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Nonlinear control of ships minimizing the position tracking errors
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In this paper, a nonlinear tracking controller with integral action for ships is
presented. The controller is based on state feedback linearization. Exponential
convergence of the vessel-fixed position and velocity errors are proven by using
Lyapunov stability theory. Since we only have two control devices, a rudder and
a propeller, we choose to control the longship and the sideship position errors to
zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP) is
defined at the bow or ahead of the ship. The VRP is used for tracking control. It is
shown that the distance from the center of rotation to the VRP will influence on the
stability of the zero dynamics. By selecting the VRP at the bow or even ahead of
the bow, the damping in yaw can be increased and the zero dynamics is stabilized.
Hence, the heading angle will be less sensitive to wind, currents and waves. The
control law is simulated by using a nonlinear model of the Japanese training ship
Shiojimaru with excellent results. Wind forces are added to demonstrate the
robustness and performance of the integral controller.

1. Introduction

Conventional autopilots do not control the ships position directly, but indirectly via
the ship’s heading. The autopilot uses an external heading reference as input either from
a heading set-point or from an external reference, e.g., electronic chart system (Fossen
1994). If there are external disturbances due to wind, currents and waves, the ship’s
position will not follow the desired track. To circumvent this problem, Godhavn (1997)
proposed a control law where the ship’s position (latitude and longitude) was controlled
instead of the heading. One advantage by using position control instead of heading
control is that the ship position will follow the desired track even if there are
environmental disturbances. The desired track can be planned in advance or being
re-planned during the voyage. The control law requires two control devices, since both
the longitude and the latitude are controlled simultaneously. However, the control law
will influence on the motions in all 3 degrees of freedom (surge, sway and yaw) since
this is a MIMO-system with 2 inputs, 2 outputs and 3 states.

Since the heading loop is open, the ship’s heading angle will not necessarily be
tangential to the desired track. In fact the ship may rotate 180°. The ship can be
compared to a trolley in the supermarket. Pulling the trolley from a point in the front
is not a problem, since it will not rotate around. If you push it at a point at the handle
towards a way-point, it will rotate. Similarly, for a ship, the resulting heading angle will
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depend on the choice of the VRP and the external disturbances from wind, currents and
waves. The VRP is defined as a point inboard or even in front of the ship which is
supposed to track the desired path. The VRP was first introduced by Lindegaard (1997).

In this framework, the position tracking error is defined as the position error between
the VRP and the desired position given by a smooth trajectory decomposed into the
vessel-fixed frame. The position tracking errors correspond to the deviations in the
longship and the transverse directions (cross-track error). The nonlinear control law,
which forces the tracking errors to zero, is derived by using feedback linearization. The
control law has a simpler structure than the nonlinear control laws derived by Fossen
et al. (1998) and Godhavn et al. (1998) where vectorial backstepping were applied. Both
the position and the velocity tracking errors converge to zero exponentially. Further,
the zero dynamics is analyzed and stability is proven by using Lyapunov stability
theory. The zero dynamics will depend on the forward speed and the selected VRP. By
increasing the distance to the VRP, the closed-loop system will be less sensitive for
external disturbances. The main difference of our approach and the linear controller of
Holzhiiter and Schultze (1996) is that nonlinear theory is used to prove GES.

The surge velocity, sway velocity and yaw rate are assumed measured and the
earth-fixed position is assumed measured by a DGPS receiver. If velocity measurements
are not available, a nonlinear observer can be used, see Fossen and Strand (1999).

The main contribution in this paper is that the proposed control law guarantees zero
position and velocity error along the desired trajectory even with a constant unknown
disturbance. The zero dynamics is proven also to be stable if the VRP is chosen ahead
of the center of the rotation. Further, this controller has the same structure as a PID
controller and the controller gains for the longship and transverse direction can be
selected independently.

2. Tracking Control Law
2.1. Vessel-fixed position tracking error

As seen from Figure 1, both €, and e, arc functions of . It is convenient to
decompose the position error into the vessel-fixed coordinate system rather than using
the earth-fixed system as a reference frame. The main motivation for this is to have
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Figure 1. Definition of vessel-fixed position errors.
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different gains for the longship and transverse motions and to avoid heading dependent
gains. The position tracking error e = [e,,e,]" can be written as

e=R'(Y)(ps—p.) )

where the transformation matrix R and the kinematic equations are given by

R=R()) = [:;SI —::;i @
RR" =1, 3)
b=R@)v )

v=r )

Here v = [, v]" and p = [x, y]". uis the alongship velocity (surge), v is the athwarthship
velocity (sway), r is the rotational velocity (yaw) and ¢ is the heading angle.
Ps= [x4,ya]" is the desired position and p, is the position of the VRP. Note, that

p.=pt+R@)d, 6)

where p = [x, y]” is the actual position referred to the center of rotation and d, = Ix yel”
is the vector from the center of the rotation to the VRP decomposed in the vessel-fixed
frame. Hence:

