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Hidden Markov Models as a Process Monitor in Robotic Assembly*
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A process monitor for robotic assembly based on hidden Markov models (HMMs)
is presented. The HMM process monitor is based on the dynamic force/torque
signals arising from interaction between the workpiece and the environment. The
HMMs represent a stochastic, knowledge-based system in which the models are
trained off-line with the Baum-Welch reestimation algorithm. The assembly task
is modeled as a discrete event dynamic system in which a discrete event is defined
as a change in contact state between the workpiece and the environment. Our
method (1) allows for dynamic motions of the workpiece, (2) accounts for sensor
noise and friction, and (3) exploits the fact that the amount of force information
is large when there is a sudden change of discrete state in robotic assembly. After
thc HMMs have been trained, the authors use them on-line in 2 2D experimental
setup to recognize discrete events as they occur. Successful event recognition with
an accuracy as high as 97% was achieved in 0.5-0.6s with a training set size of
only 20 examples for each discrete event.

1. Introduction

Process plants must deal with changing states, multiple faults, unexpected situ-
ations, and unreliable measurements. Efficient process-monitoring techniques allow
for robust control of such process plants. A control system with reliable process
monitoring requires less stringent models of the process plant and its environment.
Hence, an efficient process monitor is a natural first step in designing intelligent
controllers for systems in uncertain environments. In robotic assembly, sophisticated
task-level control schemes such as discrete event control have been developed in recent
years. To allow for good decisions in such controllers, real-time process-monitoring
techniques are needed to account for existing uncertainties in workpieces and the
environment,

In this paper, we present a method for recognition of discrete events in robotic
assembly by using force and torque measurements. A discrete event is defined as a
change in contact state between the workpiece and the environment. Each discrete
event in the assembly is described by a hidden Markov model (HMM). HMMs are
well suited to event recognition in robotic assembly for two reasons. First, the state
space is naturally discretized which is a basic requirement for any Markov modeling.
Second, the sensory signals, particularly force sensing, have stochastic noise, which is
a requirement for HMMs. The recognition of contact formations presented here has
several advantages. First, we allow for dynamic motions of the workpiece (not limited
to quasi-static as in Hirai (1989) and Trinkle and Zeng (1995)). Second, the method
is model based and the models are trained on empirical data, which helps to ensure
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the validity of the models. Third, both sensor noise and friction are accounted for.
Fourth, as in Eberman and Salisbury (1994), the method uses the fact that the
frequency band is broad within a short period of time when a change in contact
formation occurs, and hence a lot of information can be extracted.

2. Literature Survey
2.1. Process Monitoring of Assembly

One example of process monitoring in robotic assembly is found in Donald (1990),
where a theory of planning multistep error detection and recovery strategies for
compliant motion assemblies is described. The theory provides a technology for
constructing plans that might work, but fail in a reasonable way when they cannot.
However, the direct applicability of this theory is limited in robotic applications.

Eberman and Salisbury (1994) described a method for detecting state changes in
a dynamic system. Four states are considered: impacts, sliding across a surface, no
contact, and grasping contacts. For each of these states, a statistical force-signal model
is built. The no contact model, for example, is chosen to be the Gaussian distribution
N, Vo). The validity of the models is checked against spectrograms of empirical
data. Hypothesis testing is used to recognize different states, in which there is one
stochastic representation of the force measurements for each state. Since the number
of possible states is only four, the information given by the method is limited. For
example, in robotic assembly, the state sliding across a surface covers a whole range
of situations, since there may be many surfaces involved.

Bicchi, Salisbury, and Brock (1993) presented a method for resolving the location
of a contact given force and torque measurements. They consider three contact types:
(1) a point contact without friction, (2) a point contact with friction, and (3) a soft
finger contact. Closed-form solutions for a static point contact with or without friction
and a static soft finger contact for ellipsoidal surfaces are presented. An iterative
solution is presented for a soft finger contact for any other surface. Multiple contact
points are represented by a point called the contact centroid, through which resultant
forces are applied. In robotic assembly, multiple contact points occur frequently.
Although the contact centroid contains some geometric information about multiple
contact points, in general it does not provide enough information to distinguish all
possible contact formations between the workpiece and the environment.

In Hirai (1989), the highlight is on the recognition of the contact formation between
the workpiece and the environment, not the change in contact. Assuming quasi-static
motions of the workpiece, negligible friction, and noiseless sensing, they use the theory
of polyhedral convex cones to find the set of statically admissible contact forces and
moments between the workpiece and the environment. The possible contact formations
are then the formations in which the measured forces/moments are contained in this
set. This method only applies to systems with quasi-static motions, negligible friction,
and noiseless sensing.

A different approach is used by McCarragher and Asada (1993). Assuming poly-
gonal models of the workpiece and the environment, they highlight the discrete changes
of state. A discrete change of state is defined as a change in the geometric constraint
between the workpiece and the environment. This method uses qualitative force/
torque measurements and hence is well suited for fast real-time monitoring in robotic
assembly. However, by using qualitative measurements, a significant amount of
information is ignored. It is therefore expected that more accurate, reliable, and robust
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process monitoring in robotic assembly can be achieved by a more comprehensive
treatment of the force/torque measurements.

Trinkle and Zeng (1995) describe a motion prediction method for a system with
several bodies and multiple points of contact. Assuming quasi-static, planar rigid-
body motions, they have developed a model to predict the motion of a single rigid
workpiece contacted at multiple points by a general planar manipulator. The method
allows for sliding and rolling contacts. Trinkle and Zeng plan to extend the formulation
to 3D motions and multiple workpieces. This method applies only to systems with
quasi-static motions.

