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Modelling and Control of a Gravity Gradient Stabilised Satellite
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This paper describes attitude control, i.e., 3-axes stabilisation and pointing, of a
proposed Norwegian small gravity gradient stabilized satellite to be launched into
low earth orbit. Generally, a gravity gradient stabilised system has limited stability
and pointing capabilities, and wheels and/or magnetic coils are added in order to
improve the attitude control. The best attitude accuracy is achieved using wheels,
which can give accuracies down to less than one degree, but wheels increase the
complexity and cost of the satellite. Magnetic coils allow cheaper satellites, and are
an attractive solution to small, inexpensive satellites in low earth orbits and may
provide an attitude control accuracy of a few degrees. Scientific measurements often
require accurate attitude control in one or two axes only. Combining wheel and coil
control may, in these cases, provide the best solutions. The simulation results are
based on a linearised mathematical model of the satellite.

1. Introduction

Kongsberg Defence & Aerospace has participated in an industrial group concerned
with the development of a small Norwegian satellite. The satellite is intended to flow
in a low orbit at 800-1200 km altitude and the mission is to do scientific measurements.
Earth environment monitoring, which may require a slightly larger satellite, have also
been considered. The satellite is expected to be box-shaped, have a total mass of
approximately 80 kg and be gravity gradient stabilised. A proposed 6 m long gravity
boom, including a tip mass of 2kg, will play a key role in the gravity gradient
stabilisation. The gravity forces acting on the satellite are small, and magnetic coil or
wheel control is added to improve the attitude control. The satellite is to be three-axis
stabilised with its boom pointing outwards. The sateilite is illustrated in Fig. 1.

The satellite will during separation from the launch vehicle be exposed to large
forces, and tumbling may occur. A detumbling mode is activated in order to calm down
the movements. The gravitation boom will be deployed first when the movement of the
satellite is sufficiently small. This paper deals with attitude control after the detumbling
mode has successfully ended and the boom is fully deployed. At this time all angles
are assumed to be small and a linearised mathematical model of the satellite can be
justified and is also applied in this paper. All simulations are performed using
MATLAB.

Gravity gradient stabilisation has been used in attitude control since the early sixtics
(Hughcs 1986), but accurate three-axis control has not been achieved using gravity
gradient stabilisation alone. Gravity gradient stabilisation combined with magnetic
torquing, has gained increased attention as an attractive attitude control system (ACS)
for small cheap satellites and is also proposed used in this satellite. Magnetic coils,
mounted in the x, y and z facets of the satellite main body, perform the magnetic
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Figure 1. Proposed gravity gradient stabilised satellite.

torquing. The coils interact with the magnetic field of the earth and produce a satellite
torque, which is used to control the rotation of the satellite. A problem is that both the
direction and the strength of the geomagnetic field change and magnetic control become
non-linear and time-invariant. Another problem is that the torque becomes zero when
the coil’s and earth’s magnetic field align, which mean that azimuth become
non-controllable over Equator.

Magnetic torquing may achieve attitude angles down to a few degrees. More
accurate attitude control requires wheels, i.e., momentum wheels, reaction wheels or
control torque gyros. A momentum wheel is a flywheel rotating at nominal speed, called
a biased flywheel. The v/heel speed changes according to the required control torque.
A reaction wheel is a nonbiased flywheel, i.e., the wheel is nominally at rest. A control
torque gyro is a gimballed biased fiywheel. This paper deals with magnetic coils and
reaction wheels only.

Hodgart et al. (1994) combined gravity gradient stabilisation and two magnetic coils
to achieve relatively accurate pitch and roll control. Musser er al. (1989) combined
gravity gradient stabilisation and magnetic coils and also showed that linear quadratic
(1LQ) control may be used to obtain three-axis stabilisation of a satellite. Bak et al.
(1996), Suglo (1994) and Wisniewski (1996) all describe attitude control combining
gravity gradient stabilisation, magnetic torquing and LQ control. This idea is also
treated in Narheim et al. (1994). Cavallo et al. (1993) apply two magnetic coils and
one reaction wheel controlled from a sliding mode strategy.

Wertz (1978) describes three satellites combining different actuators. SEASAT
combine wheel control and gravity gradient stabilisation to achieve an accuracy of 0-5°
in all three axes. HCMM uses pitch wheel to achieve an accuracy of 1° and magnetic
torquing in roll also to an accuracy of 1°. A quarter-orbit coupling gives an accuracy
of 2° in azimuth. GEOS-3 uses an extendable 6-5m boom with a 45kg end mass to
achieve a large gravity gradient restoring torque which combined with a damper,
provides a 1° roll and pitch control and a quarter-orbit coupling that provide an azimuth
control accuracy of 1-5°.

Section 2 discusses sensors and actuators that can be used to stabilise a low orbit
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satellite. Section 3 presents a mathematical model of the satellite and the actuators to
be used of the satellite. Section 4 shows how the present low orbit satellite can be
stabilised using gravity gradient stabilisation combined with coil and/or wheel control.
Conclusions are found in section 5.

2. Sensors and Actuators
2.1. Sensors

Horizon Sensors detect the horizon of the earth and thereby determine the local vertical
direction. There are three types of practical horizon sensors: based on scanning,
balanced radiation or edge tracking (Wertz 1990). Horizon sensors achieve accuracy
down to 0-5°. Satellites that require better pointing accuracy, such as communication
and weather satellites, apply star sensors and/or inertial navigation.

Star Sensors measure star co-ordinates in the spacecraft frame and provide attitude
information when these observed co-ordinates are compared with known star directions
obtained from a star catalogue. Star sensors may achieve accuracy down to a few arc-sec
(arc-sec = 1/3600°).

