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HUGIN is an untethered underwater vehicle (UUV) intended for bathymetric data
collection for detailed scabed surveying. The HUGIN sensor suite, consisting of
standard commercially available navigation sensors and a multibcam echosounder,
is briefly presented. A Kalman filter based post processing integration of UUV
sensors and survey vessel sensors is discussed. Resulting UUV position and heading
accuracy and important characteristics of the post processing filter is shown with
simulation results and results from a commercial survey operation. Finally, we
briefly show how the claimed position and heading accuracy has been verified.

1. Introduction

In the HUGIN development program two untethered underwater vehicles have been
produced. The vehicles are fitted with a Kongsberg Simrad EM 3000 multibeam
echosounder for underwater surveys to depths of 600 m. HUGIN I had its first sea trial
in summer 1996 and has been used as a test and demonstration platform. HUGIN II
was in spring 1998 put into commercial operation, offering services to the survey
market. The HUGIN development program is a co-operation between Norwegian
Defence Research Establishment (FFI), Kongsberg Simrad AS, Norwegian Underwater
Intervention AS (NUI) and Statoil (Stgrkersen et al., 1998).

The aided post processing navigation sysiem presented in this paper, was used in
a commercial survey operation (Asgard Transport) with HUGIN I on the Norwegian
continental shelf in autumn 1997. The claimed positioning accuracy has been verified
and documented in Jalving & Gade (1998). The aided navigation system is currently
being integrated in the Neptune/Merlin commercial post processing package from
Kongsberg Simrad AS.

2. UUY positioning

The objective of the HUGIN system is to collect data for detailed seabed mapping.
Fig. 1 shows the navigation systems and sensors necessary for positioning of multibeam
echosounder data in global coordinates. A commercial survey vessel will typically have
its position provided by Differential Global Positioning System (DGPS). The position
of the HUGIN vehicle relative to the surface vessel is measured by means of the High
Precision Acoustic Positioning system (HiPAP) from Kongsberg Simrad AS. In order
to determine the orientation of the EM 3000 transducer, which is necessary for
positioning of the EM 3000 footprint relative to the UUV, HUGIN is equipped with
a Seatex Motion Reference Unit (MRU), which among several data, outputs the
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Figure 1. A seabed mapping scenario with the HUGIN system.
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vehicle’s roll and pitch angle. MRU has an inertial sensor assembly of three gyros and
three accelerometers. Heading is measured by a Leica Digital Magnetic Compass and
depth is measured with a Digiquartz 9001K-101 pressure transmitter. An EDO 3050
Doppler Velocity Log (DVL) provides a velocity measurement.

During a survey mission, EM 3000 multibeam echosounder dataand HUGIN sensor
data are stored locally in the UUV on a hard disk. After a mission, these data are merged
with DGPS/HiPAP position data stored aboard the survey vessel, in the post processing
filter described below.

From a complete EM 3000 footprint positioning error budget presented in J alving
& Gade (1998), it is seen that the horizontal UUV position measurement (combined
DGPS and HiPAP) and the UUV magnetic heading measurement are candidates for
substantially improved accuracy.

3. Kalman filter design
Estimating horizontal position and heading, a possible basis includes:

® Sensor measurcments

® System knowledge (i.e. models of the UUV, its sensors and the environment)

® Control variables (i.e. rudder deflection, stern plane deflection and propeller
revolution)

By combining measured control variables with a hydrodynamic UUV model and a sea
current model, it is possible to calculate estimates of for instance linear and angular
velocity. However, due to considerable model uncertainty, these estimates are far less




An aided navigation post processing filter for detailed seabed mapping UUVs 167

Table 1. Available sensor measurements for the integrated navigation system.

Sensor Measurement Typical accuracy (1 o)
HiPAP + DGPS UUYV position (relative earth) 2m-4m
MRU Roll and pitch 0.07°

UUV angular velocity (relative the inertial > 10°h

frame) projected into the body
coordinate system

Compass Heading 2°-3°

DVL UUYV velocity (relative the seabed) 0-015 m/s
projected into the body coordinate system

Pressure sensor Depth (after calculations) 0-I'm

accurate than the measurements from the Doppler velocity Iog and the MRU gyros, and
thus this strategy offers no significant aid to the estimates.