Dutré, Bruyninckx, and De Schutter (1996) presented a different approach based
on the energy of the manipulated object. The energy is the sum of the kinetic and
potential energies, where quasi-static motions are assumed. A total energy error
function is defined that depends on the geometrical uncertainty parameters v. The
values of v for which the total energy error function reaches a minimum are found,
and these values describe the contact situation. The contact model is validated by
observing only one signal, the same total energy error function. Two advantages of
the method are that it does not require training examples and the monitoring is based
on only one signal. One limitation is the assumption of quasi-static motions.

In Badano et al. (1991), a different approach to robotic assembly is used. They
show experiments for a planar peg-in-the-hole assembly in which the position error
between the peg and the hole is compensated for by slight random movements. One
limitation of this approach is that the random movements might change the contact
state. Also, for a more complex assembly task, there is no guarantee that random
movements will successfully insert the workpiece in the environment.

In the work presented in this paper, we allow for dynamic motions of the
workpiece, friction, and sensor noise. Also, we do not require exact knowledge of
the positions of the workpiece and the environment. Moreover, the method is model
based and uses empirical data, which helps to ensure the validity of the models by
training them using a maximum likelihood procedure. The method also exploits the
broad frequency band when there is a sudden change in the discrete state in the
assembly task. Hence, the solution presented here is a significant improvement over
existing solutions.

2.2. Hidden Markov Models

Since the introduction of Markov models to speech processing in the 1970s,
dramatic advances have been made in this area (Picone 1990). Hidden Markov models
(HMM) have been used by several authors in speech recognition (for example, Huang,
Ariki, and Jack 1990; Rabiner et al. 1985a), and in character recognition (Vlontzos
and Kung 1992). The experimental results in these papers all show a high successful
recognition rate. In speech recognition, Picone (1990) measured the recognition rate
as high as 99.3% for a vocabulary of 2,000 words and 94.6% for a vocabulary of 20,000
words. In character recognition, Vlontzos and Kung (1992) achieved recognition rates
from 97% to 99% with printed as well as handwritten characters. In the work presented
here, we propose similar techniques for recognition of contact formations in robotic
assembly using the continuous force/torque measurements.

The number of papers presented in which the theory of HMMs is used in robotics
is small. One example is found in the paper by Hannaford and Lee (1991), in which
an HMM is used as a process monitor for the teleoperation of a peg-in-the-hole
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assembly. The HMM describes the task structure, and each state in the HMM
describes a subtask. The different states in the HMM are characterized by different
means and covariances of the force/torque measurements. Hannaford and Lee
studied a peg-in-the-hole task with four subtasks; i.e., moving, tapping, inserting,
and extracting. The moving subtask has a force/torque mean of zero, both the
tapping and the inserting subtasks have a positive (but different) mean value, and
the extracting subtask has a negative mean value, and these values distinguish the
different states (subtasks). Each of these subtasks is described by a single mean
value, and this number is dependent on the magnitude of the contact forces.
These individual subtasks cover a whole range of contact formations. Hence, the
information given by the process monitor has few details. In the work presented
here, we make the process monitoring independent of the contact force magnitudes,
and we also divide the assembly process into a larger number of subtasks, which
makes the process monitoring more accurate and detailed. Instead of using only one
HMM for all subtasks, we use one HMM for each subtask. Moreover, we get a more
comprehensive treatment of the measurements by using frequency components of
the force/torque signals.

Zhu (1991) used an HMM to describe and predict the motions of obstacles in a
dynamic environment. Initially, an image of the scene is acquired by a visual sensing
device. This image is processed, and any potential obstacles in the environment are
detected. The HMM is then used to make predictions of the obstacle motions. A
collision-free path is searched for, and finally maneuver commands are generated. As
the robot proceeds, this cycle repeats. Although the HMM is not used as a process
monitor here, and the application is not in robotic assembly, the work presented
illustrates how an HMM can be used in a dynamic system.

Another example of HMMs applied to a different area in robotics is the work by
Xu and Yang (1995) and Yang, Xu, and Chen (1994), in which the HMM approach
is applied to skill learning in robotics. They use HMMs to represent two types of
skill—action skill and reaction skill. To learn the action skill, they use a left-to-right
HMM. The HMM characterizes two stochastic processes: the measurable action and
the immeasurable mental states that are involved in the skill learning. The reaction
skill is modeled as a set of HMMs, in which each HMM describes the mapping from
sensory data to control action.

3. Discrete Event System

The process monitor that is the focus of this paper is part of a discrete event
system. The process monitor cooperates with a discrete event controller (DEC) to
achieve successful assembly. In this section, we give a brief overview of the control
structure. The discrete cvent system is shown in Figure 1. The control structure is
divided into a continuous and a discrete part. The continuous part controls the velocity
of the workpiece in Cartesian space, where the velocity reference is set by the DEC.
The process plant, consisting of the manipulator, the workpiece, and the environment,
is nonlinear and time variant. Hence, different continuous controllers and velocity
references are needed for different situations. For example, the DEC might vary the
robot PI gains and the velocity commands depending on the discrete state y in Figure
1. The purpose of the process monitor is to detect and classify the time-varying
situations.

In Figure 1, y is the recognized discrete state from the process monitor, where the
definition of discrete state is given in Definition 1.
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Figure 1. Block diagram of discrete event system for robotic assembly.

Definition 1 (Discrete State). A discrete state is defined as a contact formation con-
sisting of zero, one, or more edge-surface contacts between the workpiece and the
environment. The set of discrete states is then the set of all possible contact formations
(McCarragher and Asada 1995a). 0O

The control system is described briefly as follows. 7, is the desired contact state, F
is the force/torque measurements from the interaction between the robot and the
environment, v, is the Cartesian velocity reference from the DEC, 6 and 0 are the
position and velocity measurements from the robot and 1 is the commanded motor
torques from the continuous controllers. The function J*(6) is a transformation from
Cartesian space velocities to joint space velocities; i.e., 6, = J*(0)v,. In the experiments,
we use the closed-loop tracking solution presented in the paper by Chiacchio et al.
(1991, 413). The closed-loop solution avoids the long-term drifts that occur with the
simple inverse Jacobian approach. The manipulator joints are controlled individually
by PI velocity controllers.