Inertial Navigation makes use of gyros and accelerometers. For space flight, small gyro
and accelerometer errors accumulate and periodic updates from an external reference
source are required. Often a combination of gyros and star sensors are used.

Magnetometers detect both the direction and magnitude of the magnetic field. A
magnetometer, combined with a global magnetic field model, will provide the satellite
attitude. The magnetic field, however, which is highly non-linear, is not completely
known and the accuracy of the magnetometers is limited to a few degrees (Wertz 1990).
It is also a problem that the earth’s magnetic field strength decreases with distance from
the earth, so the use of magnetometers is generally limited to altitudes below 1000 km.

Global Positioning System (GPS). Time, local position and velocity estimates are
obtained from a GPS receiver.

2.2. Actuators

Magnetic Coil generates a torque that can be used to control the satellite attitude. The
electromagnetic coils are normally mounted on the x, y and z facets of the satellite.
Magnetic torquing does not require moving parts and may provide an attitude control
down to a few degrees.

Reaction Wheel is a nonbiased flywheel, i.e., the wheel is nominally at rest. A wheel
speed is generated depending on the required control torque. A reaction wheel will
sooner or later saturate and a gas jet, magnetic coil or gravity gradient torque must be
used to restore the momentum wheel speed to its nominal operating value, called
momentum dumping. Since reaction wheels go through the zero-speed region, models
of the torque and the friction characteristics may be needed to model accurate reaction
wheel control.

3. Mathematical Model of the Satellite

The satellite consists of a gravity boom connected to a satellite body. The gravity
boom has a tip mass of 2kg to improve the gravity gradient stabilisation. The gravity
boom is flexible, but is in this paper, as a first-order approximation, considered to be
rigid. External actuators like electromagnetic coils and reaction wheels are added to
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Figure 2. Co-ordinate system definition.

improve both the three-axis stabilisation and the pointing properties. Suitable
mathematical models for these actuators are presented. The latter applied control
methods require linear plants, and the non-linear mathematical satellite model is
therefore linearised. The linearised model is modelled using MATLAB and several
simulations are performed. The torque equation, assuming the satellite to be a stiff body,
may be written (Skullestad 1995),

JE gy + Beopy X (TP0pn) =BT ¢))
where:
J—moment of inertia matrix referred to frame B, i.e., ] = diag(J,, J,1.)
BT—total torque acting on the satellite expressed in frame B components
Pwpg,—angular velocity of frame B referred to frame I expressed in frame B components

The co-ordinate systems are defined in Fig. 2. The inertia reference frame (I-frame) is
located at the centre of the earth and defined by the co-ordinates x,, yj, 7, the z;-axis
is parallel to the rotation axis of the earth, the x;-axis is pointing towards a fixstar (Soglo
1994). The body frame (B-frame) is located with its origo in the mass centre of the
satellite and defined by the co-ordinates xg, yg, Zg. The xp-axis is called the roll-axis,
yg is called the pitch-axis, and zg is called the azimuth-axis (or yaw-axis). The body
frame axis aligns the principal-axis of the rigid body, hence, the moment of inertia
matrix is simplified to a diagonal inertia matrix (1). The orbit frame is located with origo
in the mass centre of the satellite and defined by the co-ordinates xo, yo, Zo. The X¢-axis
is parallel to the velocity vector of the satellite, y, is perpendicular to the orbit plane
and z, points toward the middle of the earth.

The angular velocity expressed in body co-ordinates referred to frame I, ®wgy, may
be written

B, _ _ 00
wsn = Pwpio + Pwon =Pwpo + RE Cwou 2
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where

Bwgi—defined in (1).

Bwon—angular velocity of frame O referred frame 1, expressed in frame B components
Bawpgo—angular velocity of frame B referred frame O, expressed in frame B components.
%wy o—angular velocity of frame B referred frame O, expressed in frame O components.

R§—transforms the components of a vector expressed in frame O to components
expressed in frame B. R{ is defined in chapter 3.2.

The angular velocity of frame O referred frame I simply consists of the angular velocity
of the satellite referred earth

Cwon = [0 —wo o) 3)
The angular velocity, wo, can be expressed as (Wiesel 1989)

wo= ‘/Rﬁz )

Assuming further that the external torque consits of the gravity gradient torque, actuator
torque, and the disturbance torque, then the torque may be expressed as

BT=BTG+BTA +BTD (5)
BT — gravity gradient torque expressed in frame B components and defined in chapter

3.5.

BT, — actuator torque expressed in frame B components and defined in chapter 3.6 and
3.7.

5Ty — disturbance torque expressed in frame B components and defined in chapter 4.

3.1. Rotation matrix

The transformation matrix or rotation matrix, R, transforms components expressed
in frame B to components expressed in frame O.
A vector " expressed in frame B components may be transformed to frame O
components using (6)
%w=Rb%w 6)

The rotation matrix, R$, may be calculated using Euler angles, Euler parameters
(Quarternions) or Euler-Rodrigues parameters. Euler-Rodrigues parameters will not
be described in this paper.

3.2. Euler angles

The Euler angles may be expressed in 12 different ways, each of them giving a
different rotation matrix, R%. Both in missiles and in satellites the rotations defined in
(7) are often used (Skullestad 1993),

RE‘ = Rz.¢Ry,ﬂRx.¢ Q)]
where

R. ,—angular rotation s degrees about zo. ¥ is called the azimuth angle.
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R, p—angular rotation 0 degrees about the new y-axis. 0 is called the pitch angle.
R, 4—angular rotation ¢ degrees about the new z-axis. ¢ is called the roll angle.
The rotation matrix is defined as
ey —sy 0 0 0 s0 1 0 0
ng.: S{’l C{[I 0 ,Ry,o= 0 1 0 ,R,l¢= 0 Cd} —sqb
0 0 1 —s0 0 <0 0 s¢ codp
3

r.,

The notation s = sin and ¢ = cos is used.
Multiplying the above matrices in the order given in (7) gives the rotation matrix

[ Pl —sped + cPslsdp  sysd + cegs0 ]
RE=| syc0 cpcd +sdslsy — cs¢ + sOsycd
—s0 cOs¢ clce

(9) becomes singular for c0 =0, i.e., 0= *+90°. If the pitch angle becomes =90°,
additional logic should be included. Euler parameters may be applied without special
attention to angles =90°. R? = (R%) ' =(R%)", due to symmetry properties of the
rotation matrix.

