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Communication in space requires antennas that are accurately pointed. Often
antennas are mounted on lightly damped space structures, that are easily set into
vibration, which decreases the pointing accuracy of the antennas. Knowing the
vibration frequencies simplifies the control tasks and may also improve the pointing
accuracy. This paper describes identification of vibration frequencies in a space
structure, based on frequency weighted Kalman filters, a Gauss-Newton numerical
search method and phase-locked loops.

1. Introduction

Future utilization of space is expected to require large space structures. Because
of their light weight, these structures will tend to have low damping and vibration
frequencies (natural frequencies) that will be closely spaced and are expected to vary
as much as 20-30%, due to splashing and consumption of rocket [uel. Some of the
vibration frequencies are expectec to be lower than the bandwidths of the control
loops. An increasing need for better pointing accuracy of antennas connected to the
space structure puts strong demands on the control system. Thus, knowing the vibra-
tion frequencies will be of vital interest and the need for identifying the vibration
frequencies in space is inherent.

This paper presents identification of vibration parameters using an augmented
Kalman filter, a frequency weighted Kalman filter, and a prediction-error-method
(PEM) using a Gauss-Newton numerical search to perform the minimization and
phase-locked loops (PLL). A flexible Euler-Bernoulli beam connected to a rigid
satellite core 1s modelled as the space structure. The flexible beam is forced to vibrate
by applying an initial displacement of the beam. A sensor located at the end of the
beam then measures the displacement of the beam.

AR, ARX, ARMA and ARMAX models are quite common in parameter identi-
fication (Soderstrom et al., 1989 and Ljung, 1987). However, parameter identification
may also be performed using state-space models. These models are often easier to
understand than the difference equations employed in AR, ARX, ARMA and
ARMAX models. Augmented Kalman filters (Gelb, 1974), which are based on state-
space models, are known to perform parameter identification as well as state estima-
tion. Frequency weighted augmented Kalman filters may be used to improve the
parameter accuracy compared to ordinary augmented Kalman filters (Williamson,
1991). Another method that is reported to give accurate parameter identification
(Ljung, 1987), is the Gauss-Newton numerical search applied to a PEM. Phase-locked
loops are normally used at the receiver end to generate a local carrier that is locked in
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phase and frequency to that of the receiver signal (Proakis et ul., 1988). PLLs are also
shown to be applicable to vibration frequency estimation (ESA Contract No. 4834/
81, 1990).

Section 2 presents the mathematical model of the spacecraft. Section 3 describes
parameter identification using an augmented Kalman filter, a frequency weighted
Kalman filter, a Gauss-Newton numerical search and PLLs. The properties of these
methods are demonstrated by simulations in Section 4. Section 5 concludes the paper.

2. Mathematical model of a space structure
The space structure consists of a flexible beam connected to a satellite body,
Figure 1. The flexible beam is modelled as an Euler-Bernoulli beam and the satellite
body as a rigid body. The reason for this is that the satellite body has a very stiff
construction, whereas the beam has a light construction and is highly flexible. The
beam is free to move in the y-direction only. The displacement-time function of an
Euler-Bernoulli beam undergoing vibrations is described by the differential equation
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where p is the mass/unit length, E is Young’s modulus, J is the moment of inertia and
f(x, 1) is an external force per unit length of the beam. (1) has the solution (Rao, 1990)
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The displacement of the beam y(x, 1) is a function of time and the distance x from
the fixed beam end (connection satellite body/flexible beam): N is the total number of
vibration modes, g,(f) is the time dependent vibration of mode n and W, (x) 1s the
mode shape function of the ™ vibration. W,(x) may be found from an ordinary
textbook in mechanical engineering, for instance Rao (1990).

A flexible beam has an infinite number of vibration modes, however, most of them
have low energy and contribute little to the displacement of the beam. The number of
vibrations is in this paper limited to 4. Table 1 shows the vibration frequencies of the
flexible beam.
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Figure 1. Spacecraft model.

