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Nonlinear Oscillations in Coriolis Based Gyroscopes

DAG KRISTIANSEN and OLAV EGELAND}
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In this paper we model and analyze nonlinear oscillations which are known to exist
in some Coriolis based gyroscopes due to large amplitude excitation in the drive
loop. A detailed derivation of a dynamic model for a cylinder gyroscope which
includes geometric nonlinearities is given, and energy transfer between the system’s
modes are analyzed using perturbation theory and by proposing a simplified model.
The model is also simulated, and the results are shown to give an accurate
description of the experimental results. This work is done in order to gain a better
understanding of the gyroscope’s dynamics, and is intended to be a starting point
for designing nonlinear observers and vibration controllers for the gyroscope in
order to increase the performance.

1. Introduction

Coriolis based gyroscopes, in which vibrating cylindrical shells are used as sensing
elements, are gyroscopes which possess a number of advantages over conventional
spinning wheel gyroscopes. Troublesome bearings are totally eliminated, they have low
power requirements, short start up time and very low inherent noise (Langmaid 1996).
In addition, if the vibrating cylinder is designed to give a dynamically balanced
oscillator, it is known that performance is not, at least to a first order, sensitive to linear
acceleration (Fox 1984; Kanani and Burdess 1990).

Although the cylinder gyroscope has many attractive properties, it also introduces
some challenges with respect to modeling and control. One of the most important
problems is the existence of unwanted superharmonic responses (Nayfeh and Mook
1979) in the drive and sense loop of the gyroscope when the excitation amplitude
becomes large. This cannot be explained by linear vibration theory. However, this type
of behaviour is well known in the theory of nonlinear oscillations and dynamics (see,
e.g., (Nayfeh and Mook 1979; Evan-Iwanowski 1976)).

The dynamics of a cylinder is also known to be very complex. There appears to be
no simple rule for determining the spacing of the linear eigenfrequencies as the
circumferential and axial wave numbers are varied (Leissa 1973). Also, the natural
frequencies of shells do not fall in ascending series with increasing values of the model
index (Blevins 1979). In addition, one wants to minimize the size of the gyroscope. This
means that it is interesting to investigate the effect of introducing nonlinear observers
and vibration controllers in the design.

Langdon (1982) and Fox (1984) analyzed cylinder gyroscopes by representing it
as an infinite cylinder. Burdess (1986) investigated the feasibility of a piezoelectric
cylinder gyroscope and derived an electromechanical model by using Lagrange’s
equation. Loveday (1996), Fox (1988) and Shatalov et al. (1996) analyzed the effect
of mass imperfections in cylinder gyroscopes. The temperature dependence of zero
offset was investigated in Abe et al. (1996). Other references on the subject are, e.g.,
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Shuta and Abe (1995), Anders and Pearson (1994), Kagawa er al. (1996), Abe et al.
(1992, 1996). Common for all these references are that they were only analyzing linear
models and therefore did not include important nonlinear effects.

In existing industrial gyroscopes, the problem of superharmonic resonances is
“solved” by reducing the excitation amplitude, but since the Coriolis acceleration is
proportional to this amplitude, this means that the sensitivity of the gyro decreases.
However, a more constructive solution may be to introduce vibration damping
controllers to reduce the effect of the superharmonic vibrations and therefore be able
to increase the performance of existing gyroscopes. From a control design point of view,
it is important that the model used for describing the dynamics of the gyroscope just
includes the most important effects (in our case the energy transfer), since an
unnecessary complicated model will only lead to an unnecessary complicated control
design.

Nonlinear vibrations in cylinders have been investigated by a number of researchers.
Traditionally, much of this research has been focused on whether the shell behaves as
a hard spring or a soft spring, and whether the type of behaviour depends upon the
boundary conditions and/or the shell being open or closed (Leissa 1973; Chu 1961;
Chen and Babcock 1975). Modal interactions in spherical shells were investigated by
Yasuda and Kushida (1984), while the nonlinear forced responses of infinitely long
circular cylindrical shells are reported in Nayfeh et al. (1991), Nayfeh and Raouf (1987).

In this paper we extend the method proposed by Burdess (1986) to include geometric
nonlinearities in the model. Based on experimental observations, we derive a nonlinear
three-mode model of a cylinder gyroscope. This model is then analyzed using the
method of multiple-scales (Nayfeh and Mook 1979). We also show how the model can
be simplified, but which still incorporate the energy transfer. This is important when
designing observers and controllers. The reduced model is then simulated, and the result
corresponds well to the theoretical analysis. To the authors’ best knowledge, this is the
first time someone has proposed a nonlinear model for cylinder gyroscopes.

The paper is organized as follows: In Section 2 we give a short review of the theory
of operation of cylinder gyroscopes. A simple experiment is carried out in Section 3.
The basic shell equations are given in Section 4. The equations of motion are derived
in Section 5 and analyzed in Section 6. A simplified model is proposed in Section 7
and simulated in Section 8. Concluding remarks to this work are given in Section 9.

2. A short description of cylinder gyroscopes

The gyroscope analyzed here is based on the use of a uniform vibrating cylinder
which is clamped at one end and mounted on a pedestal so that the other end is free
to vibrate (see Fig. 1).

The cylinder is assumed to be thin and perfectly axisymmetric. On the outer surface,
there are attached eight identical equispaced electrodes, 1 to 8, and they are electrically
connected in pairs: 1 with 5, 2 with 6, 3 with 7, and 4 with 8. A periodic driving force
is applied to electrodes 1 and 5 at the resonance frequency of the cylinder such that it
is vibrating at the second circumferential mode. This is shown in Fig. 1. The response
is measured by electrodes 3 and 7, and therefore by using a feedback controller, the
response can be held at a preset value.

A second set of measurement electrodes are arranged to be set on the *+ 45° nodal
lines of the forced circumferential mode, and will ideally produce no output as a result
of the oscillator vibration.

