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A Software Environment for Gain Scheduled Controller Design
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Recent theoretical developments have improved the understanding of gain
scheduled control and suggested new methods for design, analysis and implemen-
tation of such nonlinear control systems. An integrated software environment for
gain scheduled local controller network design and analysis, including computer-
aided modelling and system identification, is described. Some background theory
is included, and a speed control design problem for an experimental vehicle
illustrates the application of the approach.

1. Introduction

The main purpose of this paper is to describe a software environment for computer
aided gain scheduled local controller network (LCN) design and analysis, including
computer aided modelling and system identification. The software functionality is
demonstrated with reference to the design of a high-performance longitudinal dynamics
control system for an experimental vehicle. The design task involves first modelling
the nonlinear dynamics of the system, and validation of the model. The nonlinear model
is then used as the basis of controller design and verification. Finally, the controller is
exported as a C-function for real-time implementation. All of these steps are carried
out within our integrated software cnvironment.

In addition to a description of the software, recent developments in the
understanding, design and analysis of gain scheduled control (Hunt and Johansen 1997;
Boyd et al. 1994; Driankov et al. 1996; Johansen et al. 1998) are summarized. The
current state-of-the-art is compared to traditional gain scheduling design methods and
tools (Shamma and Athans 1990; Rugh 1991).

A MATLAB-based integrated software environment for local model network
(LMN) development, and gain scheduled LCN design, analysis and implementation is
used in the application example. The LMN modelling tool is called ORBIT (Operating
Regime Based modelling and Identification Toolkit), and the gain-scheduled LCN
design tool is called ORBITcd (ORBIT Control Design toolkit).

An overview of the ORBIT software environment can be seen in Figure 1 and is
completely described in Johansen (1997). ORBIT is implemented in MATLAB). The
ORBIT core contains the graphical user interface (GUI), parameter and structure
identification algorithms and model validation algorithms, model database manage-
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Figure 1. The ORBIT/ORBITcd software environment implemented in MATLAB.

ment, application programmers interface (API), as well as interfaces to various generic
MATLAB tools and toolboxes. ORBIT can support a wide range of model
representations, including NARX (Nonlinear Autoregressive with eXternal input),
NARMAX (Nonlincar Autoregressive Moving Average with eXternal input) and
nonlinear state-space models based on local models. Only the NARX representation
(Johansen and Foss 1993) is currently implemented as part of the standard model
representation library but the advanced user is free to include customized or generic
model representations in this library by programming the required MATLAB functions.
ORBIT models and ORBITcd controllers can be made available as SIMULINK
S-functions and blocks for simulation. Using the built-in code generation facility,
models and controllers can be exported as C-functions for real-time application or
simulation. For real-time application of ORBIT models and controllers in languages
other than C, one can develop MATLAB scripts that code the model parameters into
the required programming language and format. Local model parameters can also be
interchanged with other MATLAB tools, including the MATLAB Control Toolbox,
Signal Processing Toolbox, and LMI Toolbox. An application programmers interface
(API) allows other MATLAB programs to access the ORBIT model database. ORBIT
is extendible, i.e. its core model representation and functions are documented.

The ORBIT Control Design toolkit suppotrts design and analysis of gain-scheduled
nonlinear controllers on the basis of ORBIT models. The theory behind these design
and analysis methods will be outlined, and the tool itself will be described in more detail.

Experimental application data and prior knowledge form the basis of model
development in ORBIT. These can be pre-processed and analyzed using generic
MATLAB and SIMULINK functions before they are made use of in ORBIT.

Many aspects of the ORBIT/ORBITcd software functionality are illustrated using
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a speed control design example for an experimental vehicle [Hunt et al. 1997). Using
measured data from the vehicle, nonlinear models are identified and validated. The
models are used for nonlinear control design in ORBITcd, the design is verified by
simulation, and finally the controller was exported as C-code, implemented, and tested
in the vehicle. Typical experimental control results are shown.

2. Description of the Application

The ORBIT/ORBITcd software environment has been applied to a variety of
applications. One such application is the problem of nonlinear dynamics modelling and
controller design for an experimental vehicle. This problem concerns the longitudinal
vehicle dynamics, and the goal is Lo design a high-performance speed controller. The
software environment has been used in the complete design cycle for speed control:
estimation of nonlinear models using measured data; extensive model validation;
nonlinear controller design and verification; and, finally, automatic generation of the
designed controller as a C-function which is directly embedded in the real-time control
software in the vehicle. Experimental results are described fully in Hunt (1997).