Table 1. Frequencies of the beam vibrations

Frequencies of the beam vibrations

Modes - 1 2 3 4
Frequencies (Hz) 0-51 3-22 3-50 9-02
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The vibration frequencies of the chosen beam are relatively widely spaced and
mode 3 is modified in shape and frequency such that the frequencies of modes 2 and
3 become very narrowly spaced, as shown in Table 1. The flexible beam is fixed to the
satellite body, which is considered to be rigid. Also assuming the flexible beam to be
rigid, the equation of motion referred to a body fixed frame of reference (principal
axes x, y, z in Figure 1) may be written (Skullestad, 1995)

(Jp+Jp)D +mgFoag + meipag= Ty + Ty 3)
3

(mp + mg)ag —mgFo» — mgfpd) = Fg+ Fi

where J and J are the inertia of the satellite body and the beam, respectively, o is
the angular velocity of frame x, y, z in Figure 1 referred to inertial space, my and m
are the mass of the satellite body and the beam, respectively, a,, is the acceleration of
frame x, y, z referred to inertial space. T and T are the external moments acting on
the satellite body and the beam respectively. Fj, and F are the external forces acting
on the satellite body and the beam respectively, 7 is the skew symmetric matrix
representation of a vector r cross product.

(3) assumes the flexible beam to be rigid, that is not so and the vibrations of
the flexible beam modify both the moment and the force equation in (3) to (De
Lafountaine, 1990)
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where p, is called the momentum coefficient and indicate to what extent mode n
participates in the translation of the body, A, is called the angular moment coeflicient
and indicate how much mode # participate in the rotation of the body. (4) may be put
into a general equation of motion. (5).

M3+ Dx+Kx=F (5)

where M is the mass matrix, D is the damping matrix and K is the stiffness matrix.
The state vector x is defined as:

x=[0, 0, 0. x y z . ¢; g3 qo 06, 0, 0

y 2 X ¥ 2 g1 ¢ q; ‘}'4]}.
(5) may be converted into a state space model, (6)
X=Ax+ Bu
(6
y=Cx+ Du

0 I 0
A= , B=
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where
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Geometrical Parameters

The geometrical parameters are chosen to be:

Satellite body:  Mass: 270kg
Width = length = height: 10m
Flexible beam: Length: 4m
Width: 0.05m
Height: 0.01 m
Mass density = 2700 kg/m*
Elasticity = 70 E + 9 N/m?

Identification model to be used for the Kalman filters

Parameter identification may be performed adding a mathematical model for each
of the required parameters. In our case the complete model contains 20 states + four
parameter models and, specially, if the number of vibrations is increased, this model
becomes very complex. It is possible to simplify the above mathematical model.
Looking at Figure 1, the flexible beam is, due to the geometrical parameters, free to
move in the y-direction only. A torque about the x-axis or y-axis or a force in the x or
z direction will only to a small extent excite the vibrations. Therefore, it may be possible
to remove those states from the identification model without losing accuracy. The time
function of the vibrations may be found from the general equation of a simple
harmonic motion, (7).
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where n is the mode number, &, is the damping coefficient of mode n, @, is the natural
frequency of mode n and f is an external force.
Equation (7) written in component form using four vibrations (modes) becomes
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where m is the mass, F is the force, x;—xg represent the mathematical model of the
beam, x,-x, , represent the parameter model of the vibration frequencies, and w,-w,,
are the process noise.
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(8) may be used as the identification model without loosing significant accuracy.
The sensor measures the displacement in the y-direction, i.e. perpendicular to the
beam. In the case of position measurements, the measurement model becomes

C=[W,(x) W(x) Wix) Wux) 0 0 0 0 ©)

The acceleration may be modelled as

el w? W, (x) w3 W, (x) — i W,i(x) i W, (x) (10)
| 20, W (x) —2oW,(x) —22eW(x) — 2w, W(x)

Which of these measurement matrices that are going to be used, depends on the
chosen type of sensor. An accelerometer is an interesting sensor because of its large
frequency range and is used in this paper. The accelerometer is located at the end of
the beam and equations (8) and (10) represent the identification model. The true
measurements are generated from the complete mathematical model (6) containing
20 states.