When the cylinder is rotated about its central axis, the Coriolis inertia force will
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Figure 1. The cylinder gyroscope. The left figure is taken from [15].

generate a secondary motion, as shown by the dotted line in Fig. 1. This new vibration
will generate an output on electrodes 2 and 6 which is proportional to the angular
rotation velocity. If the voltage applied to electrodes 2 and 6 is provided by introducing
negative feedback from electrodes 4 and 8, it is possible to drive the secondary motion
to a null value. This is necessary so that the gyroscope can respond to rapid changes
of angular velocity. The voltage applied at electrodes 2 and 6 is taken as a measure of
the applied rate of turn.

In order to increase the sensitivity of the gyroscope, one can theoretically do this
by increasing the amplitude of the excitation, since the generated Coriolis acceleration
is proportional to the excitation amplitude (Fox 1988).

For more information of the theory of operation of the gyroscope and the control
strategies, the reader is referred to (Langdon 1982; Fox 1988; Burdess 1986).

3. Experiments on a non-rotating gyroscope

In this section we will illustrate by an experiment that when the excitation amplitude
becomes large, there will be an energy transfer from the excited mode into
higher-frequency modes whose frequencies are determined by the linear natural
frequencies of the gyroscope. A signal generator was connected to a cylindrical
gyroscope made of steel which attached piezoceramics (Fig. 2). The diameter of the
gyroscope was about 15mm, and the length was about 24mm. The first three
cigenfrequencies of the gyroscope which could be observed by this set-up was at
approximately 14-6, 43.5, and 61-3 kHz.

A harmonic excitation with different values of f, and with Q adjusted to drive the
gyroscope into self-oscillation at the second circumferential mode (2= ®,) was
connected to transducers no. 1 and 5, and the output from transducer no. 3 and 7, then
no. 2 and 6 was analyzed with an FFT-analyzer. The results are shown in Figs 3-6, and
Table 1.

The constant bias and the peak at 14-5kHz in Figs 5 and 6 is basically due to
geometrical errors in the location of the electrodes, and to the fact that the cylinder is
not perfectly axisymmetric (Shatalov et al. 1996). This can however be taken care of
during the calibration process.

The Fourier spectrum of the excitation signal from the signal generator withf, =4V
and Q= @®,=91-1 - 10*rad/s (14-5kHz) is shown in Fig. 7.

From this experiment we can conclude that when the amplitude of the excitation
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Figure 2. The experimental setup.
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Figure 3. The Fourier spectrum from transducers no. 3 and 7 with f;=1V and
Q=a;=91-1- 10°rad/s (14-5kHz).

is large, energy will be transferred up in the frequency spectrum. If these additional
peaks are not associated with second circumferential modes, they result in a
time-varying bias and are therefore unwanted.

4. Shell equations

In this section, we give the basic equations which are used to derive the equations
of motion in Section 5.

Consider a thin, cylindrical shell as shown in Fig. 8. The cylinder seen from above
with piezoelectric ceramics is shown in Fig. 9. The cylinder is clamped at x =0 and
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Figure 4. The Fourier spectrum from transducers no. 3 and 7 with f; =4V and

Q = @, =91-1 - 10°rad/s (14-5kHz).
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Figure 5. The Fourier spectrum from transducers no. 2 and 6 with fi=1V and

Q = @, ~91-1 - 10°rad/s (14-5kHz).

free at x = I. We assume that the radial stress ¢.., and the shear strains &,, and &4, are
negligible, since we are considering a thin cylinder.

There are a number of theories describing the deformations of a shell (Blevins 1979;
Leissa 1973). Of the most common theories, Donnell-Mushtari shell theory is
considered as the most simple, and Fliilegge-Sanders shell theories are generally felt to
be most accurate (Blevins 1979). Due to the fact that in the design of control systems,
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Figure 6. The Fourier spectrum from transducers no. 2 and 6 with f;=4V and

Q= @, ~91-1- 10°rad/s (14-5kHz).

Table 1. Experimental results with Q = @,

Fig. no. Electrode no.  f; Type of response

3 3and 7 1v Except from the constant bias, there is one peak

(=1-1V)at =14.5kHz

4 3and 7 4V Except from the constant bias, there are three significant
peaks. The first one ( = 5-5 V) at = 14-5 kHz, the second
one (=0.016V) at =29.25kHz and the third cne

(=0.0082mV) at =43.75kHz

5 2 and 6 1Y% Except from the constant bias, there is one peak

(=39mV) at ~ 14.5kHz

6 2and 6 4V Except from the constant bias, there are three significant
peaks. The first one (=0-02V) at = 14.5kHz, the
second one (=2.1mV) at =29-25kHz and the third

one (=84mV) at =43.75kHz

it is common to work with the simplest possible models, we here use the

Donnell-Mushtari shell theory. The displacement u* can then be written as

ui=wu; — aﬂ
1 Zax
ui:u _E%
2 R a0
ui=us
|
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2
3
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Figure 7. The Fourier spectrum of the excitation signal from the signal generator with f; =4V
and Q =@, =91-1 - 10*rad/s (14-5kHz).

k

Figure 8. Geometry of a thin cylindrical shell with length L
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Figure 9. The cylinder with piezoelectric ceramics seen from above.

is the displacement at z, and

Uy
u=\u
Us

is the displacement at the mid-surface respectively in the axial, circumferential and
radial direction.