The experimental vehicle is shown in Figure 2. It is a middle class 8-tonne
Mercedes-Benz truck called OTTO (Optical Truck Transportation Optimization). More
details of the vehicle and previous applications are given in (Franke ef al. and Seeberger
1995; Hunt et al. 1996; Gehring and Fritz 1997). In this paper, it is used to exemplify
the various aspects of the software functionality; a brief description of the problem is
given in this section,

\i
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Figure 3. Structure of the speed-control loop. The vehicle speed is v, the desired speed is vy,
and the throttle angle is o,
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The structure of the speed controller is shown schematically in Figure 3. The
vehicle's speed v is controlled by manipulation of the throttie angle . A further
possibility is to use the brakes as an additional control signal, but for simplicity the
brakes are not considered in this presentation. The desired speed is denoted as ver. C.
is the nonlinear speed controller; it is designed on the basis of an empirically-derived
model of the dynamic relationship between throttle angle o and speed v.

The plant’s nonlinearitics come from the various components in the drive-train. The
engine produces a torque which is dependent upon the throttle angle and engine speed,
this relationship is described by the nonlinear engine characteristics. The experimental
vehicle is equipped with an automatic transmission. At low speeds a hydrodynamic
torque converter is active. At higher speeds the torque converter is automatically
bypassed by activation of a lock-up clutch. When the torque converter is not active, there
is a rigid connection between the engine and the drive wheels. The torque transferred
to the gearbox input depends nonlinearly upon the engine speed and the converter output
speed. Finally, gear changes are dependent upon the throttle angle, vehicle speed and
the currently engaged gear. The gearbox produces a hard-switching effect which results
in step changes in the drive-train characteristics; it is very important to take account
of this in modelling and in controller design.

These considerations lead to the conclusion that the key measurable variables which
can be used to characterize the plant’s nonlinearity are:

1. vehicle speed v;
2. throttle angle o

3. gear, denoted as g.

It will be crucial to utilize this information in the construction of models and in the
design of controllers.

The main design goals and engineering constraints for this problem can be
summarized as follows:

1. the closed-loop system should give suitably fast disturbance rejection (road
inline, rolling resistance, model error and wind resistance are in the main of
low-frequency character),

2. the design should be insensitive to unmodelled dynamics and measurement
inaccuracies. These uncertainties are primarily high-frequency, resulting from
the throttle actuator (which has a dead-time and a fast underdamped response)
and the limited-precision speed sensor;

3. the closed-loop should have a pre-specified command response;

4. the closed-loop properties should be consistent over a wide operational envelope
(i.e. from low speed in first gear to high speed in top gear) despite the strong
system nonlinearities.

In order to meet these demands, it is clear that a high-precision nonlinear model is
required.

For identification of the plant dynamics in each gear, a number of test inputs o(7)
were applied and the resulting speed was measured. Since the system is strongly
nonlinear, a goal in the design of the test inputs was to ‘cover’ the operational range
of the plant to as great an extent as possible. Thus, it is important to investigate both
the large-signal and small-signal behaviour of the system. The main input signal types
applied were:

1. PRBS-signals (Pseudo-random binary sequence) of relatively low magnitude
(typically 10%) were applied around a number of equilibria in each gear;
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2. in each gear, large steps of varying magnitude (both positive and negative) with
a superimposed low-amplitude PRBS excitation were applied. Before appli-
cation of these signals the system was driven manually to various equilibria.

3. Local Controller Networks

A local controller network (LCN) (Hunt and Johansen 1997) consists of a number
of linear local controllers, each designed to achieve the desired performance in a
particular operating regime of the nonlinear system. Figure 4 illustrates the operating
regimes chosen for the vehicle model M42 and corresponding controller. These regimes
are characterized by throttle, speed and gear.' In order to achieve stable and robust
performance also during major transients, the LCN consists not only of linearizations
about equilibria, but also linearizations about transient states that may be on the system
trajectory. This particular aspect is discussed in detail in (Johansen et al. 1998). In
Figure 4 the equilibrium manifold for each gear is represented by a solid line. The
regimes which are associated with off-equilibrium operation of the vehicle can be easily
observed.

] ) N 5 E:S w1z w . ::“ 0'3 T )
Figure 4. Operating regimes for the model M42 of the experimental vehicle. The regimes
(shaded areas) are characterized by throttle, speed and gear. The marked points correspond
to experimental data, and the solid lines are the estimated equilibrium manifolds for each
gear.

'Note that for first-order systems described by v(t + 1) = flu(r), 2(£)), this plane completely
describes the plant’s operational range for a given gear. In the first-order case, therefore, this
plane must be sufficiently covered by measurement points. In practice, both first and
second-order models were used in system identification.
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Notice that the operating regimes are typically not regions with hard boundaries,
as illustrated in the figure, but rather regions with soft boundaries (or fuzzy sets). This
means that there will be a smooth transition between local controllers when moving
between regimes. This is viewed and implemented as interpolation in the parameter
space of the controller structure.