&)

3.3. Euler parameter
The Euler parameters may be defined as Hughes (1986)

(10)

.0
(€1,82,83)" =asin_andn = cos

2 2

where @ is an angular rotation around a unit vector a. The parameters &, £,, £3 and 3
are called Euler parameters. An angular displacement is then specified by (&, ). Note
that &, + &; + &3+ 5= 1. (g,#) are also called quaternions.

The rotation matrix based on Euler parameters may be written (Soglo 1994),

RG=1+25%(e) + 24S(e) (11)

where S(s) = S"(g) is a skew-symmetric matrix. Assuming € to be a column vector,
defined as € =[&; &, &), then S(g) may be expressed as

0 — E3 &7
SE)=| & 0 —¢g (12)
— E3 €] 0

(12) is simply the matrix representation of £ X .
o may be expressed in matrix form as Hughes (1986)

2(e £, + ne3) ' —el —e}l—el 2(ez83 —njey)

n”+el—e3— e} e &2 — nEI) 2(e183 — nEl)
RS = (13)
2(e183 — NEy) Aere3+ne) n—et—e3—¢}

The Euler parameters may be determined from Egeland (1993).

1
EA— Te
= —Z& "Wgo

2
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&= 5(!31 + 5(2))" waio (14)

3.4. Transformation between Euler parameters and Euler angles

Given the rotation matrix, R%, expressed in Euler parameters. The Euler angles may
be calculated from (15) (Fossen 1994),

0= —asin(rs)

¢ =atan(rs,ri) 0# +90° (15)
— atan(™®

yb'—atan(r")

Given the rotation matrix, R$, expressed in Euler angles. The Euler parameters may
now be calculated from (16)

w+el+eitei=1

2(eE3—NE) =T 13

(16)

2(e283— P?Eu) =ran

2 2

n”—el—eit+ei=ran

3.5. Gravity Gradient Torgue

A body with non-uniform mass-distribution will, when exposed to a quadratic
decaying gravitational field, be influenced by torque. For most spacecraft situations, the
following simplifications can be made (Hughes 1986).

® Only the gravitational field from the earth is considered.
® The satellite is small compared to its distance from the mass centre of the carth.
® The satellite consists of a single body.

A satellite in the gravitational field of the earth is influenced by a gravitational force,
given by Newton’s second law (Hughes 1986)

—
-+

R
f =~ n| gadm a7

where ji = M., ¥ is the universal gravitational constant, mearth is the mass of the
earth, B denotes the body of the satellite, R is the location of the mass element dm
relative to the centre of the earth and

R=|R|

Inserting values gives y = 3.986 X 10" Nm?kg. The gravitational torque around the
centre of the mass is

.
r X R
To = —;:f i dm (18)
I

—» — Y —+ . N —.

R = R.+ r,where R.is the location of the mass centre of the satellite and r is the
distance from the mass centre of the body to the actual mass element. The satellite is
small compared to its distance from the mass centre of the earth. To simplify the above
expression a binomical series expansion of R ~* is used (Narheim et al. 1994),
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.
X R,
T ) (19)

Finally the gravitational field in frame B coordinates can be expressed as (Hughes
1986),

R7*=R*(1-3

BT, = 3(’%):'3 X Jr; (20)

where J is the inertia matrix and r; the third column in RS.
The gravitational torque, in frame B components, can be written (Hughes 1986)

(U3 — J2)rasrss + I (rd — ri) + Jariars — Jarars
BT, = 3()—;{3) (U —J)rurnz + I3 — ri) + Jiararss — Jnrarm (21)
T
(U2 — Ji)risres +Jo(rds — 15) + Joarsaris — Jairaarss

where J =J;; and R =r;;.
If the principal axes are chosen as the reference axis in frame B, (21) simplifies to
(22)

. —J)rura
(22)

BT = 3m%|:(Jx —J)rars
Uy =J)risrs

The gravitation torque may be expressed, using Euler angles, i.e., r;3= —sin0,
3 = coslsing and r3; = coslOcos¢ (Soglo 1994),

|:BTGJ |:(JZ - J).)singbcosqb(cosﬂ)z]

BTy |=3wd| . —J)cos¢sinOcosl
BTG, (Jx — Jy)singsinOcos ()

(23)

3.6. Magnetic Control Torque

A spacecraft exposed to a magnetic field will, supposing that the spacecraft has a
magnetic coil, be influenced by a magnetic torque. Denoting the external magnetic flux
density by B and the magnetic moment by m, the torque acting on the spacecraft can
be written

Br=Bmx?B (24)

Controlling the magnetic moment "m, e.g., using magnetic coils, provide a mean of
performing attitude control. The magnetic torque will according to (24) act
perpendicular to the magnetic moment vector ®m and the magnetic ficld vector ®B.
Three perpendicular electromagnetic air cored coils are normally applied to fully
control the satellite.