The expressions for the axial (g,,), circumferential (), and shear (g,4) strains in
which the second-order terms are included, can be written as (Leissa 1973; Chu 1961)

€= e\l +2kn + &l
E00= &9 + 2k + &% )

ex0= €7+ ki t+ e

where
el = % (6)
ety =5 2+ 2 )
el =z 2ot 4 22 ®
A= 3n(2)
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For an isotropic shell, the expressions for the axial (o, ), circumnferential (ay¢), and shear
(0x0) stresses is given by

Oxx Cn Ci1z 0 Ex
oo |=|ciz et O || € (13)
Gy 0 0 cn)\ew

where c;; is elastic coefficients.
The constitutive properties of the piczoceramics, can be written for electrode i as
(Hagood et al. 1990):

(Di) (€5 0 o0 0 0 o)(E)
Dj 0 €1 0 0 0 0 Ej
D; 0 0 €3 e3 ey 0 E::
- — (149)
&f\'x 0 0 - €3] Cfl CJI‘:Z 0 éi‘x
a'fm 0 0 —es Ciez Cfl 0 fﬁfm
\a‘inj \ 0 0 0 0 0 CE’},) L\éiﬂ)

where D, and E}, are respectively the electric displacement and the electric field in the
nthdirection. €jaredielectic constants measured at constant strain, e, are piezoelectric
stiffness constants, ¢ are piezoelectric stiffness constants measured at constant electric
field and

8io= &l + zkn (15)
&ho= &% + zkn (16)
8lg= 8l + zkyz (17)
We will study electrodes made of polarized PZT, thus
Di=Dj=0 (18)
D= €5E;+ ey (8ix+ En) (19)

Following the same arguments as (Burdess 1986), it can be shown that the electric field
under the ith electroded region can be written as

N L
E;=—(D;—exn(&+ &)
3

€ 0)
1 G ~ 65 A Hy A -
= (—‘5([831(8i1 + &%) __h__;v'] —en(8 +zkn + &% + k)
P




36 Dag Kristiansen and Olav Egeland

where V; is the potential difference between the outer electrodes and the inner earthed
electrodes (Burdess 1986).

4.1. Kinetic energy

We assume that the mass of the piezoelectric transducers is negligible compared
to the mass of the cylinder. The kinetic energy is then given as

- ;"f I ’ f *h [(@5)? + (@3)” + (i3)"] RdzdOdx
ff (@ -zaxa;)”(*z-é%;) + i | Raata
[ o2

azu3) z &us ]
+( ) (60&! 2R 3001 ity + 05 | RdzdOdx

Integranng over z, and neglecting terms associated with rotary inertia and terms of order
( R)’ and higher in accordance with thin shell theory, the kinetic energy can be written as

@21n

2n
T——thJ (i3 + i3 + i3] dOdx 22)

4.2. Potential energy
The electric potential energy is given as

W__zj J’ﬂ”'J”zE E.D! R+ (h+h,,))dzdﬂdr (23)
o Jo,

The mechanical strain energy can be wntten as

— 5 f F k[a’u. Eyx T GppEgn + O'xﬂﬁ.tﬂl Rdzd0Odx
oJo J-2 24

8 I rtitl L
+ ! > f fﬂ F [65x8ix + GhoBlho + GloExa) (R +1 (h+ h,,)) dzd0dx
250 J, -br 2

Following the same arguments as in (Burdess 1986), it can be shown that W — U can
be written as

wW-U= ( ------ Vi— 2¢35|R(En8n)) ___'(k o+ ko)

E ~i YRy Cfl"-cfz Aiomi
—cnRh,| (Eny +E%)" —2 T oE (EWERn
B

1 ? . h3R
(Y @hr)) - SR (G + ke
11 12 (25)
e =B\~ A ] ck n
_2( .z)(k.u+k-22_2(c_ﬁ-_f6_,f)(km)z))
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5. [Equations of motion
The Lagrangian (L) for the gyroscope is given by using (22) and (25):

L=T+W-U

l 2
= sz [pRh(&f + i3+ i3)
040

-e,.Rh((e"“ efl + e +e)? -2 (""c “”)((s“" + et (e + e
11
_l_( €33 ) l'm )2))
2\¢) —cnz
h'R
cn ((k1|+kgg)2 (Cn ii‘lg)(k“k22 ( C33 )k?z))]dﬂdx
< 2 Cip—Cy2

R
r £3 283]R(8||+622))
il

(k +kip)2 — e Rh, [ (B, + £5)
(4

83|th
12

-2 ) (e (% )Jen)

chhiR ch—ct\(p 7 1f cé i
— SO (i + By - e L sy R0 | K
(26)

Based on the results in Section 3, and due to the configuration of the piezoelectric
transducers and the shape of the circumferential modes, we assume that the cylinder
motion can be expressed as a 3-mode discretization of the continuous system in the form

U\n(x) cos 2n0
u(t,x,0)= 2, n.(t)| Uz (x)sin2n0 @7
n=1
Us,(x) cos 2n0

where U,,,(x) are the linear undamped axial modes of the system without piezoceramics
and are derived in Appendix A. #.(?) represent the observed modes in Figures 4 and
6 and can be treated as generalized coordinates.

Introduce Y = |yJx|, which is given as

=0, for k=0,

\L’k=0&+|“0k, fork=1,...,8 (28)
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and let 7, 72 and 15 be associated with electrode 1,3,5,7. Then by calculating L by
inserting (27) into (26) (see Appendix B) and by using Lagrange’s equation in the form
d (GL) oL
= 29
de 3'?: a'f:‘ ( )
and adding viscous damping, the differential equations for #,,(f) can be written as (using
Q=@ 1)

i+ 2 + @ = anngi + opmnd + oamni + cwanin +oasnin + oenins
+ ottt + Fycos(Q + 14) (30)

iz + 2fiafpy + @312 = a3 + anning + ot + aaayt + oy + azemns (31)
3+ 2f1ap3 + @z = aani + annina + azanins + osand + dasiind + ot (32)

where fi; = 5. Fi = BiF, w, are the linear natural frequencies associated with 7, without
piezoelectric transducers and

eslhp'.”o( ) E"IUBI)zdx

~2_ 2
@i w|+31tph €3IG(U1|+U%|+U§I)dx G
21,3 : Ipgdilzn _ 16 2
o, eshpy (@Y +sind) [ (" — jaUn) dx
Ozt e sphnfh(Uh + U + Updx 69
2lias
2 631h3¢f0(d 3 —zUﬂ) Ydx
By= ity €3phnfh(Uh + Ul + Uk)dx ©
_ enRsin2Y G L (dx + 1 [ Undx + 5 [ Un d) 36)
1 PpRhn (Ut + U3, + U3))dx
g, — RSN Iy + [ Undi t 3, Und) &)
e pRhﬂ_rn(Uu + ng + Un)dx
P _eaRsin6y Y Un)d”fff { U + g Unnd) (38)
? pREn[ (Ul + U + Uy
4
Feos(Q+1)=2D (—1)""Vy, 39
i=1

and the a;; are defined in Appendix B.

