(g™ “u, and B,(q~ “u,, respectively.

3. Convergence analysis of the ELS variant

The convergence analysis, both locally and globally, will be based upon the ODE
approach introduced by Ljung (1977), see also Ljung (1987) or Ljung and Soderstrom
(1983). The associated differential equations to (44)-(45) have the form

‘ilr x(7) = R™1(0)f(k(1)) (46)
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4 R@) = Gix(r)) - R(¥) (47)
dt

where

o e T w,(0) = r,(0) — ¢ (1) 1
Joy=lim o 3, 2 [I I'(”L(m —[Clg™%;B) — e (k) — «f)?(/f)ﬂJJ

N-au N,

il b ill V(1) {w, (6) — r,(0) — ¥/ (<) B} ] } 48)
¢ (BHz(B) — [Clg™ ' B) — Neu() — ¢ (B0}

N
Go9 = lim 3" E[I,GITT (o)

N ] Ik 0
— Hém “lT Z L‘[Ur(’()u’r {I\) . } (4())
N-w N 5, 0 ¢(Pyb: (P)

For the sake of simplicity, assuming the processes involved to be ergodic (which, of
course, requires the assumption about the system being stable), the above expressions
simply become

M w s JrT : in
1) .—!-;‘[[ Y () ;‘(0) lr;(ﬁ) e (B} ) " I (50)
(-bt(.ﬁ){zx (ﬁ) T [((ff :ﬁ) - 1]“!(-’\3] - d)r (ﬁ)(]} il i
S 2 (V2 C B
G() = E[TL,()1T; (1)) b[ 5 m1 (51)

Now, assume sufficient conditions for the matrix R(1) to be invertible are given, e.g.,
that the input process is pe. of a sufficient order and that the coprimeness conditions
stated in the Fact are satisfied, see Henriksen and Weyer (1990). Let («*, R*) denote
a point of convergence for (46)—(47). It follows that

0 = (R*)™f(x*) = f(x*) =0 (52)
0 = G(x*) — R* = G(k*) = R* (53)

which shows what has to be satisfied in a possible convergence point.

Local Convergence Analysis

Linearizing (46)—(47) about (x*, R*) yields, where r = vec R,

d [K(T) — :c*] " 7= (&Y) ;}\{r (x*) 0 \ZH{T) — ;c“‘] (54)
1

dz | r(7) —r* & r(t) —r*
I

where the matrix N, is of no interest because it has no influence on the eigenvalues of
the system matrix. Local convergence, i.e., local stability about the convergence point,
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can therefore be determined from the stability of
£ [u0) — k%1 = GG — ¥ = L) — 7] (55)
where we have defined
G0 =250 L) =GN G() (56)

We want to investigate local convergence about the true parameter vector, so let

ﬁ(]"
.0
K" = [U"J (57)

denote this vector. Local convergence about the true parameter vector k° is thus
determined from the stability of the system

& k() — ] = L) — ) (58)
where
L) =666 G =L G) = BN (59)
We are now ready to present what follows.

Theorem (Local convergence of the ELS variant)
The ELS variant converges locally if the polynomial C(q 1. B0, ie., the true C-
polynomial, is strictly positive real for e[| — n, 7).

Proof. A quite detailed proof is found in the Appendix.
O
Readers familiar with the ELS method will recognize this as exactly the same
sufficient condition for local convergence of the ordinary ELS method, see Soderstrém
and Stoica (1989), Wellstead and Zarrop (1991).

Global Convergence Analysis

Now, having established that a sufficient condition for local stability of the ELS
variant presented herein is exactly the same as for local stability of the ordinary ELS
estimator (provided, of course, that the coprimeness conditions given before are
satisfied),we will now to try to establish sufficient conditions for global stability.