é=R'()(pa—p.) + R7(Y) (s~ p.)
=rSe + R"(W)RWY)vs— v~ R W)RW),
=rSe+l?tvd—(v—rde)

=rSe +Rv,— Tv
=rSe+v )
where R=R"()RW ) =R’ —a), »=[u,v,r]” and ¥=Rv,— Tr. Moreover:
VYa= RT(Ilfd)pd 8)
RI(RW)=rS )
_ _ar.| 01
s=-s7=[ 7] 10
_ 1 0 —y
L P an

where /4 is the desired leading angle computed from the reference generator, that is
Ha= [p:’; '.lfd]T'

2.2. Tracking Control Law

In this section we derive a control law based on state feedback linearization. Integral
action is added and the equilibrium point is proven to be globally exponentially stable
(GES) using Lyapunov stability theory and the method of Megretski and Rantzer
(1997).
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Proposition 1. The yaw rate r(t) is bounded.

Proof. Asshownin Appendix B, the zero dynamics only depends on the selected VRP
and not on the controller gains. Since the zero dynamics is stable, r(t) will be
bounded. W

The ship dynamics can be written as

v=M '"(7—n(»)t+b) (12)

where 7 is the thrust force in surge, sway and yaw and b is an unknown bias which is
assumed to be constant. With two controls, a rudder and a propeller, the thrust force

can be modeled as
b, 0 "
=| 0 b, [ l]=Bu (13)
Uz

0 b,

where b, and b, are thrust force coefficients for the controllable pitch propeller (CPP)
and the rudder, respectively, and ¢ is the distance from the center of rotation to the
rudder. Let

v=—-K,v—Kre—K,z—TM 'b (14)
i=e (15)
é=rSe+V (16)
where K, K, K; >0 and z is the integrated tracking error. The input u is found from
To=Rv,+ R, +Kp¥ +Kre+K,z+TM 'b a7
Ty=TM '(Bu—n(v)+b) (18)

Defining
a=Rv,+ Ry, + Kpv+Kre + Kz (19)
a=Tyr—TM 'b 20)

yields

u=B,'[a+TM 'n(@)] @n

where B,=TM 'B is invertible and a is the commanded acceleration. Define
x=[¥",e”,Z"]" where Z=z + K, '"TM "'b, then the error dynamics becomes

- KD - Kp - K;
x=| 1 r@®S 0 KxE2A()x (22)
0 I 0

which is linear and non-autonomous system, since the yaw rate r(t) depends on t. The
equilibrium point is the origin, which yields (o, €0, z0) = (0,0, — K; 'TM 'b).

Theorem 2. The equilibrium point is GES.
Proof. Write the system x = A(f)x as

% =Ax + BE
y=Cx (1
E=r(y
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All components of the vectors r.,,y(f) — €(f) and rmaxy(#) + &(2) are positive, and, in
particular,

(rmax¥(1) = &(0) (ruaxy (@) + £@) = 0 2
which yields
roasy'y — E'E=0 3
Therefor the matrix II defined in Megretski and Rantzer (1997) has the form
L™
N »
and
Y o[y
HEHE: ®

Let § = C(jwL — Ao) " 'B E= G(jw)é, then stability of the interconnected system is
obtained if

€42 n[ 9| = € (s GorG i) - 1E
= — 305*550' €>0and Vo e R' ©

or that the matrix r;,G(jw)G(jw) — I is nonpositive Vo e R, If it is so, and since Aq
is Hurwitz there exist a positive definite matrix P = P" such that the Lyapunov function

V(x) = x"Px @)
has the time derivative along the trajectory given by
V=x"P(Ax +BE) + (Ax + BEPx< — &,(x'x + E'E) <0, ,>0  (8)

for Vx, & such that rZ,x"C"Cx — £"¢ = 0. Rewritten in matrix form

o el raee

e -’,‘T]Q[E] <0 ©
the inequality (9) can be solved by LMI-methods, see Megretski and Rantzer (1997).
The solution can then be written as

- [PAo+ AP+ 2,C'C PBY[ 1 ]
V= e ][ B'P ][m)c
=X'(PAo + AP + 1. C'C + 2r()PBC— AT

= —x'"Q(Hx <0 (10)

Exponential stability follows from the following: V(x)= —&V(x), where &, =
lmin(Q){ Amax(P), which )’leIdS

V(x(D) = e *"V(x(0)) an
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Figure 2. Simulated desired and actual position and heading through 7 way-points.
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Figure 3. Rudder angle and controller pitch ratio for the propeller.
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Figure 4. Cross-track and velocity errors. Between the way-points the errors converge to zero.
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Figure5.  Upperplot shows that the heading error (open loop) is within + 1°and corresponding
integrated longship and cross-track errors are bounded.

