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Linearizations of nonlinear functions that are based on Jacobian matrices often
cannot be applied in practical applications of nonlinear estimation techniques. An
alternative linearization method is presented in this paper. The method assumes that
covariance matrices are determined on a square root factored form. A factorization
of the output covariance from a nonlinear vector function is directly determined by
“perturbing” the nonlinear function with the columns of the factored input
covariance, without explicitly calculating the linearization and with no differentia-
tions involved. The output covariance is more accurate than that obtained with the
ordinary Jacobian lincarization method. It also has an advantage that Jacobian
matriccs do not have to be derived symbolically.

1. Introduction

An extensive theory and a number of algorithms have been developed for nonlinear
state and parameter estimation and they are based on stochastic theory. See, for
example, Jazwinski (1970), Anderson and Moore (1979), and Ljung and Séderstrém
(1983). In this theory one frequently faces the problem of approximately determining
the covariance matrix for the output variables from a nonlinear vector function, based
on the expected values and the covariance matrix for the input variables. The approach
that is usually adopted is to determine the output covariance from the linear term (the
Jacobian matrix) of a Taylor series expansion of the nonlinear function around the
expected value of the input vector. Higher-order methods, which are based on
higher-order terms of the Taylor series expansions and on higher-order moments of the
stochastic variables, have also been proposed. However, there are important practical
applications where the first- or higher-order derivatives of a nonlinear model are not
well defined for certain singular values of the input variables. Methods that are based
on Taylor series expansions of nonlinear functions will then fail to determine reasonable
approximations for the covariance matrices.

It is well known that an alternative approach known as statistical linearization, see
for example Gelb (1974), is generally more accurate than the Taylor series expansion
method. However, this approach is usually computationally too demanding to be
applied in practical applications.

In this paper only linear approximations to nonlinear functions will be considered
for covariance calculations in nonlinear estimation problems, and higher-order methods
will not be considered.

*Corresponding author: Dr Tor Steinar Schei. Tel: +47 73 59 43 75; Fax: +47 73 59 43 99,
E-mail: Tor.s.schei@ecy.sintef.no.

{SINTEF Electronics and Cybemetics, 7034 Trondheim, Norway.

Received 20 August 1998,

Reprinted, with permission from Elsevier Science Ltd., from Automatica, Vol. 33,
pp- 2053-2058, 1997.




142 T. 8. Schei

The general nonlinear vector function
y=f(x) e

will be considered below. Equation (1) can represent adiscrete state-space model, where
x is a vector of state variables, model parameters and noise variables; and y is a vector
of predicted states and parameters, one time-step ahead. Equation (1) can also represent
an observation model, where x is a vector of state variables, model parameters and noise
variables; and y is a vector of predicted measurements.
In equation (1) x is a vector of stochastic variables with expected value and
covariance:
E{x}=% E{x-®x-9"}=X. ¥))

The expected value and the covariance of y is determined from a linearization of f(x)
around the expected value of x:

y = E{f(x)} = (%), 3
Y = E{(f(x) — E{fx)DEx) — E{fx) )"}~ FXF". “

'The matrix F in equation (4) is usually determined as the Jacobian of f(x), evaluated
alx=xXx:

_ 0
F= a;f(x)h:n. &)

There might be several reasons why Jacobian matrices are not appropriate in practical
applications. First, the partial derivatives in equation (5) might not be defined for certain
singular values of x. Second, in industrial process applications f(x) might include
references to a property data base, and the differentiation in equation (5) can then only
be obtained numerically.

An alternative linearization method, which does not assume that the derivatives in
equation (5) are defined, is proposed in the next section.

2. New linearization method

Initially, it is assumed that the elements x;, j=1,...,n=dim(x), in x are
uncorrelated with standard deviations g, ; = 1-0. The proposed method for lincarization
of f(x) is then defined by:

F={FG@,)}=A(iX +e)) —fix—e¢))2} ©

where F (i, j) is element (i, j) in F and f;(-) is element i in f(-). e, is the unit vector along
coordinate axis j in the space spanned by x.

The difference between the lincarizations in equations (5) and (6) is that element
(i,j) in equation (5) is the partial derivative df;(x)/dx; at X = X, while element (i, j) in
equation (6), which can be seen as a central point finite-difference approximation, is
equal to the average value of df;(x)/x; over an interval determined by the straight line
from X — 0, €10 X + 0, je;. The latter explanation assumes that the partial derivatives
are well defined.