We consider a planar assembly task in which we have only one type of contact, the
edge-surface contact. The edge or the surface involved can be a part of either the
workpiece or the environment. Examples of this contact type are shown in Figure 2.

We do not model edge-edge contacts, since this type of contact consists of a point
only. The moving workpiece causes the edge-edge contacts to exist for a very short
time period. Accurate process monitoring of such contacts is difficult. Note that a
surface-surface contact is allowed, and it is described by two edge-surface contacts.

A B C

Figure 2. Examples of different edge-surface contacts between the workpiece and the environ-
ment., Note that contact state C is a combination of the two edge-surface contacts 4 and B.
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The method presented here can be extended to a 3D assembly task (McCarragher
1996). For a 3D task, the HMMs would be trained on all 6-DOF force/torque
measurements.

In addition to the discrete contact states, we define the discrete events as follows.

Definition 2 (Event). An event in robotic assembly is a change of discrete state. The
events are discrete in time and describe a gain or a loss of a single edge-surface contact
between the workpiece and the environment. O

We use the notation from Astuti and McCarragher (1995), in which y; is used for
contact states, M = {y,,72,---,Vm} 15 a finite set of discrete states, and Ec M x M is
a finite set of discrete events. Any discrete event ¢, is then given by an ordered pair
e = (¥:,7;) € E, describing a change from the discrete state y; to y;. Given a contact
state y;, only events from a subset of E are possible. We define this subset of admissible
events as E,. < E. The subset E,, is determined from the contact state network of the
assembly task. For a description of contact state networks for robotic assembly, see
McCarragher and Asada (1995a).

The discrete event model and controller are described by McCarragher and Asada
(1995a) and McCarragher and Asada (1995b). First, a discrete event model of the
assembly process is developed. Based on this model, the DEC directs the assembly
process through a series of events to the desired end state in the discrete event model.
The DEC uses a discrete event trajectory that specifies the discrete controls. The
discrete control vector is then mapped onto continuous velocity commands to be sent
to the robot arm. The execution of these velocity commands will ideally cause the
system to pass through the desired events. Since the workpiece is in contact with the
environment, the dynamic equations of motion depend on the discrete contact state.
Astuti and McCarragher (1995) described how to find the constraint equations for each
contact state by using distance functions. The desired Cartesian velocity commands v,
are then found by solving an optimization problem with linear constraints in the
commanded velocities.

It is extremely difficult to guarantee that the velocity commands will guide the
system through the desired events. To overcome this problem, the process monitor is
used to give the DEC feedback; i.e., to tell which events occur. The process monitor
uses the force/torque measurements resulting from interaction between the robot arm
and the assembly environment. The output of the process monitor is the recognized
contact formation, and this output is compared with the desired contact formation,
If there is a mismatch between these two, an error has occurred, and proper control
actions must be given to correct the error. Ideally, the commanded velocities from the
DEC will guide the system through the desired event trajectory. However, since it is
difficult to achieve this, a process monitor plays a very important role in discrete event
control. With a process monitor, the system is able to detect errors and unwanted
situations, which is an important step toward an intelligent control structure with the
ability to recover from errors.

4. Process Monitor

The process monitor developed in this paper is based on HMMs. An HMM is
defined as a doubly stochastic process. The underlying stochastic process is not observ-
able (it is hidden), but it can be observed through another set of stochastic processes
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Figure 3. llustration of an HMM. The underlying stochastic process can only be observed
through another stochastic process.

that produce the sequence of observed symbols (Rabiner and Juang 1986). Stochastic
force/torque measurements are used to obtain information about the discrete events,
which are illustrated in Figure 3. Each state in the hidden process has a stochastic
description of the force measurements. The observation symbols are compared to these
stochastic descriptions (for example, Gaussian distributions) to find the probability of
each hidden state.

In addition to the force/torque measurements being stochastic, the underlying
process must also be stochastic. In our work, the hidden models represent the discrete
events defined in the previous section. The underlying stochastic process corresponds
to the internal behavior of the events, since we are using one HMM for each event.
The internal behavior is influenced by several factors. In a robotic assembly task, for
example, the internal stochastic behavior is caused by the position of the workpiece
in the gripper, friction between the workpiece and the environment, or tolerancing
errors in the geometries of the workpiece and the environment.

The stochastic behavior of the underlying process is very important because the
whole theory of HMMs is based on the fact that both the underlying process and
the observed process are stochastic. In the paper by Hannaford and Lee (1991), the
underlying process is not the internal behavior of the events but rather the sequence
of discrete events. In that case, the assumption has to be made that the sequence of
discrete events is stochastic. However, when the hidden process is the sequence of
discrete events, the HMM probabilities will be highly dependent on the event trajec-
tories chosen in the training set. In the method presented here, the HMMs are
independent of the actual event trajectory, and hence modifying the trajectory, on-
line to recover from errors does not influence the recognition rate of the HMM:s.

There are many possible HMM models for the events. One type of model that
has been successfully applied to speech recognition and also works well for robotic
assembly is the absorbing parallel left-to-right model illustrated in Figure 4. (See
Picone (Figure 9) 1990, for other possible left-to-right models.)

For this model, an event always starts in the state g, and ends in g4 or ¢,, but
there are several possible paths through the states. The observed symbols proceed
forward in time, which is the main reason for using a left-to-right model. The left part
of the model is associated with the early measurements whereas the right part of the
model is associated with measurements at some later time. Since these measurements
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Figure 4. HMM J* for each event. g; are the states and a;; are the hidden stochastic process
state change probabilities.

might be very different, a left-to-right model is ideal for extracting this information.
Left-to-right models are a good tool for describing how signals evolve in time. This is
an important property of the HMMs. With this property, we are able to describe
dynamic motions with dynamic force/torque measurements of the workpiece, as
opposed to quasi-static motions.