6. Perturbation analysis

In this section, we will analyze the internal resonances in the system using the
method of multiple scales. A necessary condition for internal resonance is that the linear
natural frequencies w; are commensurable, i.e., that there exist integer constants k;, such
that kyo, + --- + k,,=0.

We can neglect the cubic nonlinearities in (30)—-(32) since they do not appear in the
first-order approximation (Nayfeh and Mook 1979). (30)—(32) can then be written as
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il + 2 iy + @iy = sy + oy + Ficos(Q + 1)) (40)

iz + 2 iy + @312 = otaan} + ot2smins 41

i3+ 2 i3 + @3 = ot (42)

To express the nearness of Q to @,, we introduce the detuning parameter &, where
Q=+ €& (43)

and € is a small dimensionless parameter and a measure of the response amplitudes.
We seek a first-order uniform expansion by using the method of multiple-scales
(Nayfeh and Mook 1979) in the form

= €EnTo,T)+ €*ma(To, 1) +--- (44)
= €nu(To,T) + €*n2(To, T)) +--- (45)
= €n(To, T1) + €%np32(To, T1) + - - (46)
where
T,= €"t, for n=0,1,2,-- 7)

It follows that the derivatives with respect to  become expansions in terms of the
partial derivatives with respect to T, according to

d dT, a + dl, a

dt dt 0T, dt 0T,

2
"!%'2'=D5+2 €DOD|+ €2(D%+2D0D2)+-" (49)

+-oo=Do+ €D+ (48)

where D, = a_;,,

In order to have the damping, the nonlinear terms and the forcing term appear in
the same perturbation equations, we scale the damping coefficient by letting = € ji
and Fy = €2f,. Substituting (44)—(46) into (40)—(42) and equating coefficients of like
powers of €, we get

Order €
Dinn + @inu =0
Dina + @31 =0 (50)
Dins + @353 =0

Order €2

D+ @tpa= — 2DoD iy — 20D ot + st + ot tia + fi cos(QTo + 1))
Dty + @512 = — 2DoD 121 — 21Donay + ctaany + castni s

Dinsa + @3nsa = — 2DoD 131 — 2Dl + stashnfa
(51)

The solutions of (50) can be written as

m = A (e " + cc (52)
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ﬂg] = Az(T])ewL'To +cc
a1 = Ax(T))e ™™+ cc

(53)
(59

where cc denotes the complex conjugate of the preceding terms, and A, are unknown

complex functions.
Substituting these equations into (51) gives

Diniy + @ = —2id, (DA e’ + I, e“1™)

+ otys(A 1 A2 @ HTo - A A oi@2= ooy

+ 0017(A A 2”@ D0 L A A, '3 9DTh)

+ %fie‘tﬁ"ru Fahitw 4 oo
Diny + @3 = — 2i@(D 142" + iA ,e'")

+ 024 (ATeH 0+ A A))

+ otg6(A 1Az’ @ T B0 A A "3 OT0) + o
Dinan+ @inn= —2iw3(D A0 + fiA ;™ "0)

+ ot36(A 1 Aze™@ M0 A A | @2 00T0) 4 o

6.1. The Case of 2t # @z and 360 # @3
In this case, secular terms will be climinated if

2in(D A, + A = %eu{:lm W

1
DiAr+ A, =0
D\As+ A3 =0

whose solutions are

1 AT i ifi ;
Al =_ae 1!?;"‘!@]_-7' eJ(L|T|+t|]
2 4(0|(il+ l6|)
|
A2=2023 ity tig:
A= 1 aqe—fliﬁ +ipy
24

where a, and ¢, are constants.
Ast— oo, T)— oo

‘f'_gité 1T+ 1)

A @t ie)

A;,—0

(55)

(56)

(&)

(58)

(59)

(60)

(61

(62)
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A;—)O

Substituting (62) into (44)(46) and expressing the result in terms of the original
variables, we obtain the following steady state response

- F, B _ 2
HI—ZECDWSIH(Q‘+TI Yo) + O( €7%) (63)
m=0+0(€?) 64)
=0+ 0(€?) (65)

where yo = arctan(%)).
We notice that when there are no internal resonances, the first approximation is not
influenced by the nonlinear terms. It is essentially the solution of the linear problem.

6.2. The Case Of 25)| = (i} and @3 9‘-'(?)1 + wy

To express the nearness of 2@; to @,, we introduce the detuning parameter &,
according to

Wy =2 + €& (66)
|
(@2 —@)To= 21 — @ + €L)To = @ To+ &7,
2Ty = (2 — €&)To= @ To— &,T ©7
Elimination of secular terms:
—2i@(D A+ LlA) + osALA e + %eﬂf!“ tw =0 (68)
— 2idD1A; + lAS) + apAle 02T =0 (69)
D,As+ fiA;=0 (70)
Let
A, =la|e‘¢' (71)
2
Ar=Laei (72)

2

where a,, and ¢, are real functions of 7). Substituting these equations into (68) leads
to

A o1s
ai= —fpa;+ —

v ajazsin(&;7) + @2 — 2¢1) + izbl'fl cos(&BiTh+Ti— @) (73)

o 1
a,pp = —47;; aia>cos(ExTi + 1 — 1) "Ew_—tf—]ms(ifl'fn + 17— @) (74)

where the prime denotes the derivative with respect to T;.
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Substituting (71) and (72) into (69) leads to

o .
&= — fay———alsin(&; Ty + 2 — 2¢1)

4a
, o
arps= — aﬁia?cos(ﬁzﬂ + 02— 291)
Introduce
N =T+ @2 —2¢
=T +u—@
Then
==&+ ¢ —2¢]
2
o5 Olz4 A7 1 a
=&+ —a,——— +——
P (2@102 %az)cosl’l @ lcos')'z
=61 F @i
o5 1 fi
=& +— +—
&, 20, a,COSY) 2@.01005%

From (77), (78), (43), and (66), we have
=N+t —7
=Q-a)h+tu—mn
2=+ 6N+ +2¢
=2Q—a)To+ 2t + 71— 2y,
Then the response in the original variables is:
m= €Enu(To,T\)+ € 12(To, Th) +---
= €a;cos(Q+ 1, — )+ O(€Y)
m= Equ(To, 1))+ €*42(To,T1) +---
= €azcos(2Q+ 21, + 7, + 2p2) + O( €7)
1 =0+0(€?)