3.6.1. Magnetic Field

A model of the magnetic field of the earth should be established, before the magnetic
moment acting on the satellite can be determined. The magnetic field varies strongly
at large altitudes. Lower altitudes, approximately 1200 km or less, have a relatively
constant magnetic field. Hughes (1986) suggested using a dipole moment as the earth’s
magnetic ficld at low altitudes. The magnetic ficld points towards the Southern
Hemisphere, i.e., zn points towards the magnetic South Pole. The end of the earth’s
dipole in the Northern Hemisphere is at 78-6° N, 289-3° E. Fig. 3 shows the geomagnetic
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Satellite

Figure 3. Magnetic field co-ordinate definition.

reference frame m (Soglo 1994). The dipole moment, describing the magnetic field of
the earth, can be expressed using the magnetic potential (Hughes 1986)

= — gz sin (25)

where R. is the distance from the centre of the earth, Ay is the latitude with respect to
the geomagnetic equatorial plane and

Y = 4]—“ X 10" =8.10' Whbm

is the earth’s dipole strength. The magnetic flux density is then calculated from
B=—-V¢, (26)

where V is the vector-gradient operator.
The magnetic flux density expressed in the geomagnetic reference frame (Hughes
1986),

3sinZ,,cosdcosn

"B = — Byp| 3sini,cosi,siny 27N
3(sind,)?* —1

where R_= 7571 X 10° m at an altitude of 1200 km and

= pm

R?
The magnetic flux density may be expressed in frame B components, using the rotation
matrices

By =1-843 X 10 ° Wbim*

SB=Ry™"B=R{RE"B=R{°B (28)

RY can be defined by first rotating 1,° around the z,-axis, then a rotation »,,° around
the new y-axis, then a rotation —90° around the same y-axis and finally a rotation 6,,°
around the new z-axis (Soglo 1994).
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RO
— COS?SiNA,,C088,, — siny,sind,, cosy,sini,sind,, — siny,,cosd,, — cosy,,cosl,,
=| — cos#msind,, — sin,,$in4,,c08d,, C€08#,,c08d,, + siny,,sinl,sind,, — sin#y,,cosl,,

COS A, COSO — €08 A,,8Ind,, — sind,,
(29)

Om is the angle between the satellite’s velocity vector and the plane formed by z, and
z,. The magnetic field is symmetric around z,, and hence #, can be removed from RY.

The magnetic and geographic poles of the earth do not align; i.e., z,, is not parallel
to the rotation axis, z;, of the earth. Both the angle A,, and &, will, seen from frame 1,
vary due to earth rotation. The rotation of the earth, however, is much less than the
angular velocity of the satellite, and as a first approximation the magnetic north pole
is assumed to coincide with geographic North Pole. The magnetic flux density expressed
in frame O can be written

coSA,, COSd,,
(30)

°B=Ry"B=(RS)"B = BOI: — COS A, Sind,,
2sinA,,

Assuming further that the satellite moves over the poles, i.e., 6, = 0 (30), simplifics
to

COS A,y
°B=R3"B=B,| 0 (31)
2sind,,

3.6.2. Magnetic Control Torque

The coils are mounted on the x, y and z facets of the satellite body. The magnetic
moment resulting from a N turns air cored coil with current I and coil area A may be
written (Wertz 1990)

Bm = IAN (32)
Adding (32) to (24) and expressing the magnetic control torque, acting on the satellite,
in frame B components gives
NAi,
BTn=| NAi, | X®B (33)
N, A,

where i,, iy and i, are the coil currents.

The electrical model of a coil can be written (Hayt er al. 1963),
di

—+Ri—e=U 4
ar Ri—e (34)

where L is the coil inductance, R is the coil resistance, i is the current, ¢ is the back
EMF and U is the applied voltage. In frame B components (34) may be written

: R 1 1

L

= __!.x = x+" x
Iy Lt +Le LU
. R, 1 1
L= —ThtretTl (35)
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lz_ L‘2+Lez+LUz

The back EMF in the x-coil may be expressed as (Soglo 1994),

d
Ex= — 3}(NA’AJ(BBTxR))

=~ NAG OB R (36)

= — N,A((°B"Ré + °B"RE)xs)
where xg = [100]". Note that R} can be expressed as
R%=R%S(Cwnio) 37

Based on the above expressions the back EMF of the coils can be expressed in frame
B components as

e,= —N,A(CB"R} + EBTSCwpio0))xs)
e,= —N,A,(CB"RE +B" SCwp0))ys) (38)
e.= —N.A(°B"R} +5B" SCwpo))zs)

where x5 =[100]", ys=[010]" and zz = [0 0 1]".
Differentiating (31) with respect to time yields B

) — JmSinA,
°B=Bo| _ O 39
22 mCOS Ay

A, is the angular velocity of the satellite seen from frame I, also assuming that frame
m and 1 coincide, i.e., A,, = wp, hence (39) may be writien

— sind,
°B=woBo| O (40)

2¢cosi

3.7. Reaction Wheel

A reaction wheel consists of a flywheel rigidly mounted in the satellite and is
designed to operate from a nonbiased or zero torque. An electric motor forces the
flywheel to rotate at an angular rate of w,, relative to the satellite. The torque of the
reaction wheel will cause the satellite to rotate at a rate w, with respect to inertial space.
The dynamic of a reaction wheel can be included as an additional term in Euler’s
equation and is given by Kapland (1976)

B (dH
(&!-)+mXH-—-BT (41)

where PT is the total torque acting on the satellite expressed in frame B components,
H is the total angular momentum including the wheel, i.e., H=Hg+ Hy. Hs is the
angular momentum of the satellite and Hw is the angular momentum of the wheel.