This section outlines the essentials of LCN design: operating regime decomposition,
development of linear local models to be used for the design, local control design
algorithms, and analysis of the local and global stability properties of the closed loop.

3.1. Local Model Networks

Design of linear local controllers is based on linear local models valid for each
operating regime. These can be individual lincar models identified on the basis of
specific experiments designed for each operating regime or experiments that cover
several operating conditions simultaneously, or they can be linearizations about
different operating points of a nonlinear model. The validity of each local model is
typically restricted to its corresponding operating regime. A particular nonlinear model
representation that is explicitly parameterized in terms of local linear models is the local
model network (LMN). An LMN consists typically of a set of linear models that are
combined by weighting functions to form a global nonlinear model. Such a model
representation is especially useful for LCN design for two reasons. First, the local
models are directly available. Second, and more important, the LMN’s weighting
functions, are applicable as weighting functions for gain scheduling in the LCN, since
they are designed to capture the nonlinearities of the system, which is a key issue in
gain-scheduled control (Shamma and Athans 1990; Rugh 1991). Development of
LLMNs and their properties are extensively studied in e.g. (Johansen and Foss 1993;
Murray-Smith and Johansen 1997).

Here we restrict our attention to single-input single-output NARX models. This
representation relates a control input u(7) and an auxiliary input «(f) to an output y(t)
according to

Y0 = (@), (D) + () )
YO=0@—1),..., 3t —n),ut—1),..., u@t—n))" )]

where 1 is the information vector. The NARX model can be composed of a number
of local models, see Johansen and Foss (1993):

O = 2 FYEOmA0) + e 3)

20 = H(y, u, c)(1) (4)

where the auxiliary variables a(f) are only used for scheduling, and e(?) represents the
unmodelled dynamics, disturbances and noise. A block diagram for this model is
provided in Figure 5. The elements of this model representation are

® The functions f, . . ., fy define a set of local models. These can in general be
arbitrary, but in the LCN context linear functions are definitely most useful,
corresponding to local ARX models:

ﬁ('):di_al.iy(‘n 1)—---—0.-,»}}’(1" "y)"'b('.lul_ ])+---+br',u..u(t' nu)- (5)

® The integer parameters », and n, define the order of the NARX model.
® The positive semi-definite weighting functions w,, . . ., wy will define the relative
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Figure 5. The LMN NARX model representation. It consists of a Local Model Bank and a
Local Model Scheduler that assigns weights to each local model as a function of the
operating point. The global model output is the result of weighting the local model outputs
f(0), where the information vector (f) contains delayed inputs and outputs.

weight of the local models at each operating point z. In practice, these functions
will characterize the model’s N operating regimes and satisfy
N

2 wil)=1
i=1
for all z. The representation of these functions is described below.
® The variables that characterize the operating regimes, z, are defined by a general
nonlinear operator H.

Axis-parallel hyper-rectangles with soft edges have proven to give a sufficiently
flexible parameterization of the operating regimes and weighting functions. The
flexibility is partially due to the user’s freedom to select operator H that defines variables
z that characterize the operating regimes. The operating regimes can be viewed as fuzzy
sets which are characterized by their membership functions u. For example, a
d-dimensional axis-parallel rectangle with soft edges can be represented in terms of its
projections y; ; onto the d axes as

d
) = HI i AZ). (©)
|2

The weighting functions are now defined by Takagi and Sugeno (1985)

piz)
SV )

wi'(z) =
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Figure 6. Weighting functions used in the local model and controller interpolation for the
operating regimes in M42 of the vehicle, c.f. figure 4. The z-axes in these plots show the
values of wi(z), where z = (v, o)7 in this application.

Figure 6 illustrates the weighting functions corresponding to the operating regimes
of the experimental vehicle, c.f. Figure 4. We observe that they give a smooth blending
of the local models and controllers across the regime boundaries.

3.2. Local Control Design Algorithms

The objective of the control system is to make the output y(f) track a reference
trajectory r(f) while rejecting the disturbances e(f). To this end, assume that the control
signal u consists of a feed-forward component uy and a feedback component ug,

w(t) = ug(t) + ug(t). @

The purpose of the feed-forward is to generate in real time a trajectory ug(r) such
that y(r) tracks r(f), nominally. The feedback will compensate for uncertainties, such
as modelling error and disturbances.

Consider for the moment a single linear model of the following form, c.f. (5):

Adg™"W(@) =Biq "u(t) +d; + et), (8)

where A; and B; are polynomials in the delay operator
Afg )=1+ang '+...tang "
Big~ 1) =b; Iq_1 +...+ bl.l’!,,q- ",
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In general, any linear control design method can be applied to design the local
controllers in the gain scheduled LCN framework. This section describes the
implemented local control design algorithms (they are described in more detail in Hunt
and Johansen (1997)).