4.1. Observation Symbols

One key element in successful process monitoring is the observation symbols. In
this paper, we use the frequency components of the force/torque signals as observation
symbols. There are several reasons for using frequency components. First, when an
event occurs in robotic assembly, as well as in any dynamic system where there is a
sudden change in the constraint equations, the frequency band is broad and occurs
within a short time scale of the event (see Figure 5).

Therefore, a lot of information can be extracted by using frequency components
as observation symbols. Second, by normalizing the total energy in the measurements,
we make the observation symbols independent of the signal magnitudes; i.e., a gentle
contact (event) will have similar observation symbols as a brutal contact. It is also

Figure 5. Spectrogram of the F, force measurements for two events. The first event starts at
t =2.0s followed by another event at t = 4.2 s. The measured force was sampled at 500 Hz.
Notice that the frequency band is broad and occurs within a short time scale of the event.
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worth noting that research on human tactile perception has shown that our skin
force sensors are sensitive to force frequencies (Johansson 1978). By using frequency
components, the training will estimate the mean and the covariance of the energy in
different frequency components of the force/torque measurements. Hannaford and
Lee (1991) used the mean and covariance of the force magnitude measurements directly
in a robotic system where a HMM is used as a process monitor.

In this paper, we use continuous observation symbols represented by the continuous
vector X,. The observation probability b(x,) is then given by

bj(x,) = A [x,, ;. ;) M)

where A is the normal density and y; and Z; are the mean vector and covariance
matrix, respectively, associated with the internal state j in the HMM. It is possible
to use discrete observation symbols, but better performance has been reported for
continuous HMMs (Huang, Ariki, and Jack 1990), which is caused mainly by the
vector quantization error in discrete observation symbols.

We now define the transform

log Z(21); 0)

Ciw) = Z(0);

where je {F,,F,, M.} are the 3-DOF force/torque measurements for a planar
assembly task from time ¢ to 1 + W. W is a constant design parameter representing
the length of the observation window. % is the Fourier transform, and w; are the
observation frequencies. As mentioned above, we divide each frequency component
by #(0); to make them independent of signal magnitudes. The logarithm function
is used to make the covariance of the observation symbols smaller. Small covariances
will make the observation probabilities larger relative to the hidden process state
probabilities, which is desirable in the training and the operation of the HMMs. The
reason we want the observation probabilities large compared to the hidden process
state probabilities can be seen from Figure 3. The hidden process is observed via the
observation probabilities.
With n observation frequencies, the continuous vector x, is then given by

X, =[€r (01),-.., € (0,), Cr,(w1))]

[ Cr (@), Crr (1), - ., Cpr (@,)]" 3

4.2 Length of Observation Window

Once we have chosen our observation symbols, we have to choose the length of
the observation window W. This choice is a compromise between the amount of
information and the time spent waiting for the information. The additional information
from time ¢ —1 to time ¢ can be measured by looking at the average change in the
observation vector x, for all discrete events. In this paper, we use a threshold test on
the change of the observation vector, since the amount of information from an event
will decrease with time. The threshold test is given by

k k f k
quEELfeLklx:-' - x}i 1 |"|]xll1— 1 l

<Ax @

h.ry
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where || is the vector norm, n, is the number of events ¢, € E, and n, is the size of the
training sets L*. When the change in the observation symbol vector from time ¢ —1
to ¢ is less than a chosen threshold percentage Ax, we stop making observations. The
data used are then xq, .. ., X,. The threshold test in eq. (4) is performed once and off-
line on the entire training set, and we use the same observation length for all events.
We also use the same observation length in the on-line recognition process. By using
this threshold test, we assure that a certain amount of the information will be contained
in the observation symbols X, . .., X,. For the experiments presented in this paper, the
threshold test in eq. (4) was used on a training set containing examples for each
discrete event. It was found that the average change in the observation vector was less
than 25% with an observation sequence of length 4. This observation sequence length
was used in the experiments; i.e., the observations are always x,, X,, X5, and x5.

4.3. Training

The first step of the HMM recognition method is to build an HMM for each event
¢, € E. The most difficult problem in HMMs is how to adjust the model parameters
to maximize the probability of the observed data matching the model. There is no
known way to solve this analytically for a maximum likelithood model (Huang, Ariki,
and Jack 1990), so using a numerical method is desirable. The method we use is a
standard estimation method called the Baum—Welch reestimation formula (see for
example Rabiner and Juang 1986).

We use the following notation for a HMM based on continuous observations:

T = length of observation sequence

N = number of hidden process states in the HMM
0=14,,92,---,qy} hidden process states

A = {a;;} HMM hidden process probability matrix
7 = initial state probability

6 = absorbing state probability

X, = continuous observation vector at time ¢

B = {b;(x,)} HMM observable process probability vector
(5)

We use the compact notation A= (4, B, nr) to represent an HMM. For the model in
Figure 4, we have

N=1
O=191,92-93>94>95,96-497}
n=[l OOOOUO]T
d=[000008,1—-4,1"

where 9, €0, 1] will be changed during the training. 6, is the probability of ending in
hidden state g, whereas 1 — 8, is the probability of ending in hidden state g,.
The Baum-Welch method starts with initial values of all the HMM parameters.
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After applying the method, the probability of the observed data matching the HMM
is increased. Applying the Baum-Welch formula once is called an iteration. For the
probability to reach a (local) maximum, we have to run several training iterations.

The Baum-Welch reestimation formula is based heavily on two variables: the
Sforward and backward variables. They are defined as follows.