Since the flywheel will be rotating at an angular rate of ww — ws in inertial space,
conservation of angular momentum requires
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H=0=Jy(ww— ws) —Jsws (42)
The satellite rate, given the wheel rate, can be found from (42)
Jwow
L 4
ws Ts+ 1 (43)

where Jy is the moment of inertia of the wheel, Js is the moment of inertia of the satellite,
Wy is the angular rate of the wheel, and s is the angular rate of the satellite. The same
momentum can be achieved with a small high-speed flywheel as with a large low-speed
one. The high-speed wheel has the disadvantages of greater wear on the bearings, which
may shorten its lifetime, but at the benefit of a lower weight. Since the reaction wheel
operates around zero angular velocity, a model of the reaction wheel torque and the
friction characteristics may be needed to model an accurate control system. Such a
detailed study is not treated here.

Reaction wheels may be saturated from undesirable momentum terms, and
momentum dumping (desaturation) using an auxiliary control system are required.
Thrusters are often used to desaturate wheels, but motor fuels are required. Gravity
gradient torque and/or magnetic coils may be a better solution in low earth orbit. The
torques both from the gravity gradient stabilisation and magnetic fields are small and
the desaturation time-constant is of the order of an orbit period. Thrusters, however,
allow a much faster desaturation.

3.8. Complete Mathematical Model

(1) describe the rotational motion of the satellite. (5) describe the additional torques,
like gravitational torque, actuator torque and disturbance torque, acting on the satellite.
Adding (5) to (1) gives the complete torque equation for the satellite

Borpn=J""(—Pwpm X P wpy) + 5T + 2Ty + 5Tp) 44

®Te is givenin (23). ®T, is the actuator torque, when using magnetic coils, given in (33).
A model of the coil current is shown in (34). Soglo 1994 shows that the back EMF in
the coils is small and can be ignored. (34) therefore simplifics to

R, 1

i=—Tit U (45)

3.9. Linearised Model
(1) may be expressed in frame B components (along the principal body axes) as
Lo, =, —J)o,m,+T,
Jyoy=J,—J)o.w,+T, (46)
J.0,=(J—Jy)w.w,+T,

where wy, wy, w, are the angular velocities of frame B, expressed in frame B
components. I, Jy, J; are the moment of inertias in frame B and T,, T,, T, are the
additional torques expressed in frame B components. Attitude control requires the
angular position of frame B with respect to frame I, i.e., locally horizontal axes. These
angles may be described by three Euler angles, as described in chapter 3.2. Euler angles
should be used with care for angles = 90°, but perform well for small angles and are
chosen in the following simulations.
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Since w,, w,, w, are the angular velocities with respect to frame I, expressed in
frame B components and 0, ¢, Y are the Euler angles that measure the angles of the
body-axes with respect tolocally horizontal axes, the relationship between body angular
velocities and Euler angular velocities may be expressed as (Bryson 1994),

W, ¢ 0 0
o, |=] 0|+ Ryl O]+ RepRy0 0|+ RegRy0R 2w’ o 47)
w, 0 0 1/

where Ry, Ry, R,y arc defined in (8) and %woy is defined in (3). =~
If ¢, 0,  are small in magnitude and also the non-linear terms Y0, Y/, O¢p are small,
(47) may be approximated as

wx“="&>— ljlwo
wy=0—wo (48)
wz=111+ dwo

3.9.1. Gravity Gradient Torque
The gravity gradient torque, using Euler angles, is given by (23). If ¢ and () are small

(23) simplifies to
BTex (Jy_-’:)‘i’
BT6y |= 308 (Jx—J.)0 (49)
B T6. 0

The torque equation including the gravity gradient torque, i.e., adding (49) to (46)
become

Jo, =y, —J)oy,0. —3wply, —J)¢ + Tk
J@, = (. —J)w.o, — 3wb(,—J)0+T, (50)
J.oo, =, —J)ww, + T,

Inserting (48) into (50) gives

Jg=wols—Jy+ I — 4wdb (U, — 1o + T, (51)
J,0==30b(.—J)0+T, (52)
JU= —woly—J,+J)o—wd(U,—J)Y + T, (53)

The terms wo(J, — J, + J)rand wo (Jx — J, + J.) ¢ are known as gyroscopic coupling
terms and arise from the rotation of the locally horizontal axes at orbit rate wo. (51,
52, 53) represent the linearized small angle satellite model, including the gravity
stabilisation torque.

3.9.2. Stabilisation of the Satellite

The gravitational torque is small, but will to some extent stabilise the satellite,
providing that proper moment of inertia conditions are chosen. The stability propertics
of a gravitational stabilised satellite are outlined below.
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Pitch
The characteristic of equation pitch, (52), Laplace transformed becomes
I

Ji—

s +305~-——=0 54
Iy

If J,>J,, the system becomes a simple harmonic oscillator. The system is stable, but

has undamped oscillation at a frequency
B, -1,
wp =wo _(J_)_ (55)
¥

@y is called the pitch libration frequency. J, <1J, gives an unstable system and the
satellite will swing away from equilibrium when disturbed.

RolliAzimuth

The roll and azimuth equations (51) and (53) are coupled. The Laplace transform
of (51) and (53) may be written (Bryson 1994),

s+ 4wdk,  (ke— Dwos || ¢(s) ?
-7 (56)
— k.~ Doos s> +kwd || Y| |5
where
b=, 4=,
k-\' Ja b kZ JZ
The characteristic equation of roll and azimuth becomes
4 2
( ‘--) + Gk + koo + 1) (i) +4kk, =0 57)
[ 15 o

Roll and azimuth are oscillatory, but stable for k, > 0 and k, > 0, as well as over a small
region when k, <0 and k, <0, elsewhere the motions are unstable.

These requirements combined with the earlier requirement that J, > J, for pitch
stability, give the complete stability of the gravity gradient satellite equilibria.

It is preferable that

k>k>01,>1,>], (58)

This orientation corresponds to the minimum total energy confi guration for a gravity
gradient satellite. In the presence of energy dissipation, this is the only stable region.