The local linear controller is a quite general two-degrees-of-freedom controller
(Astrt‘)m and Wittenmark 1997)

0= 0 (S0~ Ria™ DO, ©)
Here, S, R; and T; are polynomials in the delay operator:

S D=siotsig "+ . Fsi.q" (10

R{g D=rio+trig '+...+r,.q " (1D

Tdg N=1+t.g "+ ...+t ™ (12)

Combining equations (8) and (9), the closed-loop characteristic polynomial is easily
found to be A;T; + BiR;. For a given desired closed-loop characteristic the following
equation is therefore solved:

Afq~NTdg ™)+ Blg DRg ™) =Aiolg DAinlg ™). (13)

Here, A; o corresponds to a desired observer polynomial and A; ,, to the remaining
desired closed-loop poles. The S, polynomial in (9) is chosen to achieve a servo
response: Siq ") = AiA.o(g ") where 4;=A; ,(1)/B(1). These definitions result in
local closed-loop transfer functions

B{g ") T(q ") Tdq™")

nN=242- —-rH+ - - - =
YO a0 Aka Wiua DO T Aa Ve D
In the application example, a sample indirect method is used for selection of the

design polynomials A; , and A; .. (Astrom and Wittenmark 1997). In each case, the
rise-time £, and damping factor { of a desired continuous second-order linear system

e(n) + d. (14)

w}
24+ 2w,s + w?

are specified. The natural frequency w, can be shown from a simple time-domain
analysis of the 2nd order system (15) to be related to the rise-time 1, through w, = 3-2/1,.
The system (15) is discretized, and its poles are used to define A; , or A; .. Typically,
the rise-time for A; ,,is about 4-5 times greater than the observer rise-time. In the vehicle
application, the rise-times for A, ,, lie in the range 4-10s, and those for A, , in the range
0-2s. The purpose of the observer polynomial is to ensure robustness against
unmodelled high-frequency dynamics by introducing sufficient damping in the loop
transfer function at high frequencies. The feedback loop contains integral action, i.e.
T{q ') contains a factor 1 — g~ '. From (14) we observe that this eliminates steady-state
error due to disturbances, modelling error and inaccurate knowledge of the offset d;.

As an alternative to direct specification of rise-time and damping, consider the local
LQG cost function

(15)

Ji= ey’ () + pa (1)) (16)

where e denotes the expectation operator and ; is a local control weighting. The optimal
local controller polynomials T, R; are solutions to the linear equation

Alg "T{q~ ) +Big Rig ) =Filg™ M. a7
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Here, F; is the stable solution to the spectral factorization
Fiq "Fi(@ ")=Big "Bi(a )+ mAlg HAi(g™"), (18)

with the adjoint of a polynomial defined through X;(g ') = Xi(g). Note that this
formulation of the problem assumed that A; and B; have no common factors and this
ensures the existence of stable spectral factors. For details of the more general solution
and other technical conditions refer to the texts (Kucera 1989; Hunt 1989, 1993). An
observer polynomial can also be included in the problem formulation, either by optimal
design (where the measurement noise properties are specified) or using the informal
method outlined above. The remaining controller polynomials S; (which act on the
reference signal r) are designed to achieve desirable command tracking properties, but
in the simplest case are

S{g~")= 4 =F{1)B(1). (19)

The LCN is a gain scheduled interpolation of a set of linear compensators (9):
N N

2, Tg™ Wiapu) = 3, (Sq wia®r®) ~ Rig” wion®)  @0)

i=1

This control structure can be interpreted as a quasi-linear controller with
operating-point-dependent parameters, see also Figure 7.

ol) Local Controller_Scheduler
o 5 -
~1 of Operating Point
L 2(t) = H(y, u,a)(t)
Local Control Weighting
T
ORI0) A YO |
Tapped wn(2(t))
Delay ||
e o a0) u(®)
en(+) =Tx
Local Controller Bank

Figure 7. The LCN representation. It consists of a Local Controller Bank and a Local Controller
Scheduler that assigns weights to each local controller. Here, the local controllers’ outputs
are denoted as c((#)), and are designed on the basis of the respective local models fi(-).
The controller information vector yr(f) contains delayed values of the reference signal and
the plant’s input and output signals.