First, consider the Lyapunov function

V(r(1), R(1)) = [1(1) — K°T"R(T)[K() — K°] (60)

which is the one used in Sdderstrém and Stoica (1989) for global analysis of the
ordinary ELS method. Straightforward differentiation of ¥ with respect to 7 yields

4 VK0, R@) = T(N) — K] + [600) — KT )
+ [k(7) — K°)[G(x(2)) — R(7)][x(z) — x°] (61)
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where

‘ w(0) —r(0) — YT ()P ﬂ
K) = E| T,(x
i [ ( )Lr(ﬁJ—[C{q“;ﬁ)—1]!:,(:»') ST (P

_ 1--[ W, (0w, (0) — 1 (0) — ¥/ (xc) ) ]: F[w;(x)e.oc)} -
LBz (B) —[Cq™ k) — e ) — dT B0 | | d(Be(x)

Since none of the components of (k) and ¢,(f) are correlated with e, we can write

f(x) as
Y brf;(’f)[flf(?\'}' é’!]
J=F [d), (Bla) — e,J &3

Now, trying the approach used in Séderstrom and Stoica (1989) we obtain
&(K) — &, = {y, — W/ () (1)} — Ly, — [d () (B2}
= — [ () (Dllx — &°1 = {lY ) (] — ! ()T (B (64)
For the ordinary ELS method the last term on the right-hand side is simply

[Cg™ 5 8%) — e(x) —e,] (65)
because all components of the regressors except the &~ and the e-components are
identical. This is certainly not true for our ELS variant because

Y (1) =[— 4207501 Bolg 500y .. £y (K). .. &, (K)] (66)
‘pfj.rl.(ﬁ) =[—A,(¢g” l;ﬁ)}’:— 1o —Ay(g” l;ﬁ)}’:—nzb'l{q li.ﬁ)ux 1---Bi(g™ 1?18)“: i)
(67)
whereas
Y (KO) =[—A2(g7 50—y - Bylg™ 0% 0 _y.. .,y .. €, ] (68)

G (B =[—A4:(q %=1 — A @ OV, Br (@™ 58—y, (69)

o Big B,

Thus, we do not from the above obtain a simple expression for g,(x) — ¢, (it is this

simple expression for & —e,, viz. & —e,= —[1/C°(g~ ")]e! [k — x°], which eventually

leads to the sufficient condition for global convergence of the ordinary ELS method),

and we have to conclude that the above approach does not lead to any sufficient

condition for global convergence of the particular ELS variant described herein.
Another Lyapunov function is now attempted, viz.

W(k, R) = E[e} (k)] (70)
which is the one that was used in Henriksen and Weyer (1990). We obtain

£ (k) (x)}i‘%" =—F (;;,(K-) :;— (h’):|R_ (%)

9 Y, R=E _,_
dt K

1

==& I:Sg(K) a5 ﬁ}[uﬂ"(ﬁ)@*}f(ﬁ)}ﬁ “Hw) (71)
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g [,
1) Luqb.(ﬁJ‘"( )] (72)

The right-hand side of (71) is not a quadratic form, so it cannot be concluded that it
is strictly negative (unless C(g~ *; )= 1).

From the above it follows that we have not succeeded in finding sufficient conditions
for global convergence of the ELS variant, and whether meaningful, although
restricted, conditions can be established for C(g~*; ) # 1 is an open question.

Now, finally, why did we not succeed in finding similar global convergence condi-
tions as for the ordinary ELS estimator, whereas the local convergence conditions
turned out to be the same? The answer to the first part follows from the form of the
two regressors, see (66)-(69). The components of these are not independent of the
parameters even if we disregard the s-components, whereas in the ordinary ELS
method the pertinent components actually are. The latter fact allows a fairly simple
expression for g{x) — ¢, to be established (something that failed in (64)), and this
subsequently leads to a meaningful sufficient condition for glebal convergence. The
answer to the second part of the question follows also from the form of the two
regressors, (66)—(69). Although the components depend upon the parameters it is a
fact that aside from the e-components all the other ones are /inear in the parameters.
Since local analysis involves differentiating the regressors with respect to the para-
meters, we thus end up with something which aside from the entries resulting from
the e-components is independent of the parameters, see (87) and (89). This latter fact
allows a fairly simple expression for dg,/0x” to be established which then subsequently
leads to the sufficient condition for local convergence derived herein.