6.3. The Case szﬂh * &)2 and 3(TJ| == (3

(75)

(76)

an
(78)

(79)

(80)

@81

(82)

(83)

(84)

(85)

To express the nearness of @s to @; + @;, we introduce the detuning parameter 3

according to
— @M=+ €&
[}
(@3 — @)To = (@ + €&3)To= i To+ &3Ty
(@3 — @)To = (@2 + €E&3)To=nTo+ &3T)

Elimination of secular terms:

1. ..
2i@ (DA, +:E‘AI) =§f| PUSTIRES

(86)

&7
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DA+ A, =0 (88)
D |A 3 + p.Ag = 0

which are the same equations as (58). This is in agreement with the general theory that
if the system has quadratic nonlinearities, then to first-order an internal resonance can
exist if @,, = 2ax or @, = @, * @,,. For a system with cubic nonlinearities, to first order
an internal resonance can exist if @, ~ 3@y or @, = 2®, * @, Or @, = @, * Op * @
(Nayfeh and Mook 1979).

6.4. The Case of 2@, = @, and 3@, = @3
Elimination of secular terms leads to

- . 1 .
- 2:‘:(1)|(D|A| + ﬁA |) + 05|5A3A |8'¢ZT' + t'angAze“ﬁT' + '2f|€'(¢'r' ta) = 0 (89)
—2i@D1A; + lA7) + aasAie T + ag6A3A €T =0 (90)

—2i@3(D1A3 + flAs) + azeA Are T =0 (91)
Let

A|= a.e“‘”

B[ ot BN

Ar=_a,e'"? (92)

Az= 2d 1e'%3
Substituting this into (89), (90), and (91) gives

o .
ai = - jl‘a. + _15 a.a;sm({ngl + P2 29‘)[)
1

40

1
+ ;—(;azagsin(fgﬂ + @3~ Qa2— (0]) + E(E)]fl Sil'l(€|T| ""E] - @1) (93)

o .
a;= — fia;— 4{_::2afsm(§zT. +¢2—2¢))
+ 25 4 ansin(E Ty + 03— 01— @) (94)
4,
~ 036 .
a; = —uas—;@a.azsm(&aﬂ t@3i—@i—@2) 95)
o s o7 _
aQ = — %Tlatazcos(ﬁzﬂ +@2—2¢,)— ﬁazaaws(faﬂ + @3 —@2— 1)
- fLCOS(flTl + 17— Qi) (96)
2,




44 Dag Kristiansen and Olav Egeland

' 0Ol24 026

a,pr= — @za%cos(fzﬂ +@2—2¢,)— ﬁﬂlaacos(@ﬂ +tes—p2—@)) (97
aygi= = 2 aazcos(taTi+ 93~ 91~ 92) ©8)
)3
Introduce
N =&+ @2—2¢ 99
=8I+ @s— 02— ¢ (100)
p=&Ti+1u—¢; (101)
Then
Y1 =8+ 01— 201
=&+ (ais a— o2 a%)cosw + (a—_" fafs e 0'03)008?2
y o 4, a, 20 ay 4 a;
+&}—l;':cosys (102)
1n=8tei—er— @i
e e R e e
+2Lah£omy3 (103)
Bn=&—@
=, +;—(;azcosy. + ;{; ‘2—?31:0572+2Lﬁ,l‘£cosy3 (104)
Since
=& +1—7p;3
=Q-—a)Tot+tu—ys (105)
¢2=2¢:+ 71— &
=Q2Q-@)To+21,+ 71— 273 (106)
P3=@1t@ity2— &7
(107)

=(3Q—(,_U3)T0+3T| + oyt y2— 2y
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the response expressed in the original variables can be written as
m= €n(To,Th)+ €(To, Ty) +---

= €ajcos(QU+ 1, —p3) +O(€?) (108)
M= €nu(To,Th) + €*p(To, Ti) +--- (109)
= €azcos(2U+ 21, +y,—2y3) + O( €?)
= €n(To, Th) + €*415o(To, Ty) + - -
/K] #31(To, Th) 132(To, Ty) (110)

= €a3cos(3Qr + 37+, +y,— 2y3) + O(€?)

7. Simplified model

From our earlier comments that we are looking for a simplest-possible model, it is
interesting to investigate whether Equations (30)—(32) and (40)—(42) can be further
simplified. From Figs 3 and 4, we see that |1,| > |tj,| and || > |i3|. This means that it
is reasonable to assume that the energy transfer into #, and 1, comes directly from #,.
In other words, we consider only the nonlinear terms in Equations (30)—(32) which are
nonlinear only with respect to #,. Using this observation, it means that Equations
(30)-(32) can be simplified to

i+ 2 + @l = oy ni + Frcos(Qt + 1) (11n
il2 + 2[iai2 + @3N2 = ct2am} (112)
i3+ 2373 + @3n3 = azani (113)

From these equations, some conclusions can be made directly:

—Equations (112) and (113) consist of two linear oscillators which are forced
respectively by the nonlinear terms o2.%f and o497, This means that energy
transfer from #, to 77, and 13 will take place irrespectively of the values of @, and
@s3. However, as the perturbation analysis indicated, this energy transfer will be
largest when @, = 2@, and @; = 3@,. We also see directly that when the forcing
is small (small F, and #,), the excitation of #, and 3 will be small and can be
neglected. However when the forcing is large, the response of #, and #; cannot
be neglected. This is in full agreement with the experimental observations.