The linearization equation (6) is extended to general covariance matrixes X by
introducing a linear transformation that statistically decouples the stochastic vector Xx.
Such a transformation is recognized from a square root factorization of the covariance
matrix X:

X=S.51. ()
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The square root matrix S, is not unique, but for computational reasons it is often
preferred to keep it square and triangular. S, can be considered as a linear transformation
from a stochastic vectorztox: x = S, z, where the covariance of z is equal to the identity
matrix. Hence, by introducing the function f(z) = (S,2), equation (6) can be extended
to general covariance matrices:

F={F@.j)}={(fz+e;)—fi(z—e))2}=FS, ®)

where Z =S, /% and ¢; is the unit vector along coordinate axis J in the space spanned
by z. Hence, a square root factorization of the covariance Y is determined from equations
(4) and (8):

Sy ={S,(i,))} =FS,

={(fi(x+s,)) —filx —s,))2}
Y=5,8" )

where s, ; is column j of S,. Equation (9) is a convenient formula for approximately
determining a square root covariance S, without explicitly computing the linearization
F. The accuracy of this formula is analyzed in the appendix under the assumption that
f(x) is analytic. The accuracy depends on the distribution of x, but it is always better
than that obtained by using the Jacobian matrix. The improvement may be marginal.
However, amain advantage with the proposed linearization method is that it can be used
for linearizing models where the first derivative of f(x) is discontinuous or not defined
for certain values of x. An example of such a model is shown in Section 4.

Another advantage with the proposed method is that Jacobian matrices do not have
to be derived, which may be inconvenient in connection with general estimation
software which is designed to be used with arbitrary models. For example, if a model
is defined by configuring various model units from a model library, it may be
inconvenient to obtain the Jacobian matrix for the resulting model symbolically.

The proposed method is computationally quite efficient because it takes advantage
of the sparsity of large models. The number of numerical operations necessary for
evaluating f(x) is approximately proportional to » rather than n? for large models, and
the number of operations involved in equation (9) is then proportional to n2. Another
advantage with the formulation above is that the numerical properties of estimation
algorithms are generally improved by using square root factorizations of covariance
matrices (Carlson 1973; Bierman 1977; Thornton and Bierman 1978).

3. Application to the extended Kalman filter

The linearization method discussed in the previous section is applied to the extended
Kalman filter.

3.1. The extended Kalman filter (EKF)

The basic Kalman filter algorithm, which is an optimal minimum variance
estimator, is derived for linear systems. The theory is extended to nonlinear systems
with well-defined first-order derivatives in the extended Kalman filter (EKF) algorithm,
which is based on linearizations of nonlinear models around the current state estimate.

The equations for the EKF algorithm are summarized below. It is assumed that the
nonlinear model is formulated in discrete time as



144 T. 8. Schei

x(k + 1) = f(x(k), v(k), u(k))
y(k) = g(x(k), w(k)) (10)

where x(k) is the state vector at time instant k, v(k) is a vector of disturbances, and u(k)
is a vector of manipulated variables. y(k) is a vector of measurements and w(k) is a
vector of measurement noisc. Both f(-) and g(-) can also be explicit functions of the time
instant k.

The stochastic inputs, v(k) and w(k) are assumed to be uncorrelated white noise
processes with expected values and covariances:

E{v(k)}=%(k), E{vk) —VE)vk) = ¥(E)"} = V(K),
Ewi)y=w(EK), E{wk) — WK))(wk) — W(K)'} = Wk). an

At time instant k, it is assumed that the a priori estimates of the state vector, %(k), the
measurement vector, §(k), and the state covariance matrix, X(k), are determined. The
equations for computation of the Kalman filter gain matrix, K (k), and the a posteriori
estimates of the state vector, R(k), and the state covariancc matrix, X(k), can be
formulated as

kb =xw(e) | Lexwo L Lewi g L a2
800 = %00 + KMIY®) ~ 3 ), a3
- _ T
X(k) = [I- K(k) aax-g]X(k)[f' K(k) ;x-g]

+ ka0 g ww|kw ] (1)

The partial derivatives dg/ox and dg/dw arc evaluated at the current a priori state
estimate, x = X(k), and at w = w(k).
The a priori estimates are determined as

x(k + 1) = f(R(k), ¥(k), u(k)), (15)
§k+ 1) =g&(k + 1), Wk + 1)), (16)

_ _a EIA: 3\
Xk+1)= a—xﬁ'(k)(&f) + o fvorc)(a f) . an

The partial derivatives 8f/dx and of/dv arc evaluated at the current a posteriori staic
estimate, x = X(k), and at v =¥(k).

3.2. Modified EKF algorithm

The EKF algorithm is modified in accordance with equations (7) and (9). The
following factorizations are introduced:

X=838"T, X=84T,
V=88, W=8,S.. (18)
S, and S.. are determined from Cholesky decompositions of V and W.
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3.2.1. Prediction
A square root factorization of the a priori state covariance is determined as

S.\ - [S.\,E S.w] 19
where

Sue= {8, )}
=& +8.;,v,0) — fiR —3,;,V,u))/2}, (20)

S‘M' T S‘xn(ioj)}
= {(fi(is?."_sr.j’ l.l) _.ﬁ'(ﬁ!v-sl'.jt“))fz}° (21)