Consequently, the position and heading estimates should be based on sensor
measurements and knowledge of their error models. The optimal way to combine this
information is by means of a Kalman filter. Since we have measurements of the wanted
quantities (position and heading), it is convenient to use an error-state Kalman filter.
Rather than estimating the position and heading directly, this filter estimates errors in
measured and computed quantities.

In order to estimate any errors, we need some kind of redundant information, which
in case of an error-state Kalman filter should be realized by providing more than one
measurement of each state. As seen in Table 1, no such measurements are available,
and hence we need external computations, i.e. some combination of measurements
calculating the desired quantity:

® Analternative position can be calculated by integrating the body fixed velocity
vector in the direction given by the measured roll, pitch and heading (dead
reckoning).

® Integration of the angular rates with roll and pitch can give an alternative heading
(compensating for earth’s angular rate).

In this manner we get two independent positions and headings available. The
independent positions and headings also have complementary characteristics. Whereas
the measured quantities may have significant high-frequency errors, the computed
quantities will be very accurate in the high-frequency band, as they are based on
measurements of the derivative. On the other hand the computed quantities have very
poor low-frequency properties, drifting off the true value due to sensor errors. Hence,
the limited errors of the measured position and heading are vital to ensure low-frequency
stability of the Kalman filter estimates. Altogether a combined solution offers increased
low and high frequency accuracy.

Measurements to the error-state Kalman filter are the difference between measured
and computed quantities, as shown in Fig. 2.

Based on the measurements and sensor error models, the Kalman filter estimates
all the colored sensor errors and the errors in the computed quantities.

The sensor error models were found by established system identification methods.
Sensor data from both sea trials and static conditions (fixed HiPAP transponder, fixed
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Figure 2. Kalman filter structure.

DGPS receiver and fixed UUV orientation) was used. The errors were modelled as
combinations of white and colored noise as shown in Table 2. The colored parts are
well represented by first order Markov processes.

The colored sensor errors thus sum up to four Kalman filter states (the position
measurement error has both a north and east component). Further, one single integration
gives a new state, leading to three states from the estimation of errors in the computed
quantities. Thus, the Kalman filter has a total of seven states.

The final position and heading estimates can be calculated by subtracting the
corresponding error estimates from either the measured or the computed quantities. As
shown in Fig. 2, the latter is preferred, motivated by the following:

® White-noise is not possible to estimate, hence only the colored parts of the errors
in the position and heading measurements are estimated. Consequently, a
measurement based estimate would contain white-noise. As for the computed
quantities, the integration process has eliminated the white noise component from
the MRU, compass, and Doppler velocity log, and the entire error may be

estimated.
Table 2. Summary of the sensor error models.
Sensor Colored part White-noise part
HiPAP + DGPS X X
MRU, roll and pitch

X
MRU, angular rate X

Compass X X
DVL X
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® The computed quantities are higher order processes, and are much more
correlated in time than the first order Markov processes. Hence, errors in the dead
reckoned position and the computed heading are far more predictable, giving
more accurate a priori estimates and thus reduced a posteriori estimation
uncertainty. During measurement drop-outs, the Kalman filter can only predict
the errors, and the predictability is particularly important.

® Due to occasional measurement drop-outs of the DGPS or HiPAP, the more
reliable dead reckoned position is a preferred basis.

4. Smoothing

A Kalman filter is recursive and its estimates at time 7, are based on all measurements
prior to and including #. Since there is no real-time requirement in the post processing,
measurements after #, should also be utilized. The matter of finding an optimal estimate
based on both previous and future measurements is referred to as smoothing.

Smoothing has several advantages compared to just a conventional Kalman filter:

® Since all measurements are known a priori, there is no delay in the estimates.

® The smoothed estimates are in accordance with the process model. This is
different from a conventional Kalman filter, where the process model is used only
in the prediction part. Thus, when updating the filter, unexpected measurements
lead to steps in the a posteriori estimate.,

® In a conventional Kalman filter, estimating the current state, most weight is put
on the latest measurements (due to the states’ correlation in time). Thus making
smoothed estimates, the number of relevant measurements is doubled.

® During measurement drop-outs, the estimation uncertainty of an ordinary
Kalman filter increases in accordance with the process noise until the
measurement is back. Knowledge of the next measurement reduces the
uncertainty increase-rate of the smoothed estimate and causes its maximum to
occur in the middle of the drop-out time interval.

To find the smoothed estimates, first the ordinary Kalman filter is run through the whole
time series, saving all estimates and covariance matrices. The saved data is then

processed recursively backwards in time using an optimal smoothing algorithm
(Minkler & Minkler (1993) or Gelb (1974)) adjusting the filtered estimates.