—By assuming that #, has been driven into steady-state, i.c., 1, = A, cos(n?),
Equations (112) and (113) can be written as

04A?
i+ 2fafp + @3y = “2 L(1+ cos(2an 1)) (114)
' 3
ﬁ:;+2ﬂ3f}‘3+ﬂ)§fj‘3=a—3:—iA—l(3COS(6)|I)+COS(3C_O|I) (115)

This means that when the system is in steady-state, one is able to use a linear
observer, e.g. a Kalman filter or a Luenberger observer.

8. Simulations

Equations (111)(113) were simulated using SIMULINK™. The following
numerical parameters were used (note that we scaled down the frequencies by a factor
of 10%: f, =4, j, =004, fi; = 0-0005, fis =05, @, = 9-1[rad/s], @, = 38-5 [rad/s],
@y = 27-3 [rad/s], otyy = — 0-03, 024 = — 1, and o34 = — 0-0006. The result is shown in
Fig. 10.
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Figure 10. The Fourier spectrum of the steady state response of Equations (111)-(113).

By comparing Fig. 10 with Fig. 4, we see that (111)—(113) are a good description
of the experimental results.

9. Conclusions

In this paper we have proposed a nonlinear 3-mode coupled model of a cylinder
gyroscope made of steel with attached piezoelectric transducers. The model was derived
based on experimental results and by using the Donnell-Mushtari theory and Lagrange’s
equation.

We then analyzed the model using the method of multiple-scales. It was shown
analytically that the nonlinearities produced perfect tuning for the primary (external)
resonance as well as the internal resonances if the lincar cigenfrequencies were
commensurable. This is important to avoid when designing gyroscopes.

Since we ultimately were looking for a simple model, we showed how the proposed
model could be simplified which is important from a control design point of view.
Simulation of the simplified model was provided, and the result corresponded well to
the experimental observations. Future research will focus on designing nonlinear
observer and vibration damping controller for the gyroscope, which hopefully will
enable us to improve the system’s performance.
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Appendix A. Derivation of axial mode shape functions

We will here derive the axial mode shape functions using Hamilton’s principle
applied to a non-rotating cylinder with no ceramics. The derivation is based on (Burdess
1986; Soedel 1993). Hamilton’s principle becomes

6fl(T—U)&=0 (116)
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where
1 2n
T= —pRhfI (i} + i3 + ir3) dOdx
2 0J0

and

W . ; | _
U= 2).J, L(Oxnex’ Yool +oxed + 0,67 + 64,£4]") RdzdOdx
3

Inspecting each term, we get

1 1y 1 2
5f Tdt = af épRhJ’lj (@ + i3 + iu3) dOdxdt
o 1) 00

1 ¢l (2n
=pRhfr (ﬂ|6ﬁ|+ﬂgaf£2+ﬂ3(5ﬁ3)d0d¥df
Ig oJo
We notice that

f u,ﬁu. = [i;,—ﬁu;]ﬂ[', - f it; 6“,‘dl'

1o To

U
1 1
JN u,5u,= _f ﬁ;ﬁu,-dt
i I
Thus
n ) 2
JJ' Td= — pRhI J" (i-l|(5u| + ﬁzé“z + ﬁ;&u;)dﬂdrdt
Iy L] 0J0
Introduce
S
! ox
K= — U3
2 a0
Then using (1)(2)
ui=u + 2K,

Z
Hﬁ=“2+RKz

and using (12)

_x
ke = ox

- 1 axz
kn= 11750

_Zaxz
km_ﬁ' dx
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(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)
(128)

(129)
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From (118), we get
1 . . ) ) .
du = E(O'Hsf:;' + o€l + 0508 + 0,0 +00,07)dV

where dV = Rdzd0dx.

(130)

We notice that we have to keep the transverse shear terms, even though we have
previously assumed &,, and &g, to be negligible, to obtain expressions for x, and k;

(Soedel 1993).

Let
1 . . . . .
G = (08l +00eli + 0.8k + 0x 83 + 00 i)
then
1) 1ol p2m %
j SU di = f ” SGdvdr
1 rndodo J-2
where
G 4. G . 8G . 8G .
= ;;l+____ 1i + ¥+ _ :‘rm+ _ lin
oG 63?}'68 68{{38”3 68?&‘8 g 531‘;'8 ¢ deln £l

Using (131), we see that
96 Selin = 1 (50” gint g, + 8000 e'}';‘) glin

deliy 2\5glin™™ dglin
Then from (13)
G 1 , ‘ .
gelin = 2 (cngit+ 0, + cr2elif) 6r

1 _
=3 (Oux+ 0,,) Bl

= Oxx de i—lf

(131)

(132)

(133)

(134)

(135)

Proceeding with the other terms in (133) in an analog fashion, and using the fact

that
. du
glin=g, 4+
ox
. 6u3
lin
el =K, +—
ix 2z aﬂ
we get

(136)

(137)

41 2n ,f;
f U dr = f[ f *(6,,92:' +oppell + ol + 0,81 + 0y, el RdzdOdxdt
1) 040 - 7

2n (b

- I‘ I j’ﬁ[anﬁ(e'{f."+zku)+0996(8%{‘+zkn)+0x05(e:|.-5. TN
090 J -2
2

+ 0,.0{ k1 +§ﬂ) + agzﬁ(xg + 6_143_)] RdzdOdxdt
ax o0
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2 s Bx. 1 du, 1 ak,
IA + 5?2 a0
IJ j [" ax ) d0d\, 60+R RTT BB)
6(1 3u| aug 2 BKZ)
70N\R 30 *ox TR ax
s
+O}Z (K]'l‘ )+O’ﬂz (Kg"‘ aﬂ)]Rdzdﬂdde
2 a(au,) a(ax.) (dus) z d(dk2)
ff J [“ ax )J”’""( a0 Tt RrTap )
a(0u,) 8(5&12) a(éxg))
+”""( 0 | ox ax
+ o,zR(é i + a(j;:ﬂ) + ag;R(ﬁxg 6(5“’))] dedOdxdt (138)
Introducing
"
No= f Gudz (139)
3
2
Moo= [ 0wtz (140)
]
3
Noo= [ ouods (141
Tz
3
Mxx=f»6,xm (142)
'z
Jit
Mt?o:J hﬂ'aozdz (143)
2
3
Moo= [ ounde (144)
3
0= [ ot (145)
3
Q= oudz (146)
then (138) becomes
i 2n
f 6Udr_ J. jj [NxxR a(‘sul) er a(‘sxl) +Nﬂ{l(a(6u2) + 5 )
5 ax a0
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+