3. Methods
3.1. Kalman filters

An ordinary Kalman filter performs an optimal estimation of states x in a linear
stochastic system with known structure and parameters. Optimal in the sense that the
estimated states have minimum variance. A linear discrete Kalman filter may be written
(Gelb, 1974)

x(k + 1) = px (k) + Au(k) + Tw(k) (11)
y(k) = Cx(k) + v(k) (12)

Tk + 1) = pR(k) + Au(k) + Tii(k) (13)
Pk +1)=¢P(k)pT +TO,IT (14)
£(k) = 5(k) + K(k) ((k) — Cx(k)) (15)
P(k) = (I — K(k)C)P(k) (16)

K(k) = P(k)C"(CP())CT + Ry) ~* (17

In the above equations:

x(k) is the state vector

X(k) 1s the predicted states or the a priori states
X(k) is the estimated states or the a posteriori states
w{k) 1s the process noise

v(k) 1s the measurement noise

P(k) is the a priori error covariance matrix

P(K) is the a posteriori error covariance matrix

0, is the process noise covariance matrix

R, is the measurement noise covariance matrix
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The process noise covariance matrix—Q,

The process is often continuous-time, and so is Q. In the case of a discrete-time
Kalman filter, (14) needs the expression I'Q,I'T, this expression may be found, given
the spectral density (PSD) matrix Q, from

K+ 1
fQﬂT"=.[ tir 1, NGOG 1y 1, T)dE (18)
k

where

[" is the discrete-time process noise weighting matrix

G 1s the continuous-time process noise weighting matrix

¢ 1s the transition matrix

If the time 7 is small we may use a first order approximation, ¢ = 7+ AT, and (18)
becomes

ro,r™=GoG'™r (19)

Measurement noise covariance matrix—R,

If the measurements are continuous, the PSD matrix may be transformed to a
discrete covariance matrix by

R,=RIT (20)

Parameter and state estimation—augmented Kalman filter

The problem of identifying parameters in a system may be regarded as a special
case of the general state estimation problem. If both the parameter vector 0 and the
state vector x are to be estimated, we can combine them into a composite state

vector x'(k).
(k) |:.\-1(k <+ l):| a P{xl(k), 0(k), u(k), w, (k))—l 1
Ok + 1) _ OCk) -+ w, (k)

where

x,(k) is the process vector
O(k)=[0,0,... 0,] is the parameter vector
w, (k) and w,(k) are the process and parameter noise, respectively.

The Kalman gain, the process and measurement covariance matrices also consist
of two parts, one for the states and one for the parameters. The covariance matrices
are given as

0. (k) 0 R, (k) 0

Quky=| =" . Ry=|"" (22)
0 0,(k) | 0 R, (k)

The a priori and a posteriori covariance matrices are defined as

PU{):[P,,{&) P, (k)] P(M:[f’,,{k) Pn(k)} @3)
Pyyk) P Bpy(k)  Py(®)
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Even if the original process is linear, the augmented model generally becomes non-
linear. The following linearization has to be made
-
oty = L) .
ox(k) k) = dc(*)
x(k) = #(k) oxtk) (24)
u(k) = u(k) x(k) = x(k)
w(k) = w(k),

3.2. Freguency weightinglshaping

The measurements used in a Kalman filter often consist of a mixture of strong and
weak signals including measurement noise, and it may be difficult to estimate all states
and/or parameters with expected accuracy. This is also a situation that often occurs
in identification of vibrations. The energy of the different vibration modes, which
depends on the physical system and the excitation of the physical system, will always
differ. The frequencies of the low energy vibrations are normally difficult to identify.

Anderson ef al. (1989) describe frequency weighting in connection with linear
quadratic feedback. [t may also be possible to apply frequency weighting in connection
with state/parameter estimating. Maybeck (1979) and Williamson (1991) describe a
frequency weighted Kalman filter. Suppose a process is described by

x(k + 1) = ¢dx(k) + Au(k) + Tw(k)

(k) = Cx(k) + v(k)

The states and/or parameters of (25) can be estimated using an augmented Kalman
filter. The measurements can be filtered by a user specified frequency weighting filter
before being applied to the augmented Kalman filter. The discrete frequency weighted
filter may be described as