3. Reference Generator

The reference trajectory is generated by using a st order Nomoto model of the ship.

That is,

X 1 K

Fo= e A, (27)
where T"and K are the Nomoto parameters for the simulated ship. Ay, = 4 — ¥, is the
heading error between the desired heading and the reference heading. A new way-point
is selected when the distance from the ship to the way-point is less than 2 times the ship’s
length. The reference yaw rate is limited to |r,| < 1°s and the desired heading angle /4
is computed by using the LOS method (Fossen 1994).

'}IJ(I) = atanz(yn' - yr(t),-xw - xr(t)) (28)

where atan2 is the four quadrant arctangent function. p,, = [x,,y.]" is the next
way-point and p, = [x,(z), y,(t))" is the reference position. The desired surge and sway
velocities uy, vy are assumed to be constant, that is v, = [ug, v4]" = [U4, 0]” where U,
is the desired forward speed. The update laws are

Ilir:I\,:Il(“d’_'ur) (29)
'l:',- = KZZ(VJ s Vr) (30’)
o= =g A, @1)

The reference position is then found from #, = R, »,, where the rotation matrix R, is
given by

cosy, —sinyy, 0
(32)

R,=R,(l,[/,)=[ siny, cosy, 0
0 0 1

and the desired position at the VRP is evaluated from
ns= 1+ R.d, (33)
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where d, = [x., ., 0]” is the vector from the center of rotation to the VRP. Higher order
derivatives 7, is found by using a low-pass filter.

4. Simulation Study

A simulation study is performed for the Japanese training ship Shiojimaru. The
desired path was generated with the following parameters: Ky = K2, = 1-0, K3 = 0-1
and T= 1-6s. The yaw rate is limited to 1°/s. The proposed control law given by (21)
is used to control the ship through 7 way-points. The forward speed of the vessel is
controlled by the stern propeller. The propeller revolution is kept constant and the CPP
is used to control the thrust force. A rudder is used to control the sway and yaw motions
according to the thrust model given by (13). The selected forward speed is Uy = 4-Om/s,
and the way-points p, are selected as p. = {(0,0),(1000,0),(1000,1000),
(0, 1000), (0, — 1000), ( — 1000, — 1000), ( — 1000, 0), (0, 0) }. Wind forces correspond-
ing to Uy = 5m/s from North were also added. The controller gains are chosen as
K, =diag(0-1,0.5), K = diag(0-5, 2-0), K; = diag(0-01,0-05) and the VRP is given
by d. = [40:0,0]". Simulation results are presented in Figures 2-5. As seen from
Figure 5, the open loop heading error is within + 1° for this disturbance and speed.

5. Conclusions

A nonlinear way-point tracking controller for ships has been presented and stability
has been proved by using Lyapunov theory. A nonlincar model of the Japanese training
ship Shiojimaru was used for computer simulation. Both the position and velocity error
converges exponentially to zero. Also wind forces from the North were added to verify
the performance and the robustness of the proposed controller.

Appendix A. Mathematical Model of Shiojimaru
The nonlinear model of Shiojimaru (Ohtsu et al. 1996), is written:

Mp+n(p)=71 (A.1)

where v = [u, v,r]Tand M = diag (m + m,,m + m,, I, + J;). Here mis mass of ship, m,,
m, is added mass in x- and y-direction. I, +J; is inertial and added inertial moment
around the z-axis. The nonlinear vector n(») represents the Coriolis, centripetal and the
hydrodynamic forces:

n = Cilulu — X VIv| — Xovr — X,VIr| — Xov? — X,r? (A.2)
ny= — YWy Yooy =Y, Vr — Y, |rlr =Y, |rlv (A.3)
ny= —N,Vv— N,|v|[v— NVr —N,|r|lr — N, |r|v (A.49)

where V is the ship’s speed V ="V u? + v2 The vector 7 represents all external forces
due to the propeller, rudder and environmental disturbances.

Ti=XptXgtXw (A.5)
T2 = YR + Yw (A.6}
T3 = NR + Nw (A?)