+

We see that

[ nn
[ mr?
L
[ e
[ ne

| f2m
N,
J;)o 0 ax
2
[
odo 0 a

f f RO..
([

Then

h
5_[ T—Udt= JJ.J' [ pRhu|+RaN”
19 Y0Y0

+(-
i

+|R—=
(ax
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1 4(6k2)
Mg =30

Q,zR(ﬁxl + 3(3“3)) +Qu.R (

a(ﬁu 1) 6(6;:2)
a0 | ox

d(0x2)
ox

+ng( )+2Mx3

5]

Nox 50 1d0dlx
X

2n 2n
IV J N RSu,d0 — R”
ox 0 oJo

3(5?€|)

d0dx = j M, R6,d0 — R” ”a d0dx

‘3(‘5"’) o duad0d

dOdx = nggéuzdx r

6((5?{2) d0dx = f Moodtcadx — ”

3(5“ 1)

1 Moy
R a0

Oxc2d0dx

2
d0dx = f N.oSusdx — I MNso 5 Su,d0dx

0(0uz)

2n v a N
dOdx = J N,oSu2d0 — ” T SuadOdx
0 oo Ox

2n aMx{j

2n
9Ox2) o1 2[ I Myodicad0— | | 220 sy, d0adx
X 0 X

o0s0

3(511 3)

n | F2m aQ
didx= | RQ..busd0 - f f R 5, d0dx
oJo ox

(ous) _ f _‘r‘rn _aQb‘z
30 d0dx ORngéugdx o R a0 Susd0dx

aN.tﬂ)
ol ou
ﬂNoa BNxo)
4200
PRhii; 30 ouz
_ sz Qﬂz)
PR3 — Ngg+ R—— ax 20 ous

d

—RQ.u) bk,

e

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)
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1 0Mao ?Mx_n) ]
+ (R 30 RQB: +2 ax 5:62 dOdxdt

|
- J JJ [N;96u| + Npoou, + RQ&Z&Q + leéxg] dxdt
10v0

R

1 f2m
— f [N Ruy + N,odus + RO dus + M, Rk, + 2M ,4dk-] dOdt

170
=0 157)
which gives the following three differential equations

aN,, aN,
~ pRhit +R=, =0 (158)

30

aN, BN,
— pRhi + 20+ " =0 (159)

a0
M., l EIZM 00 *M

- pRhu; Nga + R

+ =
a2 TR o 2 axa0  ° (160)

Using (139)-(146), (13), and (5)-(12), we get

Nu= h(c.. Ay Cua (a’"2 + u,))

dx R \ab
R , (161)
ol e (O
N""_h(c” ax "R (aﬂ +“”))
1 alﬂ aﬂz)
_I..
Nyo= ca3hl| - 30 (162)
_ h3 ( 62u3 Cl2 Bzug )
Mxx—12 a2 T Rz AR (163)
_ k’ ( a'zldg Cy 3214’3 )
M=\~ "R o (169
h3 62u3
M= 6R xa0 (165)
Thus, (158) can be written
62u| Eﬂuz 8 C33 6 1131 6 uz
— + —+ — + 1
PR+ Ren's g+ eny o tony T T teng o, =0 (166)

Since we are dealing with the linear case, we assume the displacements of the form

Uin(x) cos nf sin w,t
u(t,x, ) =7| Us,(x)sinn0sinm,t

(167)
U, (x) cos n0 sin w,t
Inserting this into (166) gives
2
" d
pRw2U,,+ Reny ddf:; +cn ;’; +n(ciy+ 033) —2 n’c” Un,=0 (168)
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In a similar way (159) can be written as

uy | cu uy €1 duz | €33 0%u, 82u2
— pRii, + STy 69
PREF Crya 60+R 30 R a0 R axd0 (169)
]
a*U,, ,€ cy\dU,,
PR2Un, + C33 dx; 2 U (€r2+ };3) d; ‘},‘ U, =0 (170)
Finally, Equation (160) can be written as
R e, _cnduy ey _M%_E(Cszﬂ)ﬁsﬂ
PRIBTC2 0y "R a0 R™™ 12 ax* 3R\3R ' ') a0ax?
B hZCu 6£=0
12R? a0* (171
4
W qua.n K (Clz )dQUsn Cll( K ) _€n
2 ootz - 4
pr,,Ua,. lzC]]R 3Rn 3R+l d.xz R 1+ IZRZH U R FIUQ,,
_C_'zdu'“_-_o
R dx (172)
The boundary conditions are given as (clamped end)
Usn
Uin=Uy=Us, = dd:--o atx=0 (173)
and (free end)
Ny = N,a+ﬂi —sz+£%’ﬂ—Mxx==0 atx=1 (174)
We see that
N,=0 (175)
U
RC||¢%+HC|2U2”+C|2U3,,=O (]76)
Nm+¥Ri" =0 77
U
2
‘%"—n;u." 6’;2.';‘193—" 0 (178)
1 oM,
Qut aa" 0 (179)
U
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C||d U’;n n (C12 )dU]..-;=
2 de TRi\2 ") g 0 (180)
M,.=0 (181)
U
d>U
en® o 2':?'z'ug,,—o (182)