Definition 3 (Forward Variable o).

al(j)=Pr(xo’xlv“’xnj='?j|'1*) (6)
where «,(j) is the probability of the partial observation sequence (until time ¢) and
hidden process state g; at time ¢, matching the model 2*. O

The forward variable o is calculated for every hidden process state in the HMM ¥
at every discrete time step ¢t =1,..., T as follows.

1. a,() =nbx,) 1<i<N.
2. Calculate o(") along the time axis, for t=2,...,T,and 1 <)< N:

N
o (j) = I:‘Zl o - I(f)aijjlbj(xl) U]

Definition 4 (Backward Variable f).

ﬁ,(i)=Pr(x“1,x”2,...,xT|j=qi,A") (8)
where (i) is the probability of the partial observation sequence from 7 + 1 to the end,
given the hidden process state g; at time ¢, matching the model A*. N

The backward variable f is also calculated for every hidden process state in the
HMM /* at every discrete time step r=1,..., T

1. fr= 0, absorbing state probability.
2. Calculate () along the time axis, fort=7—1,...,1,and 1 <i< N, i.e,

N
Bi)= X Bevr(Dayb;(x,+1) ®
i=1

If the observation sequence x, is long, a scaling technique of « and f is required to
avoid mathematical underflow, since all the probabilities are less than or equal to 1.0.
In the experiments presented in this paper, the observation sequences are of length 4
only, and mathematical underflow does not occur.

Definition 5 (HMM Probability). The HMM probability is defined as the probability
of the entire observation sequence X,, ..., Xy matching the model 4*. Finding this
probability for a model 4* is called scoring the model. This is done by using the forward
variable o as follows:

N
Pr(xo, ..., Xr| ) = Zl ar(j) (10)
j-

O
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In robotic assembly, the HMM probability for A* is the probability of the observed
force/torque measurements matching the model A* for event ¢, € E.

From the forward and backward variables, we now define two new variables
describing the HMM state probabilities. The difference between HMM state probabili-
ties and hidden process state probabilities is that the HMM state probabilities take
into account both the hidden process and the observable process. These new variables
will be used in the final form of the Baum-Welch reestimation formula.

Definition 6 (HMM State Probability o( ).

~_ a(NBG)
%= Brixenn. ol an

where g,(j) is the probability of being in the hidden process state g; at time ¢, given the
observation sequence X, . .., Xy and the model J*. O

Definitiion 7 (HMM State Transition Probability £(i, j)).

A0 jbj(xr+ W1 (J)
&) = Pt(ixm---,‘xrl ,1*1) (12

where {(i, j) is the probability of a path being in state ¢; at time ¢ and making a
transition to state g; at time ¢ -+ 1, given the observation sequence and the model. []

‘We now use the definitions for () and &(7, j) to express the Baum~Welch reestimation
formula. For each event e, = (3;,7;) € E, we have a training set L* = {L% L%, ... L¥}
in which individual L* are matrices containing force/torque samples describing event
e In the planar case, we have that Lf = {1, 1, 13} 7, where 1%, 15,,, and ¥, are
vectors containing the force measurements in the x- and y-direction and the torque
measurements in the z-direction, respectively, describing event ¢,. These measurements
are transformed into observation symbols x, as described in Section 4.1. Given the
model 7* with initial parameters, the reestimation formula for the internal state
transition parameters af; is then given by

S Zl G )
Tua Xl B EH G )

ag= (13)
We see that the estimate &f; is the sum of all transition probabilities from the state g;
to the state ¢; divided by the probability of being in state ¢; for model A*. The new
estimates a}; are based on the HMM state transition probabilities (i, j), so we see now
how the hidden process is estimated through the observable process. Since x, = x! are
different for each training sequence, we also have that ¢, are different for each training
sequence L¥, and hence are written &4 .

By using multivariate Gaussian distributions, the estimates for u5 and ¥ for the
model 2* in eq. (1) are given by

ﬂ'f _ EI_E‘]_EI]; 1 Ug(j)xl
! Eu;eLE.T- 1 "FU)

koo =i .
E" - ELFGLZI—-IJ}“UXXt - “i{){x! - pf '
J

(14)

(15)
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Theorem 1 (Maximum Likelihood Estimates). The Baum—Welch reestimation formula
given in eqgs. (13)—(15) is an iterative solution for a (local) maximum likelihood HMM.

Proof: See Huang, Ariki, and Jack (1990). [

Define the scalar §* = Zyx  Pr(x, . .., x%|1*)/n, to be the training set score for J*
based on the entire training set, where #, is the size of the training sets L*. The training
procedure is then described as follows.

1. Choose an initial model A* for each event ¢, € E.

2. Get the new model parameters from egs. (13)—(15). These new model parameters
are based on the entire training set L* for that event. This is called supervised
training, since we know that the training set L* belongs to the event e,.

3. If the change in the training set score S* is below a chosen threshold value, the
training is completed. Otherwise, go to step 2.

4.4. Event Detection

As described earlier in this paper, the amount of force information available when
there is a change in the constraint equations is large. This is illustrated in Figure 5,
which is a similar result to Figure 1 in Eberman and Salisbury (1994). This large
amount of information available when an event occurs is the main reason for letting
the HMMs represent the events rather than the contact statcs. However, to be able to
use this information, we need an event detector. A change in the constraint equations
is characterized by a sudden change in at least one of the force measurements. The
changes in the force measurements are found from the time derivatives of F, and F,.

H,()) = 32 (F0) — F(t— AT))

1
H)r(t) = E(Fy(f) - Fy(‘ - AT))
AT is considered a filter design parameter. The frequency response of H, (1) is given by

H,(jw)
£ (jo)

We have that max |1 — e ~92"| = 2 when wAT = n+n2n, n=1,2, ... The filter cutoff
frequency is then given by @, = n/AT. A large value of AT will result in differentiation
of the force signals for low frequencies only. The simplicity of the filters in the time
domain, H,(r) and H(?), is an advantage in fast on-line event detection.