A Software Environment for Gain Scheduled Controller Design 195

3.3. Local and Global Properties

The stability, performance and robustness properties of each linear local controller
are well understood and can be analyzed using standard tools such a Bode and Nyquist
plot, for each fixed operating point. This is a highly useful property of the gain
scheduling control design philosophy. However, it is also well known that these local
properties does not necessarily lead to guaranteed global properties (Rugh 1991 and
Hunt 1993). Global properties also cannot be guaranteed if proper modifications are not
made when implementing the gain scheduled controller (Kaminer et al. 1995; Leith and
Leithead 1996). For example, global stability does not in general follow from stability
of the separate local linear closed loops when the controllers are scheduled on the state,
input or output of the system. The traditional approach has been to schedule only on
slowly time-varying variables or external variables such as the reference signal, which
of course restricts the applicability of gain scheduling control (Shamma and Athans
1990; Hunt and Johansen 1997).

In the following we will briefly review some conditions for the existence of a
quadratic Lyapunov function for the nonlinear gain scheduled closed loop system. For
convenience, we approximate both the system and the LCN controller with
continuous-time state-space systems, for which the NARX LMN is approximated by

N
%= D, (Aix,+ Biu+ d)wi(z) 1

i=1
y=D% (22)
where the parameters of the matrices can be defined from the local ARX model
parameters. Likewise, the LCN is approximated by

N
.= (Afx.+ BSy+ Cir + d5wiz) (23)
i=1

N
u= > (Dix.+ESy+Fir+ gw(z). (29)
=1

When the system and controller state-space representations are combined, we get
the following closed loop system

C) - (2 Jﬁl A,;,w.{z)wj(z)) C) +...

A= (A:‘ + BiE;D* Bfo)
! B;D* A5 )
The stability properties of the closed loop are now determined by the A; matrices.
In particular, there exists a quadratic Lyapunov function V(x)=x"Px, where

x" = (x7, x7), provided there exists a positive definite matrix Q = Q" that satisfies the set
of linear inequalities (LMIs)

where

A0+ 0AG<0 (25)

for all i, j that satisfy ww; #0 and Q =P ' (Boyd et al. 1994). In other words, the
inequalities (25) give sufficient conditions for asymptotic stability of the nonlinear
closed loop, independent of the rate of change of the operating point. However, since
only the class of quadratic Lyapunov functions is considered, the conditions (25) are
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sufficient but not necessary. This restricts the practical usefulness of this tool
significantly and with the application example we have encountered situations when
simulations or experiments “prove” stability of a nonlinear control design for the
experimental vehicle, although it was not possible to find a quadratic Lyapunov function
for the nominal closed loop.

3.4. Links to Fuzzy Control

The LCN operating regimes can be viewed as fuzzy sets, and the weighting
functions w; interpolating the controller parameters are functionally equivalent to
Takagi-Sugeno-Kang (TSK) fuzzy inference systems (Takagi and Sugeno 1985; Hunt,
Haas and Murray-Smith May 1996; Hunt, Haas and Brown June 1995). It is evident
that the LCN approach has a very close resemblance to some TSK fuzzy model-based
control schemes such as those described in (Takagi and Sugeno 1985; Zhao, Gorez and
Wertz 1997; Wang, Tanaka and Griffin 1996). A major difference compared with the
above mentioned work, which is restricted to static state feedback and linearization only
at equilibria, is that the present work applies dynamic output feedback and opens the
possibility for off-equilibrium linearization and control design.

4. ORBIT Functionality and User Interface

The ORBIT environment for LMN development and identification consists of a
number of different windows. Figure 8:

® The Model Database Window (upper left window of the screen-dump in Figure
8) contains a list of ORBIT models with summarized information about each
model. Functions for database management, including storing and recalling
model databases, and for generating external representations (such as C-code and
SIMULINK S-functions) can be invoked here.

® The Operating Regimes Window (upper right window of the screen-dump in
Figure 8) allows the user to inspect and manipulate operating regimes. The
operating regimes can be visualized as 2D rectangles, or by their membership
function g; ; along each characteristic variable axis, in this case gear, throttle and
speed, respectively. The regimes’ characteristic variables, their position, amount
of overlap etc. can easily be manipulated, and regimes can be added and removed.
The selected model in Figure 8 is M20 (which is a previous version of the
currently best model M42).

® The Model Parameters Window (centre window of the screen-dump in Figure
8) contains a list of all model parameters and their properties. This includes
structural and functional parameters, in addition to local model parameters.
Parameter identification and visualization tools can be invoked from this
window.

® There are various windows for parameter and structure identification. For
example, the lower right window in the screen-dump in Figure 8 contains the
parameters and functionality of the Locally Weighted Least Squares parameter
identification algorithm. The functionality available in these windows will be
described in detail in sections 4.1 and 4.2.

® There are also several windows for model validation and comparison, see section
4.3.