(25)

xpk + 1) = x (k) + Apvik)

y(k) = Cpx (k)
The frequency weighted Kalman filter consists of (23) and (26) with states
x,(k) = [x(k)"x (k)"]" and is described by

x (k+ 1) = ¢, x,(k) + Au(k) + w,(k)

(26)

27)
(k)= Cx,(k)
where
¢ 0 A Tw(k) |
¢ = . » 8= ;G=[0 Crlwi(k) =
A C ¢ 0 ' _ Agwk)
The augmented covariance matrix (14) modifies to
Pk + 1) = ¢, Plk)pT ro.rt 0 (28)
(K + = ¢, Pl I 5
X 0 A;R,AT |

In the above we have assumed w(k) ~ N(0, Q;) to be the process noise of the
physical system whereas v(k) ~ N(0, R,) is the measurement noise of the system.
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The Kalman gain matrix modifies to:
K(k) = P(k)CT(C P(k)CT+ R,) ! 29

Ideally, R;=0, since the output comes from a frequency weighted filter, but
experience shows that R, may be used in tuning the filter.

3.3. Gauss-Newton numerical search

In sections 3.1 and 3.2 an augmented Kalman filter and a frequency weighted
Kalman filter were used to identify the vibration frequencies of the spacecraft. Tt is
known (Skullestad, 1995) that numerical search methods perform better in the case
of noisy measurements. Different numerical search methods are available, the Gauss-
Newton iterative minimization routine is effective, especially close to minimum (Ljung,
1987) and is chosen here. The Gauss-Newton numerical search method may be
expressed as

66+ D = 09 — PIRO) *Ly(09) (30)
where

6® denotes the i"™ iteration

R(Uf{]) is the gradient of the loss function Ln(6)
R modifies the search direction
18 is the step size

Ry and Li(0) together determine the search direction and g, 1s normally taken as
|1 and then divided by 2 for each new search, until the loss function has gained its
required minimum value. A benefit of the numerical search method is the ability to
use a prior1 information. If the values of the parameters to be estimated are totally
unknown, a suboptimal analytical method usually is used to generate a set of initial
conditions. If we, however, [rom earlier experiments or [rom physical knowledge of
the process know more about the unknown parameters than an initial guess with a
suboptimal method can give, these values should be given as a priori information. The
computation may go much faster if the numerical method can start with accurate a
priori values and the parameter estimates may also become more accurate.

A problem with numerical search methods 1s local minima, as one never knows
for sure whether the parameter estimates are local minima, or global minima. Accurate
a priori information may reduce the problem of taking local minima as true parameter
values, but it is in any case recommended to make several identification runs, using
different parameter initializations.

Ljung, 1987 describes Gauss-Newton numerical search mmimizing the prediction
error in both equation error models and state space models. The Kalman filter struc-
ture, (31), seemed to give the best results, applied to our problem, and identification
using this model is documented in Section 4.3.

x(k + 1) = ¢x(k) + Au(k) + Ke(k)

(31)
y(k) = Cx(k) + e(k)

The PEM function requires the model to be a Kalman filter structure of innovation
type. The Kalman gain may be calculated as the steady state gain. ldentification can
be accomplished using the function PEM in MATLABs System Identification Toolbox.

The above method is also known as a prediction-error-method (PEM), since the
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method makes use of the prediction error. Sometimes the Gauss-Newton method is
called a maximum likelihood (ML) method since the Gauss-Newton algorithm give
results equal to ML results, in the case of Gaussian distributed disturbances, which is
the case here.

3.4. Phase locked loop

PLLs may be used to detect vibration frequencies in a flexible structure. A PLL is
shown in Figure 2.

A PLL may be used to generate a local sinusoidal that is locked in phase and
frequency to that of the input signal (Proakis et al., 1988). The accelerometer output
is used as input to the input-filter. The phase angle of the voltage controlled oscillator,
VCO, output is compared to the phase angle of the input signal, and the phase
difference is used to modulate the VCO frequency. The VCO should ideally generate
a sinusoidal with frequency equal to one of the vibration frequencies of the input
signal. The low-pass filter (LP) removes unwanted frequencies that are generated from
the phase detector. The controller is applied to select which frequency region that is
to be tracked by the PLL, and to attenuate interfering signals. Sinusoidals (vibrations)
with closely spaced frequencies (interfering signals) together with measurement noise
degenerate the accuracy of the PLL. An input-filter, e.g. a band-pass filter connected
to the input of the PLL may be applied in order to improve the frequency accuracy.