Defining % =2, (168), (170), (172), (173), (176), (178), (180), and (182) can be written
as

d*U,, dUs, U
PR*@}U, + ey - dle +en— di ~+na(cp+ 6'33) —n’cuUpp,=0 (183)
¢33 d*Us, c3\dU,,
*wiUsz, R F“ﬂzcllUm—ﬂ(Clz'l‘ R) T —nenUs =0 (184)
h?' ddUg,,-, h2 Ci2 dng,, hz
PRY0Use =5 cu—gea +3m (3R+l) a5 _C"Rz(leni”d)U”
—cuR*nUzy — C:zR"ig';”—O (185)
dUs, _
U|,,:U2,,=U3,|= di =0 atx=0 (186)
dU,, 1
Cil d.fl + ncpUs + c12Us, =0 atx=R (187)
dUs, e dU;,. o
W”—RUM 6R5n =0 alxzﬁ (188)
Ciy d:‘Ug,, C12 _ I
- 2' _d.f3 ( +(.‘33) at x= E (189)
2 )
C d.i_fz _nZC"Ug,,':O 81.f=R (190)
The solution of (183)—(185) is of the form
Ui, Alue‘
Uz =Ase" [ Upn=Apne" (191)
U'g.,,=1'13,”€br

where A and A,,, are unknown constants. Inserting (191) into (183) gives
pRza)ﬁAl,,e;" + (.‘||/12A]n€1' + Cn)’{Agﬂe;j + H(Cu + 633)/1.42,,8'& - ﬂ2€33A |n€;‘i =0
]I (192)

(PR*wi+ cui7*— n*ey)Arn+ n(cia + cu)AAz + €124A5, =0 (193)
Inserting (191) into (184) gives
PR wiAme”™ + 33 02406’ — n2c1Ame”™ — n( e+ 52 ) 1A e — nepAspme”™ =0
R R
(194)
0
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hd H(Cn + %) lAl,, + (pRz(Oﬁ + ‘-';;—312 - n2C||)Agﬂ - nC||A3,, =0 (195)

Inserting (191) into (185) gives

pR‘szg,,eli —EC“A“A%GJJ“"'}?Z'HZ(Q“f l)leg e“
" 12 3" \3R "
2 hz 4 A% 2 P Fis
_C||R l+ﬁ2n Ag,.e —C||R ﬂAz,,e —ClgRM|ﬁe =0 (196)
g
2 2. .2 h? 4
_CIZRM]"_C"R nAz.;'l' pR mﬂ—ECntl
W ,(cn ) 2 z( K 4)) -
+ 3n (3R+l A—cuR 1+12R2" Ax=0 (197)
(193), (195), and (197) give
(pR2w§+c|1i{2—n2r:33 H(C|2+£'33)A. Cuj. ) (Am\
"“'l’l(C;z +%)i pcho§+%12—nzcn —ncn Ag,.
“C|2R41 _C”R2R pR“O'),;':_%C”;P A'_rm =0
+8 2 4 )22
. C||R2
B4
\ (I +pen) )\ )
(198)
]
Aln
L| A, |=0 (199)
As,
(199) has a solution if, and only if
detL=0 (200)

which gives an 8th order polynom in A.
Then bX substitution of each 4, into (193), (195), and (197) gives the ratios B, = :—:
and B, = .423:' The solutions (191) for each 4, are now superimposed to give

&
Uin(X) = D @GitaCre™™* i=1,..,3 (201)

k=1

where

Qirn = {Biﬂ('lkm mn) i= l, 2 (202)

1 i=3
and Cy,, k=1,...,6 are unknown constants. Substitution (201) into the boundary

conditions (176), (178), (180), and (182) gives a set of eight linear simultaneous
equations of the form
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B
2 PinCin=0 i=1,...,8 (203)
i=1

Non-trivial solutions for C;, are possible only if
det P iin — 0 (204)

wy, and A, are determined from (200) and (204). Then the ratios ¢ Ct L can be calculated
by solving (203).

The functions U;,(x) can now be interpreted as the axial mode shapes and can be
written

)
Ui(X) =0, @jinbine™* (205)
k=1
where
Gin p=1,...,7
— e,
b { 1 k=8 (209

and g is chosen to give Us,(I) = 1. The choice of the arbitrary parameter ¢ normalizes
the mode shape and allows the quantity #, in (27) to be interpreted as the radial
displacement at the free end of the cylinder.

Appendix B. Definition of parameters
{
L= nghJ; U+ U3 + Uy duai? + ;pRh J: U+ U%+ Uk)dxi

1
+ nghf (Ut + Uds + Uss) o3

€4 dU 1 ('
2h3RI,,¢rE v2—e3.331n2¢( J (d:)dx-kE ) Uy dx
1 ip 4 )

+iR A U:udx)g‘,'(_l)”'vz.i—lﬂl

du 1"
—e3|R31n4:[/( J:(dx]z)dx-'-Rr Updx

+4§J; Unffx)';(" )" Vot

1 (" (du 1"
_ealeinﬁlll(—-[} (dxu)dx+Ef Undx

1
6RJ" Ussdx)z (=1 'y 113

i=1

Ip 4 12
“[EPRhﬂ Q%E(U%1+U%|+U§|)d¥) ¢hiRh; "bJ. (dd?:l U3]) dx]m

- [%pﬁ'kn w%f(Uﬁ +Uh+ U%;)dx)
+ Y €§|thlll

Yd?Un 16\, 1,
" ae; (W tsin 4"”] (dx’ RZU”) d‘”]"“




56

Dag Kristiansen and Olav Egeland

1 X RR3Y (P (d*Us 36
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P (e ks () (2
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33

—hn
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hﬂ.[ 8 A dx dx dy+—— R3 0U3|U§3dx

9 du. ! dUs3\?
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_, [3enR f(t_fvsg) (gwn) 216c1; J’
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Ci2 dU3|) 1 (dUSI) (dUal) (G'Uaz)
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J (8Uy U3 Uz, — 4U% Uy + 3U5 Usp) dx
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(o) (s (G v 2 Yo (%)

“(a o) ravaus ()G ) Ja i
-l 5 LR ) (R () ()
(e (@) (&)

+ %0 f (6 (du") UsyUsy + 3Us, (“":"'Z)L,g3 2Us3, Us, (‘w")) dx
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