® The MATLAB Command Window (lower left window in the screen-dump in
Figure 8) is applied to display messages and information. In addition, it allows
the user to interact with ORBIT through the API.
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Figure 8. Modelling with ORBIT. The Model Database Window (upper left) contains a
database of ORBIT models together with some information about each model. The
Operating Regimes Window (upper right) contains a graphical representation by the
operating regimes of the current model (M20). The regimes are represented by the
projection of their characterizing (fuzzy) hypercube onto each characteristic axis (shaded
dumps). Furthermore, functions for regime manipulation and structure identification are
available in this window. The Model Parameters Window (lower centre) contains a list
of all the parameters of the current model and their properties. Parameter identification
algorithms can be invoked from this window. The Parameter Identification Window (lower
right) contains the parameters of a parameter identification algorithm and provides
functionality for parameter identification. The MATLAB Command Window (lower left)
displays status information and allow interaction with the full MATLAB environment.

4.1. Parameter Ildentification Methods

The parameter identification problem consists of determining the local model
parameters. With local linear ARX models, the one-step-ahead predictors based on each
local ARX model are linearly parameterized. Furthermore, since the weighting
functions do not contain any parameters to identify, the global (interpolated)
one-step-ahead predictor can also be easily seen to be linearly parameterized (Johansen
and Foss 1993).

ORBIT contains three basic parameter identification algorithms:

® The prediction error method is the most general method where the PE criterion

M
Va0) = 2. Ke(r; 0)) (26)

=1

is minimized using an SQP (sequential quadratic programming) algorithm. The
prediction error is defined as

&(t; 0) = y(1) — $(tlt — h; 0) @27
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where J(#|t — h; 0) is the h-step-ahead predictor based on the global interpolated
model and 0 are the model parameters. The PE criterion is defined in terms of
a general user-specified penalty on the prediction error I(-) (not necessarily
quadratic) and user-specified prediction horizon h. Initial values for the SQP
algorithm can be specified.

® Least squares method. For the special case when the criterion function is
quadratic and a one-step-ahead predictor is applied (h = 1), the criterion (26) is
quadratic and a least squares solution can be found.

® Rather than defining the identification problem in terms of a single global
predictor $(#| — h; 0) that combines the local models, one can define a separate
identification problem for each local model based on local predictors y(#|r — h; 0;)
where 0, are the local model parameters for the local model with index i. Of
course, only the data that are relevant in the current operating regime should be
applied to identify the corresponding local model. This can be implemented as
a locally weighted least squares method when the criterion function is
quadratic, i.e.

Vi, {0) = 21 () — 94t — 1; 0))wiz(1)) (28)

is minimized. This method has some interesting properties that are studied in
detail in Murray-Smith and Johansen (1995, 1997). In contrast to the above global
methods, this method ensures that the local lincar models are approximations to
the linearized system at the appropriate operating points. This is a crucial
assumption in LCN and this approach is therefore particularly suited to
identification of local models that are used for LCN design.

All identification methods allow the user to specify hard or soft constraints on each
parameter separately. Furthermore, regularization methods are implemented to improve
the solution of ill-conditioned parameter identification problems (Johansen and Foss
1997; Johansen 1997).

When examining the experimental data for the test vehicle, it was discovered that
the local models in several of the transient operating regimes ae not easily identifiable.
The lack of identifiability is caused by the fast transients in off-equilibrium regimes.
Some parameters of these local models were therefore constrained during identification,
using information from an analysis of step-responses. It was also observed that the
dynamics in 1st gear are 2nd order, while in higher gears they are essentially 1st order.
This was expected, since the automatic transmission contains a lockup clutch that is
effective only at high speeds (switching occurs typically at some speed in the 2nd gear).
This lockup clutch fixes the ratio between the wheel and engine speeds at a fixed gear.
Consequently, these two states become a single state.

The nonlinearity of the model can be seen in Figure 9 where the impulse responses
of each local ARX model are illustrated. There are significant differences between each
gear, and also within each gear. We observe that there are significant changes in
response-time and gain over the operating range, reflecting the nonlinear torque curve
of the engine: the response is faster with higher high-frequency gain at intermediate
throttle than at very high and low throttle. Also, due to “saturation” in the engine, the
response is faster and with higher high-frequency gain near equilibria than far away
from equilibria. Finally, one can observe the under-damped 2nd order dynamics at some
operating conditions in st gear,
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Figure 9. TImpulse responses of the local lincar ARX models with each operating regime for
the model M42 of the experimental vehicle. The plot of each impulse response is placed
in its corresponding operating regime, and the axes are time (s) and speed (m/s).

4.2. Structure Identification Methods
The structural parameters of ORBIT models are

® The number of operating regimes, and their location in the operating space.
® Any integer parameters in the local models, such as order (n, and n, in the NARX
representation).