The phase detector multiply the input signal and the VCO output signal. The input
signal may be written in the time domain as (ESA Contract No. 4834/81, 1990)

u)= Y Asinort + ;) (32)

and the output signal from the VCO becomes
¥(f) = Beos(we1 + ¢(1)) (33)
where

Aq—the amplitude of mode i

w—the frequency of mode {

¢;—the phase lag of mode :

B—the output amplitude of the VCO
we—the output frequency of the VCO
@(t)—the estimated phase of the VCO

Input-filter Phase detector Controller V()ll_ﬁgc Controlled
Oscillator
Input
A(s) r~ ] |LPGs) F(s)

) X - VCO

Figure 2. Phase-locked loop.
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The output from the phase detector becomes
¥ 4B
w()y(t) = Z é [sinf(ew; — we )t — @) + sin((w; + we)t + G(£))]

i=1

with frequencies

and

N -
Z (‘""i + wg + @?)
1

The output frequencies may be rewritten

in m— 1 - N -
(mm — Wy — %) & Z (0; —wo — m) + Z (UJ; — We — 4p(1)
E= + 1

g dt

N
. dg(r)
+ ; + wy +——
i%l ( i 0 df )

dt

m

where
@,~—the input frequency to be tracked.

d(:;,?) —the derivative of the estimated VCO phase.

. A
The goal is to make the term (w(, i (*:‘E!]-) equal to w,,.
¢

(34)

35)

When the phase locked loop works properly, the term (m{, — @) becomes very
e

small.

The last term in (35) is the sum of the input and output frequencies and may be
removed by inserting the lowpass filter (36) between the phase detector and the loop

filter. sce Figurce 2.

b,
1+ Tyeos

(36)

The loop operating frequency w, is defined as the frequency band where the PLL
is designed to provide good acquisition. The controller is used to remove the second

and third term in (35) but also to achieve

—insensitive to other vibration frequencies
—good acquisttion behaviour for the input frequency to be tracked
—Insensitive to measurement noise of the input signal
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ESA Contract No. 4834/81, 1990 suggested the controller to be taken as
_ Ki+1T53)

F(s 37
) T5(1 + T59) 3%
where
E Sec ¢ — tan ¢ . 1 o 1
r‘_‘ — _"_"_"__'(‘I ) FZ = Z-_’ ! B f =
an wiTs wi{sec ¢ — tan )

where ¢ is the phase margin of the operating frequency (normally set to 45 degrees)
and K is the loop gain. Choosing the above time constants can be shown to give an

s s iz : A
acquisition range ~ 1.5 @, and an acquisition time ~ —.
y.

4. Simulation results

The space structure described in Section 2 has been modelled in MATLAB and
simulated. The space structure consists of a flexible beam connected to a rigid body.
The flexible beam is modelled as a 4-modes Euler-Bernoulli beam, the vibration
frequencies are given in Table 1. The process is limited to contain measurement noise
only, and the measurement noise is assumed to be white, 1.e. Gausstan distributed
white noise.

Excitation

Disturbances or attitude corrections will force the spacecraft to vibrate. Different
types of excitation may be considered. In this paper excitation will be limited to initial
conditions, 1.e. the beam is initially bent according to Table 2 and released at time
zero. These 1nitial conditions are known to excite all four modes (Skullestad, 1995).
Excitation is important since those vibrations not sufficiently excited (persistently
excited) may probably never be identified or poorly identified.