5. Filter characteristics and performance

This section includes results from tests where both simulated measurements and
measurements from sea trials were applied to the design filter.

5.1. Observability

All the Kalman filter states are observable. However, errors in the position
measurement that are more low-frequent than the drift in the dead reckoned position,
are not possible to estimate. In the compass measurement though, both high-frequency
and low-frequency errors are estimated (assuming UUV velocity not zero). The
high-frequency error is found by means of the gyros (computed heading), and the
low-frequency part is estimated by observing the drift in the dead reckoned position
(with the aid of the DGPS/HiPAP position measurement).
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Figure 3. Simulated UUV trajectory. Circle: starting point.

5.2. Simulation results

Simulations are very useful for demonstrating typical filter characteristics. A set of
simulated measurements was derived from dynamical models of the UUV, the
environment and sensor errors. The subset of sensor error models which was also
implemented in the Kalman filter, was bascd on the same crror-modclling. The
simulated UUYV trajectory is shown in Fig. 3, the UUV forward velocity was 2.1 m/s.

5.2.1. Position estimation

Fig. 4 shows the results from the position estimation. The UUV has moved straight
eastwards, and clearly the position measurement contains both high- and low-frequency
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Figure 4. Horizontal UUV trajectory. True (a), measured (b), dead-reckoned (c), filtered
estimate (d), smoothed estimate ().
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Figure 5. Position estimate uncertainty (standard deviation). Filtered estimate (dashed),
smoothed estimate (solid), measurement uncertainty (dash-dot).

noise. The dead reckoned position is drifting, but is very smooth, which in this case
means small high-frequency errors. As the Kalman filtered estimate is susceptible to
measurement noise, it is not as smooth as the dead-reckoned position. However, the
smoothed estimate is both smooth and very close to the truth.

The accuracy of the north and east position estimates is shown in Fig. 5. For
comparison, the position measurement uncertainty is also indicated. The change in this
quantity is due to the depth increase, leading to lower HiPAP accuracy.

Because the filter is initialized by the position measurement, the accuracy of the
filtered estimate equals the measurement accuracy in the first time step. As the number
of relevant measurements increases, the accuracy converges to below 2 meters. At
time = 800 seconds, the UUV starts a 45° turn, leading to increased uncertainty in the
north direction and decreased uncertainty in the east direction. This demonstrates the
difference in accuracy along-track and cross-track, which is due to a similar
characteristic of the dead-reckon drift. The main contributor to the dead-reckon drift
is the compass-error, whose drift contribution is of first order in the cross-track
direction, but only of second order along-track.

From the figure it is evident that the smoothed estimate is generally better, but at
the last time step there are no more future measurements available, and the smoothed
estimate equals the filtered, both in accuracy and value.

5.2.2. Heading estimation

Fig. 6 shows the heading estimation. The graphs are very similar to the
corresponding graphs of the position estimation. In addition it is apparent that both the
computed heading and the filtered heading estimate are initialized by the compass
measurement.

The heading estimation error standard deviation is shown in Fig. 7. The smoothed
solution offers more than a tenfold improvement in accuracy over the compass
measurement.
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Figure 7. Heading estimation uncertainty (standard deviation). Filtered estimate (dashed),
smoothed estimate (solid), measurement uncertainty (dash-dot).

5.3. Results from real surveys

Fig. 8 shows the horizontal trajectory from a real survey in Boknafjorden in Norway,
at adepth of approximately 320 m. The Kalman filtered position estimate is clearly more
susceptible to measurement errors than the smoothed. The considerable drift in the
dead-reckoned position is due 1o a significant steady compass error.

In Fig. 9 measured and estimated heading are shown. According to the filter there
is a compass error in the order of 3°. At the time of this survey, declination and the
UUV’s magnetic signature was not yet compensated for.




An aided navigation post processing filter for detailed seabed mapping UUVs 173

Figure 8.

Figure 9.