The event detector used here for a planar assembly task is described by the following
threshold test:

= |1 — ¢ JoaT| (16)

H.(1)* + H,()* > (AF)? (17

As in the paper by McCarragher and Asada (1993), we determine the threshold by
looking at the standard deviation of the measurements. We do not want the effects
from the friction forces to trigger the threshold test, so the workpiece was slid across
a surface and (AF)? was chosen to be a 3o deviation from the mean value of
H(1)* 4+ H,(#)*. In our experiments, AT was chosen 1/3s which gives a filter cutoff
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frequency w, = 3nrad/s = 1.5 Hz. Note that the choice of AT is dependent on several
factors such as the dynamics of the manipulator, the dynamics of the force sensor, and
the surface properties. With the choice of AT =1/3 we found AF to be 9.5N. The
reason why we chose a slow filter and the large value of AF can be seen from the large
friction forces in Figure 9 in the Experiments section.

4.5. Event Recognition
The event recognition method is described as follows.

4.5.1. Training

First we build an HMM for each event in the event set. We use the observations from
the training set L to estimate the optimum parameters for each event e,, represented by
J¥ for the kth event in the event set. We use well-known estimation techniques like
the Baum-Welch reestimation formulas.

4.5.2. Operation

From on-line measurements, we have a single test sequence Y = {y,;x.y,-’,yux}"
containing the 3-DOF force/torque measurement vectors in the x-, y- and z-direction,
respectively. For each event model, we calculate the model score for 2%, P, = Pr(Y|2¥).
The model score is found using Definition 5.

4.5.3. Evaluation
We chose the event whose model score is highest; i.e.,

k¥ = argmax,, g, [F]

where E,,_ is the set of admissible events for the given contact state ;.
By comparing the model scores for the different events, we are also able to calculate
a confidence level of the decision. We define the confidence level of the decision as
follows:
P,

C=—"*+—€(0,1 18
el (18)

Note that X, ¢ P is not necessarily equal to one, since the model scores P, are
independent. For example, ¢,, e, and e, might be the only events in the set E,, with
model scores P, =0-1, P, =0-2, and P5 = 0-5. In this case, k* = 3, and the confidence
level C=0-5/0-8 = 62-5%.

5. Experiments

The experimental setup consists of an Eshed Scorbot 5-DOF manipulator and a
JR3 force/torque sensor (see Figure 6). The dimensions of the experimental setup are
given in Figure 7.

We study a planar assembly task with 11 contact states as shown in Figure 8. As
mentioned before, we do not model edge—edge contacts, since this type of contact
consists of a point only. For the contact states shown, we have 25 possible discrete
events; i.e., changes of contact stage (see Table 1).
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Figure 6. Eshed Scorbot 5-DOF manipulator and JR3 force/torque sensor used in the
experiments.
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Figure 7. Dimensions of the experimental setup.
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The HMMs were trained with varying sizes of the training set. Typical measure-
ments in the training set for one of the events, es, are given in Figure 9, where the
force directions are as shown in Figure 8.

The performance of the HMM-based process monitor is shown in Figure 10. The
recognition rates shown in the figure were obtained in on-line operation in a discrete
event control framework. Also, the real-time measured forces were independent of the
training set examples. Note that even with a training set size of only 4, the average
recognition rate is as high as 81-5%. In our experiments, event e,, was among the
most difficult events to recognize. This can be seen from Figure 10, in which the
recognition rate for e,, was only 65% for a training set size of 4. Event e is among
the easy events to recognize. In our experiments, the method never failed to recognize
e5, even with a training set size of only 4.

In Figure 11, we show the force measurements for the entire assembly task. The
initial contact state in y,, and 7,, is our desired final contact state. The robot guides
the workpiece through the contact state sequence.

1212273 2% 2Ys5 27712 Y9 2 V1o
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Figure 8. Model of contact states for a planar assembly task. We have not included every
possible contact state in our model.

which is generated by the event trajectory
€ —e5 ey €014 102,

The change in contact states (events) characterized by the sudden change in at least
one of the force measurements is detected by the event detection method described in
Section 4.4. After the event is detected, the method described in Section 4.5, is used
to recognize the event. Once the recognition algorithm is completed, the information
is sent to the discrete event controller, and the detection algorithm is started again to
wait for the next event.

In the experiments, we used 10 observation frequencies chosen as shown in Table
2. The particular frequencies chosen are a result of sampling at 500 Hz and using
windows of length 64 samples for the Fourier transform.

The observation frequencies are evenly distributed to allow the HMM:s to describe
both low-frequency and high-frequency behavior of the force measurements. With 10
observation frequencies, the length of the continuous observation vector X, is 30 and
is given by eqs. (2) and (3).

For the HMM-based process monitor to work properly, good initial model
parameters are needed for the maximum likelihood estimation algorithm. In the
experiments presented here, we have used initial estimates as described as follows.
When an event occurs in the training set for event model 2%, the ensuing 256 samples
are used by the HMMs. These 256 samples are divided into 4 windows of length 64
samples each. The first window is associated with state ¢, in Figure 4. The second
window is associated with ¢, and g3, the third window with g, and g5 and the fourth
window with g, and g,, where g; belong to A* (see Figure 12). The samples of F,, F,,
and M, are used to generate the observation symbols X, ..., X3. Samples from the
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Table 1. Nomenclature