Measurements

The vibration frequencies can be identified based on measurements from different
types of sensors. An accelerometer, a strain-gauge and a remote attitude measurement
sensor are highly actual sensors. This paper deals with accelerometer measurements
only. The accclerometer is located at the end of the beam. Accelerometer output will
be corrupted from both bias and noise. The bias forces the mean value to deviate from
zero, but it is easy to estimate the mean and then remove it from the measurements.
Measurement noise will, however, have significant effect and the accelerometer is
modelled as a linear sensor with Gaussian distributed random noise. The measurement
noise is given as 1-sigma values. The mathematical model, that generates the measure-

Table 2. Initial displacement of the beam

Mode Displacement (m)

1 0-05 o
2 0-005

3 0-005

<4 0-001
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Figure 3a.b.c.d. Augmented Kalman filter (dotted line) and Weighted Kalman filter (solid
hine).

ments, 1s continuous, but in the case of the Kalman filters and PEM analysis, the
measurements are discretized to match the discrete identification models. The sampling
interval is taken as 0-02sec. The data record length varies between 20-256 samples.
The measurement noise varies between 0-1 ug—0-1 g (1-sigma).

4.1. Freguency identification using an augmented Kalman filter

(8) is discretized and used as the Kalman filter model. The measurement noise
added to the accelerometer output is 10 ug. The chosen spacecraft model does not
include process noise, and the process noise of the Kalman filter 1s taken to be small.
A Kalman filter may utilize position measurement, velocity measurement, acceleration
measurement or a combination of these three. This paper presents results from position
measurements, and since the chosen sensor is an accelerometer, the accelerometer
signal is integrated twice. Position measurements will often emphasize low frequency
vibrations, while acceleration measurements emphasize high frequency vibrations
(Skullestad, 1995). Figure 3a,b,c,d, dotted lines, show the estimated frequencies
versus time. True frequencies are marked as constant lines. Different process and
measurement variances, initial frequency guesses and covariance matrices were tried.
Figure 3 is based on the following initial conditions:

Process noise variance, Q, = 0.0001. Measurement noise variance, R, = 0.01.
Initial state covariance matrix, P =diag(0 00000 00 1 20 40 200).
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Table 3. True and a priori frequencies

True vibration frequencies (rad/sec) 323 20-24 22-00 56-67
A priori frequencies (rad/fsec) 3-80 16-00 26-00 46-00

Deviation (%) 17-6 209 18-2 18-8

It is assumed that the vibration frequencies of the spacecraft are known with an
uncertainty of approximately 30%. Table 3 gives the true vibration frequencies and
the initial values given as a priori information to the filter, also the initial frequency
deviation percentage is shown.

4.2. Frequency weighting

The augmented filter, Figure 3, dotted lines, gave relatively inaccurate estimates of
modes 1, 2 and 3. It will be interesting to see if' a frequency weighted filter is able to
improve these estimates. The frequency weighted Kalman filter makes use of the
continuous weighting filter, (38). (38) is weighted to emphasize modes 1, 2 and 3.

K*w}

H(s) =
() §* 4+ 26mys + 03

(38)
where K= 10, 0, =3, { =02,

The weighting filter, (38), is discretized 10 accommodate the discrete Kalman filter.
The initial conditions are as for the augmented Kalman filter. The additional noise
variance, due to the weighting filter, is chosen as R; = 0-005. The additional states in
the initial covariance matrix are set to zero. Figure 3a, b, ¢, d, solid lines, show the
estimated vibration frequencies against time for the frequency weighted Kalman filter.
The result is as expected, frequency weighting makes the estimates of modes 1, 2 and
3 more accurate. The frequency weighted Kalman filter gives, due to the chosen low-
pass filter. a poorer mode 4 estimate.

Summary of the augmented and the weighted Kalman filter

Both the augmented and the frequency weighted Kalman filters are sensitive to
measurement noise, and do not work properly for low signal-to-noise ratios. Increasing
the measurement notse to 100 pg significantly decreases the accuracy of the frequency
estimates. Tuning the filter may improve the estimates, but experience shows that
proper tuning is very time consuming. It may become difficult to achieve accurate
frequency estimates of several vibration modes using one Kalman filter, if’

(a) some of the signals are closely spaced in frequency and/or spread over a wide
frequency range;
(b) high and low energy vibrations are mixed together.
An augmented Kalman filter normally pays great attention to high energy vibra-
tions and the low energy vibrations will be difficult to estimate.
Frequency weighting makes it possible to emphasize user specified frequency
regions and frequencics of low cnergy signals may be more easily estimated.