3.9.3. Reaction Wheel Torque

(41) describes the rotational motion of the satellite including reaction wheels. (41)
may be expressed as

ir(f{d{:‘v):B(d—g*)“"ﬂ(%v)‘|'m)((l'f:;+Hv-’)"'‘I}TB 69

Writing (59) in component form, ignoring the disturbance torque, ®Tp, gives
oo =y —J)w,0, + by, + 0y, — 0 hwy
"')‘(by=(Jz_JJ)COsz+hwy+w,hwz—wzhw, (60)
Jw, = (Jy - Jr)wxwy + th + wshw, — w,.hw,
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Using the small angle approximation given in (48) and adding the gravity gradient
torque (49) gives

J.6= 405Uy —1) 0 + 0ol — Jy + J)Y — by + @ohw, + huy ¥ + @ohwy @
J1,0= —30b(J,—J,)0— hy, 1)
= — b, — I — 0ol —Jy+ 1)@ — hw, — 0ohw. — hwy @ + @ohwf
(61) represents the rotational motion of the satellite including gravity gradient torque
and reaction wheels. The pitch equation is decoupled from the roll and azimuth
equations. Roll and azimuth are coupled through the bias momentum, hwy, and the orbit
rate term (J, — J, + J)wo.
3.9.4. Magnetic Coil Torque

The equation of the magnetic control torque is given by (24) and may be expressed
as

2mysinAn
(62)

BT, =SCm)°B = |:mlcosl.,. —2m,sin,,
— M, COS Am

where “B is given by (31) and
0 —m my
SCm)=| m, 0 —m,
-my, m, 0

The rotational motion of the satellite including gravity gradient torque and magnetic
coil torque written in component form becomes

J.§= —40bUy— 1)@ + wolJy—Jy + I ) + 2Bomysin,,
1= = 30p(,~J)0 — 2Bom,sinAy + Bom.cos ©3)

Jy= — b, — I — wol—Jy+J.){ — Bomycosdn
(63) can be represented as a state-space model

X)
X7
X3
X4
Xs
l_x(\_
] 11 1
0 1 0 0 0 0 X
207 _ _
_ 4_'0)0(!’)_ _22 0 0 0 0 wOUx J} +JZ) X2
A Jx
0 0 20 1 0 0 X3
0 0 ool 0 X
Jy
0 0 0 0 , 0 i X5
—J, 41, -,
R =T R R W
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]
0 0 0
2sind,. ()
0 7. 0
0 0 0 My
+Bo|  2sind.(1) 0 cos (1) m (64)
J, J, '
0 0 0
cos A,,(t
0 ] 0 |

The states are given as

x=leo o 0 0 y ¢

3.9.5. Combine Magnetic Coils and Reaction Wheels

The magnetic coil torque equation (62) may be superposed into (61) to yield the
rotational motion of the satellite controlled from both magnetic coils and reaction
wheels.

L= — 4wty — 1) + 0ol —J, + T — hu, + wohw, + hw ) + wohuy
+2Bomysind,,

J,0==30d(J,—J,)0 - by, — 2B om,sin A, + Bom.cos A,

= — 0y = I — 0ollx = Jy +J)P = e — @ohwe — hur + wohuyy
—Bomycosi,,
(65)

4. Control and Simulations

The stability and pointing requirements of the three axes of the satellite will depend
on the scientific mission of the satellite. The goal of the following simulations is to
indicate which stability and pointing accuracies may be achieved using gravity gradient
stabilisation combined with magnetic torquing and/or reaction wheel torquing.
The gravitational torque stabilizes the satellite, but resulting low damping requires

Table 1. Applied satellite data

Satellite height: 1200km
Moment of inertia about principal axes
(boom deployed): J,=178kgm?, I, = 181 kgm?, J, = 4.3 kgm?
Satellite orbit: Polar orbit
Gravity boom length: 6m
Tip mass: 2kg
Magnettorquers: 3 perpendicular magnetic coils. Each coil gives a
magnetic moment of 8 Am?
Reaction wheels: The wheels support torques from 0-01-1 Nm




Modelling and Control of a Gravity Gradient Stabilised Satellite 19

additional control torques, see section 4.1. Table 1 lists the applied nominal satellite
data.

Three-axis attitude control requires aititude angles and possibly also attitude angular
rate information. This paper assumes that angular sensors are chosen such that sufficient
accurate roll, pitch and azimuth angle information can be provided. Possible sensors
are listed in section 2. Attitude angular rate information, if needed, can be estimated
using a Kalman filter, but for simplicity this paper assumes all angular rates to be
measurable.

The movements of the satellite are large shortly afier release from the space vehicle.
This paper assumes that the control system successfully has performed a detumbling
operation, and concentrates on the attitude accuracy that can be achieved during small
anglc deviations, i.e., in normal space flight. Angular deviation will occur, because the
satellite is constantly exposed to disturbance torques (Narheim et al. 1994), owing to

® Magnetic torques from electrical circuits on the satellite
® Solar pressure

® Thermal deformation of the gravity boom

® Atmospheric drag (assumed to be small)

The disturbance torque will try to swing the satellite away from its nominal attitude
angles and, hence, a control system is required. The dynamic equations of the satellite
are non-linear, coupled and have multiple inputs and outputs. Non-linear systems may
require non-linear control. If, however, the simulations arc limited to small angle
deviations, i.e. after the detumbling phase has ended, the linearized mathematical
models presented in chapter 3 may successfully be applied. These linear models also
allow linear control strategies. Reaction wheel control is relatively easy to perform.
Magnetic torquing gives a discontinuous input matrix and requires a time-varying
control. The satellite is released straight above equator, i.c., A, = 0°, in all simulations.