7:€I" = set of possible contact formations between workpiece and environment
ya4= desired contact formation between workpiece and environment
¢, € E= set of all possible discrete events
n, = number of possible discrete events
E,, = set of possible events in contact state y;
0,0 = robot joint coordinates and velocities
vy = desired discrete Cartesian velocity command vector
J*(0) = transformation from Cartesian velocities to joint velocities
L* = training set for event e,
n; = size of training set L*
#*= hidden Markov model (HMM) for event e,
g:€ O = set of hidden process states for each HMM 2
N = number of hidden process states
a;;= probability of a hidden process transition g;—g;
n= initial HMM hidden state probabilities
& = absorbing HMM hidden state probabilities
X, = observation symbol at time ¢
T = length of observation sequence
bj(x,) = observation probability for hidden state g; at time ¢
;= vector of observation symbol mean values for hidden state q;
Z; = matrix of observation symbol covariances for hidden state g;
%(-) = transform from time-domain measurements to observation symbols
% (-) = Fourier transform
W = length of observation window
w; = observation frequencies
o,(j) = forward variable in hidden state g; at time ¢
B.(j) = backward variable in hidden state g; at time ¢
6,(j} = HMM state probability in hidden state g; at time ¢
£, /) = HMM state transition probability from hidden state g, to g;at time ¢
F(1), F,(t) = force measurement in the x- and y-direction at time 2
M, (#) = torque measurement in the z-direction at time ¢
H,(2), H(1) = time derivatives of F,(z) and F,(2)
S* = training set score for HMM 3

entire training set are used to find the means and the covariances of the observation
symbols x; for each model #*, where x, is used to initialize the observation probability
densities in state ¢, X, is used in the states g, and g, and so on.

Initializing the HMM:s as illustrated in Figure 12 enables the HMM 2 to describe
the dynamic nature of the measurements. It is worth noting that the maximum
likelihood training procedure might change the initial structure shown in Figure 12.
If the measurements are static signals, for example, the entire observation sequence
Xp, - - ., X3 might be used to find the parameters for the state g,. We use the same
initialization procedure for all the event models 4!, ..., 125,

The initial parameters for a;; were chosen as follows:

004 048 048 0 0 0 0

0 004 0 08 016 0 0

0 0 004 016 08 O 0
A=|0 0 0 004 0 08 016 |

0 0 0 0 0-04 016 08

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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0 02 04 086 0B 1 1.2 14 16 18 2

t [sec]

Figure 9. Typical measurements for event es. The event occurs at = 1.23 s, characterized by
the sudden change in F,. The time-varying force measurements before ¢ =1.23s are
caused by the friction when sliding along a surface. The process monitors log the data
from r=1.23s to t = 1.74 s (256 samples at 500 Hz).

Recognition Rate %

; a Ilﬂ 1l2 1.4 'Ilﬁ |'a 20
Size of Training Set

Figure 10. The performance rate versus the training set size.

The zeros and the ones in A are fixed probabilities because of the left-to-right structure
of the HMMs. When choosing the initial HMM state transition probabilities, there
are several possibilities. Since the final estimate is a local maximum, different initial
parameters will in general produce different HMMs. However, the sensitivity of the
recognition rates to errors in the initial hidden state probabilities is low (Rabiner ef al.
1985b).

In our work, the training set contains measurements with two slightly different
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F,, F, [N} and M, [Nm)]

Contact States

Figure 11. Force measurements for contact state sequence
A=Ay iyl = As A= dg— Ay

Table 2. Possible Events for an Assembly Task with 11 Contact States

€1:7127Y2 i Y3 €11 Va7V €16-Te —Va 2,1 Yo=Y
€:117Ya €3: Y372 €12:Ys Y3 €17: Y175 €22: Yo V10
€371 7% €glP3—Ya €131 Y5>V, €8> Y1 Vs €23 Y1079
€4:Y2*Y, €g: Pa Y €1a: Vs —>7Vq €191 P71 2Yy €242 Y10 711
€51 Y23 €10° Va5 €15: Y6 V1 €20° Y8 27¥7 €252 Y1170

Table 3. Observation Frequencies Used for
Each of the Measurements F,, F,, and M,

w, = 7-8125Hz we= 859375 Hz
w, =23-4375 Hz w+=101-5625 Hz
w; = 390625 Hz wg = 117-1875 Hz
w, = 546875 Hz we = 1328125 Hz
ws = 70-3125 Hz wyo = 148-4375 Hz

angles between the workpiece and the environment. To make the HMMs represent
these measurements effectively, we chose to have two dominant initial hidden state
trajectories in the HMMs. The two dominant state trajectories are g, — ¢, — g, — g
and g, — g3 — g5 — ¢4, which can be seen from the initial values of A.

As an cxample of what might happen after the training is completed, we consider
the hidden process state probabilities for HMM 1! describing event e, :

053 047 0 0 0 0
0

>

[
cocoocoo
oocoo
coocooco

This clearly shows the dynamic nature of the measurements, since all a,;, | <i<§5, are
zero after the training. Also, we see that the two dominant hidden state trajectories
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Figure 12. Initialization procedure of the HMMs.

are preserved. From the discussion above, we see that HMMs are a powerful tool to
describe dynamic force signals. Also, with varying conditions in the training set, the
HMM approach performs successful event recognition with high recognition rates.
However, care must be taken when finding the initial probability density functions of
the observation symbols.

6. Evaluation

The HMM force/torque based event recognizer has several advantages over existing
methods, but the method also has its limitations. These are discussed in Sections 6.1
and 6.2. A discussion of how the method performs for more complex assembly tasks
is given in Section 6.3.

6.1. Advantages

We allow for dynamic motions of the workpiece relative to the environment. There
are no restrictions on the robot accelerations as there are for quasi-static motions. By
allowing dynamic motions, the workpiece is no longer restricted to a certain kind of
trajectory. We are now able to design continuous controllers with no restrictions on
the accelerations. It should be noted, however, that the quasi-static approaches do not
need training, and hence the implementation is less time consuming.