4.3. Frequency identification using a Gauss-Newton numerical search

This chapter shows identification of vibration frequencies using Gauss-Newton
numerical search. The satellite is excited from the mitial conditions shown in Table 2.
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Table 4. True and a priori frequencies

True vibration frequencies (rad/sec) 323 2024 2:00 5667
A prion frequencies (rad/sec) 2-65 16-73 17-32 52-91
Deviation (%) 17-60 20-90 18-20 18-80

Table 5. Identified vibration frequencies using the function, PEM

True vibration frequencies (re_adfscc) 3-23 20-24 22-00 56-67
Estimated frequencies (rad/sec) 3-20 20-25 22-00 56-61

Measurements from an accelerometer located at the end of the beam have been added
1000 ug measurement noise. (8) represents the Kalman filter model. States 9, 10, 11
and 12, i.e. the parameter models have been removed. The resulting model 1s then
converted to the innovation type Kalman filter structure (31), that can be utilized by
the function PEM in the MATLAB System Identification Toolbox.

(31) only requires one noise sequence to describe both the process and measurement
noise. The Kalman filter gain can be taken as the steady state gain, which make the
computation quicker. The steady state Kalman gain is calculated from the MATLAB
function LQE with process noise Q4 = N(0,0-001) and measurement noise R , = N(0-4).
These values are chosen after several experiments, i.e. after tuning the filter. The
Gauss-Newton numerical search method is relatively robust with respect to deviations
in the Kalman gain. So, ‘Tuned filter’ may not be the right expression in connection
with numerical search methods, since even with the same process statistics, the variance
of the measurements used in the Kalman gain calculation can vary as much as 2-20
without significant degeneration of the parameter estimates. Initial estimates are
important, when using the function PEM to estimate parameters from a state space
model, otherwise the model may be non-observable/non-controllable.

Table 4 shows the initial guesses of each vibration frequency (a priori frequencies),
the true frequencies and the frequency deviation in percent.

Table 5 shows the identified frequencies using the function, PEM. The true frequen-
cies are also shown.

Summary

A Gauss-Newton numerical search method often gives more accurate parameter
estimates than augmented and frequency weighted Kalman filters, especially for low
and medium high signal-to-noise ratio (SNR) measurements. The method is robust
with respect to the chosen process and measurement noise and the Kalman filter gain.
Decreasing the measurement noise caused no problems. Increasing the measurement
noise up to 10000 pg, slightly decreases the frequency accuracy, and local minimas
more often occur. A problem with numerical search is the demanding calculation.

Accurate initial conditions seemed to contribute little to improve the parameter
estimates. However, reasonable accurate initial conditions are necessary to achieve a
stable Kalman filter. Local minima are often encountered, especially for low SNR
measurements, but may happen even for high SNR measurements. Several experiments
with different initial conditions reduce the risk of choosing the wrong parameter
values.
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Table 6. PLL parameter settings

Input parameters

Phase locked loop parameters

True A priori

Vibration frequency frequency wy

mode (rad/s) (rad/s) (radis) Tyeo T, T, T, K
1 3-23 2-80 0-6 0-8 57 3-7 0-64 !

2 20-24 16-00 40 0-12 0-15 06 0-10 1

3 22-:00 18-00 4-0 0-12 015 0-6 0-10 1

4 56:67 52-00 L1-3 0-045 002 022 0-04 1

4.4. Phase locked loop

‘The space structure includes four vibration modes, Thus, four PLLs are required
to identify these vibration frequencies. Each of the four PLLs are first tested separately
using single sinusoidals with the true frequencies shown in Table 6.

The measurement
noise is set to zero.

The input-filter A(s) = 1. The time constants in the low-pass filter and the controller
are changed according to Table 6, also the a priori chosen PLL frequencies
The frequency band where the PLL provide good acquisition is shown
chosen time constants give an acquisition range of ~ 2¢, .

Figure 4a, b, ¢, d show the estimated frequencies of the four PLL circuits, subjected
1o single sinusoidals.
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Figure 4a,b,c,d. Separately estimated vibration frequencies using PLLs.
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Figure 5a,b,c,d. Vibration frequency estimates using PLLs.