4.1, Gravity Gradient Stabilisation-Only

The deployed gravity boom together with the tip mass should be sufficient to
stabilise the satellite. The mathematical model given in (51, 52, 53) is modelled in
MATLAB and simulated using initial conditions imposing the Euler angles. Fig. 4
shows the uncontrolled Euler angles ¢, 0, { against time, the initial conditions are given
as [p0y]=1[10°10°10°]. Roll angle =solid line, pitch angle = dotted line and
azimuth angle = dashed line. One orbit is 6545 sec.

The gravitational torque stabilises the satellite, but the damping is very low and each
axis oscillates with an amplitude equal the initial imposed amplitude. Additional
damping, i.e., additional control torques, are required to remove the oscillations.

4.2. Gravity Gradient Stabilisation & Magnetic Coils

The magnetic coils interact with the magnetic field of the earth and produce a
satellite torque. The maximum magnetic dipole moment of the coils is set to 8 Am?, Tt
is not straightforward to obtain a good controller using magnetic coils. The process is
time-varying, multivariable, coupled and the control action is non-linear. The control
torque can be generated perpendicular to the magnetic field vector only, and the roll
axis become non-controllable over equator and the azimuth axis become non-control-
lable over the poles. This can be seen from the B-matrix in (64), where the latitude angle
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Gravity Gradient Stabilized Satellite
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Figure 4. Euler angles against time for a gravity gradient stabilised satellite, exposed to initial
angular conditions. Roll angle (-), pitch angle (...) and azimuth angle (—-).

with respect to the geomagnetic equatorial plane, 4,,, becomes zero above equator and
90° above the poles.

The simplest approach to multivariable design is to ignore its multivariable nature.
A SISO (single input single output) controller is designed for one pair of input and
output variables. When this design has been successfully completed, another SISO
controller is designed for a second pair of variables, and so on. This approach was tried,
but does not succeed in stabilising all three axes to acceptable values.

As indicated in section 1, several papers describe magnetic torquing using LQ
control. An LQ controller calculates the optimal gain G (optimal in the case of linear
systems) such that the state-feedback law

u=—Gx (66)

minimises the quadratic cost function
J= j " (®)0x(@) + u” (1)Ru(t))dt 67)
0

G is derived from
G=R'B'S (68)

where S is the solution of the Riccati equation.

A LQ controller requires feedback from all states and its derivatives, which means
that both the Euler angles and the time derivatives of the Euler angles should be
available. The time derivatives of the Euler angles are not measured in the satellite, but
these signals can be estimated using a Kalman filter. A Kalman filter may also reduce
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Figure 5. State weight matrix element q, (-) and gs (...) against latitude angle.

process and measurement noise in both ¢, 0, Y and @0y. A Kalman filter is straight
forward to implement, and the simulations in this paper ignore the Kalman filter and
simplify by taking all states directly from the process model. The simulation results will
to a small extent be influenced by the Kalman filter, supposing sufficient accurate
sensors and a properly designed filter. Since the system is time varying, constant state
and input weight matrices will be difficult to use. Instead, the latitude angle is frozen
at different angles and a LQ controller is calculated at each angle. The state weight
matrix is chosen as: Q = diag(q; 1q21q31).

It was found that the angular weights influence the system more than the angular
rate weights. Hence, the angular rate weights were set to one, and the angular weights
qi» G2, g3 were varied according to the latitude angle. The pitch axis is controllable for
all latitude angles and not coupled, and g, was set to a constant value. A guide for
choosing a proper state weight matrix (Q) and an input weight matrix (R) can be found
in Balcen et al. (1988). Combining these advices with a cut and try approach results
in the time-varying q, and q; shown in Fig. 5. The latitude angle, varying from 0-180°,
is shown along the x-axis. The values of q, and g3 are shown along the y-axis. The solid
line represents q; and the dotted line represents @s, gz is set to 1000. The input weight
matrix is chosen as: R = diag(1 1000 1000).

The time-varying state weight elements shown in Fig, 5 combined with the constant
q; and the given R matrix were applied in a simulation and the results are shown in Fig.
6. Fig. 6a shows the Euler angles ¢, 0, i against time, the initial conditions are given
as [¢ 0] =[10°10° 10°], Bwgio = 0. The pitch axis is accurately controlled and also
the azimuth angle is satisfactorily controlled. The roll axis is weakly damped. Obtaining
accurate control in both roll and azimuth turned out to be difficult. Soglo 1994 indicates
that changing the moments of inertia of the satellite may improve the stability. Fig. 6b
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Magnetic Coil Controlled Satellite
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Figure 6a,b. Euler angles against time for a gravity gradient stabilised and magnetic coil
controlled satellite, exposed to initial conditions. Roll angle (), pitch angle (...) and
azimuth angle (—-).

repeats the simulation performed in Fig. 6a, but J, has been changed to 10kgm?. The
roll damping is slightly improved at the cost of slightly less damping in azimuth.

The above LQ control can be performed more elegantly by solving the time-varying
Riccati equation backwards in time, i.e., calculating the optimal gain at predetermined
latitude angles in a more automatic way. Fig. 7a, b, ¢ shows the Euler angles ¢, 0,
against time, using a LQ controller based on a backward Riccati solution, the initial
conditions are given as [¢ 0] = [10°10° 10°], ®Bwgio = 0. The state and input weight
matrices, using the backward calculation, are chosen as: Q = diag(1000 10000 1000 0),
R =diag(111).