Trajectory

—1100 1 L 1 1 1 Il Il
0 5 w0 15 20 25 20 35
Cross track (m)

Horizontal UUV trajectory. Measured (a), dead-reckoned (b), filtered estimate (c),
smoothed estimate (d).
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6. Verification of performance

There are several established methods for determining the quality of the produced
Digital Terrain Model (DTM). An obvious method would be to map a marker placed
on the seabed in a known location. At present, no such data is available, but natural
features, for instance rocks, are visible on the sonar data and can be classified as objects.
In cases where we have overlapping sonar data and can identify the same object on two
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Table 3. Comparison of object observation position offset in filtered data set (smoothed
position and heading) and unfiltered data set (combined DGPS/HiPAP position and
compass heading). Theoretical uncertainties of the two data sets are also calculated.

Observation Observation Theoretical Theoretical
position offset position offset uncertainty prior  uncertainty after
prior to filtering  after smoothing  to filtering (1 6)  smoothing (1 0)

Object (m) (m) (m) (m)

no. North East North East North East North East

1 75 2.0 <05 <05 5-12 3.40 1-17 1-00

2 4.6 23 <05 <05 5-06 3.40 1.16 1.00

3 1-8 4.5 <0-5 0-8 4.92 339 1-15 1-00

4 3.0 1-2 <05 20 492 3.38 1-15 1.00

5 62 20 <05 <05 5.43 3.42 1-21 1.00

6 4.2 1-3 16 <05 5-59 341 1.22 1-00

7 70 5.0 1.5 1.2 5-48 3.32 1.21 099

8 8.0 <05 1.7 0-6 4-64 3.32 1-12 0-99

9 85 0.7 20 05 4.26 3.32 1.08 0.99

10 3.6 22 1.7 0-5 4.82 3.31 1.14 0-99
11 0.7 20 13 2-0 3.28 3.24 1-13 1.27
12 29 1-1 03 <02 3.24 3.24 1-13 1-27
13 01 0-8 01 03 3.30 3.24 1-14 1.27
14 33 2.3 <0 <05 4.17 3.76 0-84 079
Average: 4.39 1.98 0-84 066 459 3.37 1-13 1-04

footprints, an offset between the two observations indicates DTM position error(s).
According to Jalving and Gade (1998), the UUV heading and position uncertainties are
the main contributors to the DTM position uncertainty. Comparing the offset between
the observations prior to' and after the filtering thus gives an idea of the improvement
achieved in the post processing.

The observed offsets can also be compared with theoretical values calculated from
the uncertainty in the position and heading. Prior to the filtering, the position and
heading uncertainties are given by the DGPS/HiPAP and compass accuracies (listed
in Table 1). For the observations in the filtered data set, the theoretical value is based
on the Kalman filter standard deviation of the position and heading error estimate. Due
to a temporarily invidious installation of a magnetic valve and a few other non-ideal
circumstances, we assumed a heading uncertainty of 0-8° instead of the much better
Kalman filter standard deviation. Table 3 summarizes comparisons for all the objects
we found in the runs from Asgard Transport and Boknafjorden. Each object is mapped
two times separated with a time interval of 30 minutes or more, passing the object from
opposite directions. Most of the objects from the A sgard Transport were at a depth about
350 meters.

For some objects there was no measurable position offset between the two
observations, which is indicated in Table 3 by using the “less than” sign (< ). The value
after the sign is dependent upon the accuracy of the observation. When computing
average, this value is divided by two.

In Table 3 we notice a significant improvement in the filtered data. Furthermore,
we can compare the observation position offset after filtering with its theoretical
standard deviation. Assuming normally distributed errors, 68% of the observed position

IPrior to the filtering, the measured position and heading are used directly.
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offsets should be within its standard deviation. The bold figures indicate an offset
cxceeding the standard deviation, and we have 19 of 28 inside, which is exactly 68%!
However, this test only compares each value with a boundary, not taking into account
how far from the boundary they are. Investigating the average actually indicates a better
performance than anticipated. This may suggest that the filtered heading uncertainty of
0-8° used in the theoretical standard deviation calculations is too conservative. In Table
3 we also notice that the observation position offsets prior to filtering are slightly better
than the theoretical values. This is probably due to a counteractive effect of the UUV
static magnetic signature.

7. Conclusions

The accuracy of seabed maps based on UUV data can be considerably improved
by an aided navigation post processing filter.

It has been demonstrated that a combination of all relevant sensors in an error state
Kalman filter offers a far more accurate position and heading, than direct use of the
position and heading measurements. Further, the Kalman filtered estimates may be
considerably enhanced through a smoothing algorithm. At 300 m depth, a UUV position
accuracy of 1 m (1 ¢) and a heading accuracy of 0-5° (1 ¢) has been achieved.
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