Our method is model based, where the models are trained on real measurements
from the process plant. Hence, no assumptions on the measured forces/torques are
made. Training the models on empirical data helps to ensure the validity of the models.
After training, the model parameters can be used to extract meaningful information
about the measured data. For example, if the force/torque measurements are static,
the HMM probabilities a;;, 1 <i< N, will be large. On the other hand, if the measure-
ments are dynamic, the HMM probabilities a;;, 1 <i< N, will be small, since the
probability of staying in hidden state ¢; is small when the observation symbols at time
1 + 1 are very different from the symbols at time ¢.
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Since our method is trained on empirical data, the effects from friction between the
workpiece and the environment and measurement noise are accounted for. In fact,
any linear and nonlinear phenomena in the dynamic measurements are accounted for
as long as the training data contains these phenomena. The HMM approach is based
on a stochastic description of both the observable and the hidden process. Hence, the
stochastic nature of phenomena such as friction is also taken into account. However,
the method is not able to describe nonrepeatable phenomena. For example, wear and
tear of the manipulator and the workpieces may cause the original training data to be
an inaccurate description of the contact forces.

The frequency band of the force measurements is large when there is a sudden
change in contact formation. By using the frequency components of the measured
data, we are able to extract this information. Frequency information also eliminates
the difference between hard and gentle contacts.

6.2. Limitations

One limitation of the HMM approach is the amount of training data required. In
the work presented here, a training set size of 20 examples was used for each of the 25
discrete events, which gives a total of 500 examples. With this training set, a recognition
rate of 97% was achieved. If one is willing to accept a lower performance, smaller
training sets can be used, as shown in Figure 10. Also, the figure suggests that the
training set sizes can be reduced for some of the discrete events, for example es,
without reducing the overall performance. Only events that are difficult to recognize
require large training sets,

In our experiments, we are sampling at 500 Hz, and the observation window was
chosen to be 256 samples. This means that the process monitor has to wait for
approximately 0.5s before starting to process the data. For time critical assembly
tasks, 0.5 s might be too long. In such cases, the sample frequency should be increased
such that the desired number of samples is collected in a shorter time.

Unless the initial model parameters are good, the estimated model parameters may
be a local maximum. Although there exist other estimation algorithms, like the gradient
projection method (Huo and Chan 1993), they all end up in a local maximum if
starting with poor initial parameters. Rabiner ez al. (1985b) simulated several ‘toy’
models in which the estimated parameters were compared to the true values. The
conclusion in Rabiner et al. (1985b) was as follows: With a good initial guess of the
means (of the observation symbols), the parameter reestimation procedure is capable of
yielding good models even if other model parameters have poor initial estimates. In the
Experiments section, we described how to get good initial estimates of the observation
symbol distributions (see Figure 12) for successful event recognition. The procedure
used to the find the initial parameter estimates is not restricted to the work presented
here. It can be applied to classification problems with left-to-right models and dynamic
measurements.

6.3. Extension to More Complex Tasks

We have presented an HMM-based solution to the process monitoring of an
assembly task with 11 contact states and 25 discrete events. For more complex tasks,
the main effort will be the training of the HMMs. One HMM for each discrete event
is required. Hence, for a more complex task, a training set larger than the 500 training
examples used for the L-shaped workpiece is expected.
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Once the HMMs are trained, however, we expect a similar high performance for
more complex tasks as for the L-shaped assembly. In McCarragher (1996), the
discrete event control of a 3D assembly task is studied. Naturally, the number of
contact states and discrete events becomes large. However, given any contact state,
only a limited number of discrete events are physically possible. An assembly task
with a large number of contact states usually has a small number of admissible
events for each contact state. Hence, for the process monitoring only, the HMMs
corresponding to the admissible events have to be evaluated, and a high performance
classification is still possible.

In general, there is no guarantee that the information in the force/torque signals is
sufficient for successful process monitoring. For complex assembly tasks, it is desirable
to make use of a wide range of sensory information; for example, force/torque,
position/velocity, and vision. Moreover, it is desirable to combine the benefits from
quasi-static and dynamic force based methods. Some of the discrete events are easy
to recognize and only one monitoring technique is needed for accurate recognition.
Other discrete events may be considerably more difficult to classify, and several differ-
ent monitoring techniques are needed. Selecting different monitoring techniques in
real time is a relatively new research area. One method for combining several process-
monitoring techniques in a real-time discrete event control system is found in Hovland
and McCarragher (1996). When using several monitoring techniques in real-time
operation, the main goal is to achieve high performance monitoring while keeping
the processing time low. The use of several techniques for improving the process
monitoring becomes apparent as the degree of system uncertainty and ambiguity
increases.

7. Conclusion

In this paper, we demonstrate how to use hidden Markov models (HMMs) and
dynamic force measurements to recognize discrete events in robotic assembly. Extensive
experimentation was conducted with a planar assembly task consisting of 11 contact
states and 25 discrete events. For each discrete event, a training set of size 20 was
generated. Based on this training set, the HMM parameters were estimated using a
maximum likelihood algorithm—the Baum—Welch reestimation formula. Successful
discrete event contact recognition was achieved in 0-5-0-6 s with an average recognition
rate as high as 97%. The recognition rate of 97% was achieved in on-line operation in
a discrete event control framework, where the real-time force measurements were
independent of the training sets. Even with smaller training sets, successful event
recognition was achieved with relatively large recognition rates. For example, with a
training set size of only 4 examples, 81-5% of the discrete events in an independent
test set were classified correctly. These results show that HMMs are a successful tool
for process monitoring in robotic assembly. The HMMs are currently used in a discrete
event control framework and effectively allow for on-line detection of errors in the
discrete event trajectories. The use of sensory perception, as demonstrated in this
paper for classifying contact states, is a first step toward an intelligent control structure
with the ability to make task-level decisions in uncertain environments.
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