The pitch axis is again accurately controlled, also the damping in azimuth is
acceptable, but the roll axis is, as shown in Fig. 7a, too lightly damped. Increasing the
coil moments hardly influences the result. Neither are significant improvements
obtained by completely removing the coil moment limits. Changing the moment of
inertias, however, allow an improved roll stability. Fig. 7b shows a simulation where
J, has been increased from 4-3 kgm? to 14-3kgm?. Increasing J, improves the damping
of the x-axis. Better results are obtained by using even larger J, values, as shown in Fig.
7c, where 1, =34.3 kgmz. Nominally, the satellite has a moment of inertia ratio of
178/4-3 = 41-4 between the x-axis and the z-axis. The same magnetic coil simul-
taneously controls the x-axis and the z-axis. The LQ controller is not able to effectively
handle this large moment of inertia ratio using the same actuator, and lowering the ratio
makes the LQ controller more effective. Fig. 7a and b show a slowly decreasing roll
angle and to sce if this damping is real, the simulation shown in Fig. 7b is repeated using
a simulation time of 8 orbits. The extended Fig. 7b simulation shows a roll angle of
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Magnetic Coil Controlled Satellite
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Figure 7a,b,c. Euler angles against ume for a gravity gradient and magnetic coil controlled
satellite, exposed to initial angular conditions. Roll angle (-), pitch angle (...) and azimuth
angle (—).

+ (-5° after 7 orbits and the angle is still decreasing. The damping is real and, providing
no disturbances, the roll angle goes to a small value.

4.3. Reaction Wheels & Gravity Stabilisation

An alternative way of controlling the satellite is to apply three reaction wheels,
acting around each of the three body-axes. (61) is modelled in MATLAB and a LQ
controller is developed to perform the attitude control. The input matrix is
time-invariant and the Riccati equation can be solved the normal way, i.e., forward in
time. Fig. 8a, b, ¢ shows the Euler angles against time using initial conditions
[ 0] =[10°10°10°], Bwpo=0. Fig. 8a shows the result using reaction wheels
limited to a torque of 1 Nm. In Fig. 8b the torques are limited to 0-1 Nm and in Fig.
8c to 0-01 Nm. Fig. 8a shows that the reaction wheels supporting 1 Nm very quickly
stabilise the satellite in azimuth. This fast response is due to the low moment of inertia
in azimuth. Roll and pitch stabilisation is slower, but still very quick compared to the
magnetic coils. Decreasing the available torque to 0-1 Nm, shown in Fig. 8b, made roll
and pitch slower and slightly less stable, but still very quick. Even a maximum torque
of 0-01 Nm, shown in Fig. 8c, gives a very tight and fast control, all compared to the
magnetic coil control.

It is possible to further decrease the size of the reaction wheels, but at the cost of
slower response, and possibly also less damping. A mathematical model of the reaction
wheels, including a realistic friction and stiction model, is needed to establish a
more precise lower limit for the wheel torques. Fig. 8a and b use the state and input
weight matrices: Q = diag(0-110000-1 1000 10 1000), R = diag(0-10-10-1). Fig. 8c



24 Aage Skullestad

Reaction Wheel Controlled Satellite
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Figure 8a,b,c. Euler angles against time for a gravity gradient stabilised and reaction wheel
controlled satellite, exposed to initial angular conditions. Roll angle (-), pitch angle (...)
and azimuth angle (—-).

uses the state and input weight matrices: Q = diag(100 1000 100 1000 100 1000),
R = diag(0-10-10-1).

4.4. Combine Magnetic Coils and Reaction Wheels

Section 4.2 shows that it was difficult to achieve accurate attitude controls in both
roll and azimuth using magnetic coils and gravitational stabilisation. In this section a
reaction wheel is mounted to control the satellite in roll. Pitch and azimuth are controlled
from magnetic coils, The corresponding mathematical model is shown in (69)

Jp= —40dUy — J) @ + 0ol — Jy + T ) —
1,0 = —30bU;— )0 — hwy — 2Bom,sind,, + Bom,cos2,,
J= —wdy =IO — wolx = Jy + 1) & — hw, — @ohw, — hwy® + @ohwyy

— Bomycosd,,
(69)

Fig. 9a, b, ¢ show the simulation results obtained using the initial conditions
[ 01 =[10°10° 10°], Bwgio = 0. Maximum torque of the roll wheel is set to 0-1 Nm,
the magnetic coils in pitch and roll are limited to 8 Am”. Different state and input
matrices are tried in a, b and c.

5. Conclusion
This article develops a linearized mathematical model of a proposed Norwegian
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Combine reaction Wheel and Magnetic Coils
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Figure 9. Euler angles against time for a gravity gradient stabilised and coil/wheel controlled
satellite, exposed to initial angular conditions. Roll angle (), pitch angle (...) and azimuth
angle (—-).

small satellite. The satellite is intended to fly in a low orbit and perform scientific
measurements. The satellite is to be gravity gradient stabilised.

Simulations have shown that gravity gradient stabilisation alone does not give the
stability and pointing accuracy that many scientific measurements require, hence,
additional actuators should be added.

Magnetic coils are attractive actuators for small cheap satellites. Different
controllers are considered in order to obtain the best possible three-axis control. LQ
controllers gave best results, but the simulations also reveal that accurate three-axis
control is difficult to achieve using magnetic coils and the proposed moments of inertias.
A time-varying magnetic field, which causes roll and azimuth to become non-control-
lable in parts of the orbits, is to blame. However, changing the moment of inertia
improves the damping and simulations indicate a pointing accuracy down to 3-7° in
roll and azimuth and 1-4° in pitch, depending on the chosen moment of inertias and
also the size of the disturbances.

Replacing the magnetic coils with reaction wheels gave very accurate attitude
control. It is expected that an accuracy, depending on the size of the wheels, down to
less than 1° in all three axes can be achieved.

A cheaper way of obtaining a relatively accurate attitude control is to replace the
magnetic coil that controls roll with a reaction wheel, i.e., pitch and azimuth are
controlled from magnetic coils and roll from a wheel. This actuator combination is
expected to give an accuracy of less than 1° in roll and approximately 1-4° in pitch and
azimuth.
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