where

4. Conclusion

The convergence properties of an ELS variant for ARMAX models based upon
factorizing the A- and B-polynomials and filtering the input/output data with appro-
priate factors of these polynomials have been analyzed. The ELS vanant is similar to
other estimators (of MK, IV and PE types) which have been analyzed in earlier papers
by Henriksen (1988, 1989), Henriksen and Weyer (1990), Weyer (1991). For local
convergence it turned out that the convergence properties were exactly the same if we
compare it with the ordinary ELS method, 1.e. (1) the C-polynomial has to be strictly
positive real (which also is an additional requirement for the ordinary ELS method
compared with the ordinary LS method), and (2) the factors of the A- and B-
polynomials have to be mutually coprime.

Iaving initially expected that similar properties for global convergence, when
comparing the ELS variant herein with the ordinary ELS method, could be established,
i.e., that the only additional requirement would be the coprimeness condition, the
analysis revealed that this is not true. Strictly positive realness of [1/C— 1/2] is not
sufficient to ensure global convergence, although this is sufficient for global conver-
gence of the ordinary ELS method.

In connection with the above it is worth mentioning that global convergence of the
variants analyzed in the papers by Henriksen and Weyer (1990), Weyer (1991) could
only be established for the LS variant, not for any of the I'V or PE variants. The reason
for the latter was partially similar to the one pointed out above, e.g., the regressors in
the IV variants depended upon the parameters.
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Appendix
Proof of the Local Convergence Theorem

The proof partially resembles proofs that can be found in Soderstrém and Stoica
(1989), Wellstead and Zarrop (1991), but the calculations involved are quite more
tedious. Stability of the system given by (58) will be determined by introducing the
following Lyapunov function

M(r(7)) = [w(z) — k°' G(k")[x(r) — 7] (73)
We find

"
V(h('f))—(— [a(r)—;\,“]) G(k™)r(z) — kO] + [r(7) — &°" ((hﬂ)( [x(z) !c”])

= [1(7) — TG (k) + G(k*)} [k(z) — °] (74)
where we first have to find an expression for

G(x°) = ”’m% (75)

The form of f(k) is given in (50), and omitting all arguments we write it simplified as

Yo fw, —r,— ¥, B}
=F 76
d [[¢dz, [C - 1}t — ¢ O}JJ .
We have
| Nt o, — r,— 7 B) b2, — 1 — W)
of . 0K _ oK
=E . + E . (77
" X1 {2, — [C— 1le— 676} bimog {2, — [C— 1]e, — $76)
E‘:\T oK’
Now,
w,(0) — r,(0) — ¥ () = &,(x) (78)
z(p) —[Cg LB — e (k) — ] (B0 = ,(k) (79)
and for k = k° we have
w (0°) — r,(0°) — Y (x°) B0 = £, (k%) = ¢, (80)
= (B%) — [Ag™ 5 8%) — 1]ed®) — &7 (BO)0°
=z,(f°) — [Clg~ % 8°) — 1le,— &7 (B°)B° = £, (1) = ¢, (81)

The first term on the right-hand side of (77) therefore vanishes at the point k° because
none of the components of i, and ¢, are correlated with e, the latter being white.
In the second right-hand term of (77) we have

=

d 0
ﬁ [w,—r]= P T[AzJ'} —Byu,]

CK

_[Um my nr}r"ly.I—Z"'yi'—nz —U_ g —Uy_g... —U m;_] (82)
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where 0, denotes a row k-vector containing cxactly &k zeros. Likewise,

é%ﬁrﬂ —HH— 1M0r[C—UM

Je
;I}"t—l,}": 2--- Vi ﬂlol’ﬂj, —&—1 —&-2--- & ntﬂnz mz] [C_l](qh (83)
Furthermore,
f'} lf, " ) {; E'r ] n m n,
Sl Bl=p 2 v +-ufqi, -ﬁTEE:+-w:[LH+n”+m(uz:mz* (84)

where [, denotes the k x k idcmily matrix whereas 0} denotes the / x k matrix contain-
ing solely zero elements. Likewise,

mm W¢+aﬂ—mm+awmmmmw1 (85)