ORBIT supports structural identification of these parameters on the basis of
optimization of statistical criteria based on separate validation data, Final Prediction
Error (FPE) or Minimum Description Length (MDL) that all estimate the mean squared
prediction error. The set of model structures defined by the possible operating regime
decompositions is viewed as a tree, Figure 10. At each node in this tree there can in
addition be integer parameters related to the local models. ORBIT allows the user to
interactively explore the model structure tree in Figure 10. User-specified sub-trees can
be searched to the user-specified depth. The heuristic search method is described in
detail in Johansen and Foss (1995) and is based on Sugeno and Kang (1988). Working
interactively, the user may keep promising models and validate and compare them using
other methods, and as simulation and residual analysis. The user can also manipulate
the operating regimes directly in the GUL

Structure search were used in the early stages of the vehicle modelling, using a
less informative experimental data set Hunt ef al. 1996). The operating regimes of
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Figure 10. 'The model structure tree resulting from successive operating regime decomposition
(in the picture the operating regimes are characterized by two variables z, and z,). For
example, the 2nd level in the tree corresponds to possible decompositions into tworegimes,
while the 3rd level corresponds to possible decompositions into three regimes etc.

Figure 4 were specified manually on the basis of these experiences and careful
validation, analysis and simulation, taking into account the importance of having
accurate models both at equilibrium and off-equilibrium regimes for the purpose of
LCN design. The ORBIT API was exploited to write application specific MATLAB
scripts that simplified iterative refinement of the model structure.

4.3. Model Validation Methods

Model validation is often viewed as a highly application-specific problem. This is
recognised in ORBIT, and the local models and the global model can be made available
to external analysis and simulation in the MATLAB/SIMULINK environment.
However, there are some commonly used validation methods that are supported by
ORBIT:

® The models can be compared by examining simulation results. The user can
choose between simulation and prediction (arbitrary horizon), and define
arbitrary external input signals for the simulation.

® Equilibrium data for the models can be computed by ORBIT, i.e. given inputs
' and o the corresponding equilibrium output y* can be computed according to

Yy =f,..., you, ., u', ) 29

for a range u' € U and o" € A, cf. (1).
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® Stastical measures of expected prediction performance such as FPE (Ljung 1987)
which is based on the residuals

1+dM 2,

= 2 0 (30)
or the use of separate validation data can be visualized as error bar estimates. In
(30) d is the model’s degrees of freedom while the residual £(f) may correspond
to an arbitrary prediction horizon A.

® Correlation testing can be applied to various model variables (such as inputs u(?),
residuals &(r), and outputs y(r)); the correlation test results can be visualized and
analyzed.

FPE

Some validation results for various vehicle models can be seen in Figure 11. In the
“Correlation Analysis Window” (lower left window of the screen-dump in Figure 11)
the estimated autocorrelation function for the residuals &(r) with models M20, M21 and
M?22 are shown. M21 and M22 are simplified models with fewer operating regimes.
While M20 is scheduled on throttle and speed, M21 is scheduled on speed and M22
on throttle only, in addition to gear. Comparative simulation results with the models
M20 and M22 (ogether with selected experimental data S are displayed in the
“Simulation Window” (upper right window in the screen-dump in Figure 11). In the
“Prediction Error Estimate Window” (lower right window of the screen-dump in Figure

00006 3
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Figure 11. Model validation with ORBIT. The validation functions/windows are invoked from
the Model Database Window (upper left). The Simulation window (upper right) displays
simulation results for model analysis and comparison {models M20, M22 and measured
data S). The Correlation Analysis Window (lower left) displays the autocorrelation
function for the residuals (one-step-ahead predictors) of models M20, M21 and M22. The
Prediction Error Estimate Window (lower right) contains a plot of the estimated expected
predition error on the basis of separate validation data for a range of identified models.
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11) a statistical measure of expected prediction performance is displayed as error bars
for selected models. In this case the models’ prediction performance are evaluated on
a separate validation data sequence.

5. ORBITcd Functionality and User Interface

The ORBIT Control Design toolkit GUI (ORBITcd) is illustrated in Figure 12. The
window has four areas:

® The menus and buttons on the top contain all the functions that can be executed
from this interface. These include controller design, global controller analysis in
terms of quadratic Lyapunov functions (c.f. section 3.3; this is implemented using
the MATLAB LMI toclbox which contains useful numerical tools (Gahinet et
al. 1995)), local controller analysis in terms of Bode or Nyquist plots, generating
MATLAB or C-code SIMULINK S-functions, or C-code ‘include’ files for the
real-time control system, and management of controller specification data files.

® The panel on the right contains selections of the current (active) model, operating
regime, input/output channel, and graphical output.