The frequency estimate of mode 1 is slightly noisy. The frequencies of modes 2
and 3 are also noisy, but in average relatively accurately estimated. The same character-
istic may be given to the frequency estimate of mode 4. Careful parameter tuning will,
as shown later, to some extent improve the frequency estimates. ESA Contract No.
4834/81, 1990 suggest a tuned filter connected to the output of the PLLs. Another
approach may simply be to connect a low-pass filter to the output of the PLLs.

Figure 5 shows a more realistic situation, where the accelerometer located at the
end of the beam, which measures the true frequencies shown in Table 6, 1s connected
to all four PLLs simultaneously. The initial frequency guesses and the other PLL
parameters are according to Table 6. The measurement noise is sct to zero.

Figure 5a, b, ¢, d show that the frequency estimates become less accurate when the
input signal contain interfering frequencies.

A Chebychef filter is added to each PPL and act as the input-filters. The input-
filters that are connected to the different PLLs are chosen as Chebychef band-pass
filters of order 3. with centre frequencies at 2-80 (rad/s), 16-00 (rad/s), 18-00 (rad/s),
52-00 (rad/s) and bandwidths 5 (rad/s), 9 (rad/s), 9 (rad/s) 12 (rad/s), respectively.
Figure 6 shows the resulting frequency estimates.

Figure 6a,b,c,d show the frequency estimates of modes 1 and 4 are improved
using input-filters, while the frequency estimates of modes 2 and 3 are only moderately
improved. The reason for this is that the PLL circuits dedicated modes 2 and 3 have
input-filters that interfere, The initial guess of the frequencies of modes 2 and 3 are
16-00 rad/s and 18-00 rad/s, respectively, while the true frequencies are 20-24 rad/s
and 22 rad/s, respectively. Those large frequency uncertainties require input-filter
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Figure 6a, b,c,d. Vibration frequency estimates using PLLs and input-filters,

bandwidths of at least 7-8 rad/s, which strongly interfere with each other. Less initial
frequency uncertainty allow more narrow pass-band filters and, hence, more accurate
frequency estimates. The improved frequency accuracy of mode 1 shown in Figure 6a,
compared to Figures 4a and 5a, also comes from better parameter tuning of the
mode 1 controller, i.e. K in Table 6 is increased to 5.

The input signal of the PLL circuits used to generate Figure 6 is noise free.
Accelerometer signals will for sure contain noise and 1000 ug measurement noise is
added to the accelerometer output. This noise level influences to a small extent the
frequency estimates and the measurement noise is increased to 10 000 pg. The obtained
frequency estimates, not shown, become close to those documented in Figure 6.

The PLLs including the input-filters manage to suppress the measurement noise
and the frequency estimates of modes 1. 2, 3 and 4 are still close to the simulations
without measurement noise. Increasing the noise to 100 000 ug worsen the frequency
estimates.

Summary

The PLL gives relatively accurate frequency estimates, but is sensitive to interfering
signals that have frequencies within the frequency acquisition range. Input-filtering in
order to reduce the effect of interfering signals improves the frequency estimation.
Also careful tuning of the controller improves the PLL accuracy. Measurement noise
influences the PLL results, but may be reduced using input filtering.
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5. Conclusion

Augmented Kalman filters pay great attention to high energy modes and low
energy modes may be difficult to identify. Frequency weighted Kalman filters make it
possible to emphasize user specified frequency regions and frequencies in low energy
signals may be more casily estimated.

Both the augmented and the frequency weighted Kalman filters are sensitive
to measurement noise and do not work properly for low and medium high SNR
measurements.

PEM using a Gauss-Newton numerical search to perform the parameter identifica-
tion is more robust to measurement noise. Accurate frequency estimates may be
achieved for medium SNR measurements and even for low SNR measurements. Local
minima occur especially for low SNR measurements, and several experiments using
different initial conditions reduce the risk of choosing the wrong parameters. Numeri-
cal search is computationally demanding.

The PLL gives relatively accurate frequency estimates, but is sensitive to interfering
signals. Narrow frequencies may be separated using a combination of properly designed
controllers and input-filters, but interfering signals often will prevent accurate fre-
quency estimates. The effect of measurement noise is reduced using input-filtering and
PLL frequency estimation may be used even for low SNR measurements.
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