Iulr{)ducing the following notations, in the form of two Hankel matrices,

Vi YVie1 " Vi—g+1 i, Uy 0 Uy g
Y{:(f) s .}‘i'.—.'l J.I-—Z - J’!l. q L.ﬁ(!) L Uy Uy o b H,_q
yl pt+l .}"f—p o },r—p—qi-l “I—p+1 ”E—p Tt Uy p—gt+2
(86)
we find
0:1 +my+n, Yﬁ}(f = 2) 0:112 ]
R Uni(t—2)
084
oy ax’
W, .
A T CE;_» »
oK
r".-‘:l\r
oe;,
- oK =)
(ny+my+n)x(ng+my+n,+n, +m,) (87)
I1 follows that
¢ 8 rol
B 1€ 112004y~ 1O, — Yot —imzee = Yeeny O]

+[h)l - ]][OHI+ml+r|‘.Ur:2”i—1Hl T Hi’—nz]

and we obtain

d e T T
(ﬁff]- I“‘l r— V!Tﬁ] | [C 1] (’:!K;l. R [Urrl +my+n, Qbfl] T [li'ffll {)nz imzl

=—K—u“*[“¢] (88)
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Furthermore,

_Cq): . |: - Y:f ('t N 2) U:?ZI 0::24' ng +ng

ﬂKT_ J!(n?. +n‘12) X (”l +n?l +”c+n2 +'n?2)

05 D22t —2) O v
(89)
which yields
_ad
N R T TLUNY R,
+ Bz[Un, Uy g Upeaenn Uy oy, 0.-:, + 4 m;]
and
a ~ % I . ’.].U | .I.O . agt 0 T
EF["I_L(’_ Jé-'!_&';[ ]_[lt‘ji' nzlsz_[(’_l]EKT [ ny !ml+ncqb|']
= G-~ “’ — Y7 ¢! (90)
Since we have
E=w,—r—YlB=z,—[C—1]g,— ¢T0 D
it follows from either of the above equations, i.e., (88) or (90),
g, ! de, T 41
Kff =i I( — I] T {tr'rj:l ¢'.rl ] (92)
which yields
c&, 1 7
KT g ]) ] )
and, particularly,
Jg . o 1 1Ty,.0 (p° 94
ST e )= —m})[% (%) ¢/ ()] (94)

From (77) and what follows thereafter we now have that

I (420« __17 T30y hT (0 -
Y (k") l ca 1;[(,][!,!, (") b, (f )]J

(r'r)f(ﬁ“) . L - E( ,BU ) IVI {Ku) ¢: (ﬁn )J:|

_I’J:(KU)] :|
= —FL ﬁ <Y dT (O] |- w° 95
uoﬁ,w% Py SULCREZR N

We define the scalar process

&f o E
(K" )=E
EKT( )

Y7 (<°) ¢ (B2)] - [w(z) — °] (96)

V=

e ) ﬁ”)
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and obtain

(‘f—t V((z)) = — E[v,- Cg~ 55 %), + Clg™ 580w, v] = — 2E(v,* Clg™ ;%]
(97)

since

Qg™ 8% =W (%) ¢ (B - (1) — K] = (@) — x°" - I:g, E;"ﬂ

Let @, (¢’) denote the power spectral density of v, (which is real and nonnegative
since v, is scalar). We now obtain what follows

4

d V(1)) = — 2E[v, Clg ;%)) = —2 l J O, (e7)C(e 7 f)dw
dt 2n

. 4

= ___[x D, (")Re[Cle ™ fO)ldw>  (98)

From this we conclude that a sufficient condition for d/dz V(x(7)) < 0 simply is that
Re[C(e ;%)) > 0, —n<w<n (99)

i.e., C(g~ ';Bo) strictly positive real (in the appropriate frequency domain). As will be
well-known to many of the readers, this is exactly the same condition which ensures
local convergence of the ordinary ELS method. |
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