® [n the centre there is an area for displaying graphical output and analysis results,
such as Bode or Nyquist plots of various local transfer functions: open loop,
sensitivity and complementary sensitivity transfer functions.

® Finally, at the bottom of the local controller design parameter specifications are
located. There are options for integral action and feed-forward. With pole
placement, the design parameters are an arbitrary of rise-times/damping factors
of the desired loop modes A; (g "), including the modes of the observer
polynomial A, (g ~'). With LQG design, the design parameters are the criterion
weights y,, and the same observer design parameters as with pole placement.

Carmping factor :
No.ExtaDelays | © Cosenervisetme |
Sarphrginienal | 048 Chsenver darmping factor |

Figure 12. ORBITcd Window. This window allows design and analysis of gain scheduled
LCNs on the basis of ORBIT models. The window contains areas for entering design
specifications, graphical display and buttons and means for invoking controller design and
closed loop analysis functions.
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The control design window shown in Figure 12 inherits the structural and local
model parameters of the current model (in this case the model selected is M20). The
design parameters shown in the window refer to the currently selected regime (regime
R13 from M20). Note that if the model has a large number of regimes, it is possible
to prepare a MATLAB script or application program which allows the user to more
conveniently define the design parameters for all regimes using the API rather than the
GUI. These parameters can be written to a file and loaded into the control design window
using the “File” menu. The active regime (R13) in Figure 12 is one of the equilibrium
regimes in second gear. For this regime the reference model and observer rise times
have been chosen as Ss and 1-5s, respectively, and the damping in each case is close
to unity. The active plot in the window shows a Bode plot of the complementary
sensitivity function for this local design. It is clear to see that the bandwidth for this
designis around Irad/s, and that the complementary sensitivity function rolls off rapidly
above this, thus ensuring that the loop will be insensitive to measurement noise and
high-frequency unmodelled dynamics.

SIMULINK provides a flexible environment for simulation, validation and
verification of the control system design. An example of a SIMULINK sctup that
includes a LCN generated by ORBITcd is illustrated in Figure 13. The model M42 is
arcfinement of the model M20 (the model has evolved as vehicle experiments have been
carricd out). A closed-loop control simulation in 3rd gear using this setup with model
M42 to represent the plant (see section 3) is shown in Figure 14(a). As shown in section
3, this controller has 9 local controllers in 3rd gear. The closed-loop rise-times were
chosen in each 3rd gear regime as 7s, and each local controller had a deadbeat observer
polynomial. This controller was subsequently implemented in the experimental vehicle;
the corresponding tracking response is shown in Figure 14(b). Note that this controller
is scheduled on both speed and throttle (as well as gear). Despite the fact that the throttle
changes rapidly, no destabilization of the loop occurs. A disturbance rejection test with

o o P
i CA2 30 T by o

— Sum eed
- - sgmrgle Sp
speed 26“ A F uration vehicle .n
3 H‘i‘ﬁ?ﬂe Corttreller [pode) W
4 gear
# v_‘sl
[Transrassion

Figure 13. SIMULINK simulation of vehicle with nonlinear gain scheduled LCN (block C42).
The remaining blocks define external signals, sensors and a model of the vehicle (including
automatic transmission).
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Figure 14. Closed-loop control: time-domain performance. In each part of the figure the top
graph shows the desired and measured speed, while the lower graph is the control signal
(throttle).
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Figure 15. Disturbance rejection performance in the experimental vehicle in 2nd gear. The
upward slope of 10% starts at 1 = 22s, and ends at 7 = 33s. The top graph shows the desired
(6m/s) and measured speed, while the lower graph is the control signal (throttle).

this controller was carried out by driving the vehicle up a 10% slope in 2nd gear. The
experimental response in shown in Figure 15. Satisfactory disturbance rejection is
achieved. In second gear the nonlinear controller consists of 7 local controllers, each
with a desired closed-loop rise-time of 6s and deadbeat observer.

6. Concluding Remarks

Gain scheduling control has several attractive properties from a practical nonlinear
control design point of view. The most important is that linear control theory can be
applied for design, and partially for analysis. Recent developments have extended the
applicability and understanding of gain scheduled control; transient performance can
be explicitly addressed by off-equilibrium linearization, there exist conditions for
analyzing stability, robustness and performance when scheduling on rapidly time-
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varying variables such as the control input, and the close links to fuzzy control and
feedback linearization can be exploited. This paper describes an integrated software
environment for design, implementation and analysis of such advanced gain scheduled
control design: local controller networks. The highly integrated tools for modelling,
identification, and control design and analysis allow rapid prototyping of highly
nonlinear control systems. An automotive application example illustrates the usefulness
of the approach.
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