Here the subscripts P, R, and W denote the forces and moment corresponding to the
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propeller, rudder and disturbances. The thrust force of the propeller (constant pitch
angle 0p) is:

Xp=(1-— t)pn’D?(Co + C0p+ CaoJp
+ C30pJp+ Cs0%+ CsJ2+ Cs02J5
+ C10pJ% + Ce0} + CoJ3) (A.8)

Here t denotes the thrust deduction fraction and »n, Dp and Jp are the propeller
revolutions, propeller diameter and advance coefficient, respectively. C,~ Co are
empirical coefficients. The rudder forces are written:

Xr= —(1 — tg)Fnsind (A9)
Yr= — (l —ﬂH}FNCOS(s (AIO)
NR= - (xR+aHxH)FN0055 (A.ll)

where g, an and xy denote empirical coefficients due to hull-propeller interactions and
xp is the rudder position. The rudder normal force Fy is

Fy= ;pARf“(Uﬁsinﬁ + pr(v + lgr)Ugcosd) (A.12)

where Ag and f, denote the projected rudder area and its normal force coefficient. yx,
Iy are empirical coefficients representing the fairing effects of the stream behind the hull.
The effective rudder inflow is:

Ur=(—k.)(1 —wp)u+ k,(0-TnDpn)tan0p (A.13)

where £ denotes the ratio of axial velocity between the propeller position and the rudder
position. k, denotes the propeller acceleration fraction. The rudder dynamics is modeled
by
(6. — )

(16 — 8|Trup + a@)
where 6, is the rudder command and Txyp is the rudder time constant and a is a constant.
The rudder angle is limited t0 Omin =0 =8Jmax The wind forces on the ship’s
superstructure can be represented as follows (Fossen 1994):

&=

(A.14)

1

Yw= 7 PaA Ul Cx (A.15)
1

Yw= EpAAmU%va (A.16)
1

Nw=> PrAoLppUyCy (A.17)

where Cx, Cy and Cy are the wind coefficients. p, is the density of air. Asand A,, are
the lateral and transverse projected area of the superstructure respectively. The
coefficients Cx, Cy and Cy are all functions of the wind direction relative to the ship.
An approximation is:

Cx=Cxcosa (A.18)
Cy=Cysina (A.19)
Cn=Cnsin2a (A.20)

where Cy, Cy and Cy are constants.
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Appendix B. Zero Dynamics

Since we do not control the yaw mode directly, we must ensure that the ship will
not rotate 180° as discussed in the introduction. The zero dynamics at the equilibrium
point (¥, €y, 2o) is found by applying the control law (21) together with (12):

r=Ev,+F[n(y)—b] (B.1)

where
E={e;}=M"'BB,' (B.2)
F={,}=M (BB, "TM "' —I) (B.3)

Based on the model in Appendix A, the closed-loop dynamics can be written as:

0=ty (B.4)
V= enVs— X.(fiznz + faana) (B.5)
F=enVs+ fan,+ fun; (B.6)

where we assumed d, = [x,,0]”, b =0 and R = L. Notice, that the zero dynamics does
not depend on the selected controller gain since the error dynamics is zero at the
equilibrium point. Further, we see that (B.4) yields exact tracking in surge, whereas
(B.5) and (B.6) yield the zero dynamics for sway and yaw. Let the desired reference
be zero, v = 0, then the yaw r rate will be proportional to the sway velocity v according
o

r= —vfx, (B.7)

since vy—v—x,r=0 at the equilibrium point. The physical interpretation of the
constraint (B.7) is that the ship’s center of rotation is allowed to move on a circle, where
x, is the distance from the center of the rotation to the VRP. The coupled sway/yaw
closed-loop stability can be evaluated by requiring r = — v/x, in (B.5)-(B.6). Note, that

Figure B.l. Upper plot: V for U;=4-0m/s and x, = {5,6,7,8,9, 10} m. Lower plot: V for
x,.=40-0m and U; = {0,1,2,3,4,5} mis.
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we only have to consider one degree of freedom, since both the sway and yaw motions
are coupled by (B.7). From Appendix A we find

ny =Y Ugxor + Yo |xrix,r = Y,Usr = Y, |r|r + Y, |rlx,r  (B.8)
n3=N,Ugx,r + Ny |x,r|x,r — N,Usr — N |rlr + N, |rix.r  (B.9)

Define V= %rz. The yaw/sway motion will be stable if
V=r<0, Vr+#0 (B.10)

As seen from (B.8) and (B.9), V is a function of both the forward speed U, and x,.

In Figure B.1, the upper plot shows the V for x,= {5,6,7,8,9,10}m and
Uy = 4-0m/s. Notice, that the choice of VRP is critical for the closed-loop stability. For
x,<8m, the sway and yaw motion is unstable, e.g., the ship will rotate around. The
lower plot shows V for different forward speeds for x, = 40-0m and we notice that the
ship will be stable for all speeds. V becomes more negative for higher speed which is
reasonable since the hydrodynamics forces will be more significant. Since V>0 and
V <OVr # 0, the yaw motion is asymptotically stable for constant set-points.
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