8., is column j of §,, and s, is column j of S,. Similarly, a square root factorization
of the covariance
5,8y =E{y -y -9 22)
is determined as
S, =[S Sl (23)

where §,; and §,,, are determined from equation (16), in accordance with equation (9):
S)A - {Syn('sj)}

= {(g,(i + 5. \T\") —gi(x Sijs “"))/2}, (24)
Sy =S5 (i, 1)}
={(g:(x, W +5,. ;) — gi(X, W +s,, ))/2}. (25)

8, is column j of §,, and s,,.; is column j of S... The rectangular matrix S, in equation
(19) needs to be transformed o a square matrix. This can be achieved by using the
Householder transformation (see, for example, Golub and Loan 1989), which
transforms S, to a square and triangular matrix such that S,87 is unchanged. An
alternative transformation is the singular value decomposition, which also can be used
to transform the rectangular matrix S to a square matrix such that 5,87 is unchanged.
The columns of S, are then _equal to the eigenvectors (and the singular vectors) of the
covariance matrix X = .S} The singular value decomposition is, however, compuia-
tionally more demanding than the Householder transformation. The Householder
transformation is used in the simulation example in the next section.

3.2.2. Filtering

A common formulation of the equations for computation of the Kalman filter gain
and the a posteriori estimates of the state vector and the state covariance matrix are
shown in equations (12)-(14). The equations are reformulated below:

K (k) = S,(k)S,:(k)"[S,(k)S, (k)] "', (26)
R(k) = x(k) + K(k)ly(k) — y(k)l, X))
$:(k) = [(5.(k) — K()S,: (k) K (K)S (k). (28)

8.(k) in equation (28) is rectangular, and the Houscholder transformation is used to
transform it 1o a square and triangular matrix.
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Figure 1. A system with two gas tanks (pressures p and p2) and two flow restrictions (flow
rates g, and g,). The pressures in the two tanks are influenced by the disturbance v.

4. Simulation example

The modified EFK algorithm is studied in a simple simulation example. A system
with two gas tanks and two flow restrictions is shown in Fig. 1.
The pressures in the two tanks, p; and p,, can be modelled as

pr=pig1—q2),
P2=D2q2 (29)

where g, and g, are volume flow rates as indicated in the figure. Equations (29) are in
dimensionless form, and it is assumed that the differcntial pressures across the two flow
restrictions, v — p; and p; — p2, are small compared to the absolute pressures p; and
p2. The flow rates, g, and g», are usually modelled as

g1 =kisign(v — p)Vy —pil,
= @

for turbulent flows across restrictions.

The pressure v is a stochastic disturbance that is assumed to be uncorrelated with
the states p, and p,. An Euler discretization (e.g. Cheney and Kincaid, 1985) of equation
(29), with time step equal one, leads to the following discrete model:

itk + 1) =pik) + pi(k)(g:(k) — g2(k)),
patk +1) = pak) + pa(k)g2 (k). BN

The disturbance v(k) is assumed to be white noise with expected value v = 1.0 and
standard deviation ¢, = 0-01. The parameters in equation (30) are set by k; = k, = 0:01.

The prediction part of the ordinary and the modified EKF algorithms are studied
for the nonlinear model in equations (30) and (31), with no measurement update. These
algorithms arc compared with the results obtained from an ideal Monte Carlo analysis,
where model and noise properties are identical as for the estimators above. The analysis
is performed with N = 10" run, and the stochastic disturbance, v(k), has a Gaussian
distribution. The expected state vector and the state covariance matrix are determined
from

l N
Prc(k) =4 >, pak), (32)
n=1
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Figure 2. Jacobian linearization. The expected values 71 (solid line) and p; (dashed line) are
shown together with p, * &, gy and P22 0apxr where @) gxr and 55 are the standard
devations with Jacobian linearization.

| - _ .
Prc(k) = == 2 (k) — Puc(k))' (33)
4 n=1
where p,, is the vector of pressures, p, and p,, from run No. n. The standard deviations
and correlation coefficients are then determined from

O\ mc= \/PML‘(], 1), Gamc: \/5;1((25 (34)

_ _ Pue(1,2)
Poeme=_—"—_-—1.
T MC O2.MC

(35)

The initial states are p,(0) = 0-99 and Pp2(0) = 0:98, both in the estimator and for the
Monte Carlo analysis, and the initial state covariance matrix is zero.

The estimators are simulated under identical conditions and compared with the
Monte Carlo analysis. The result from the ordinary EKF algorithm with Jacobian
linearization is shown in Fig. 2. The standard deviations a1 exr and &, ke approaches
infinity as p; — p; — ¥, which is expected since the derivatives dq,/0p,, 8q./dv, 0g-/dp,
and dq,/dp, approach infinity. The two methods are compared in Figs. 3-5._ It is clear
from the figures that the ordinary EKF algorithm with Jacobian linearization cannot be
applied in this situation.

5. Conclusions

Linearizations that are based on differentiation of nonlinear functions often cannot
be applied in practical applications of nonlinear estimation techniques. An alternative
linearization method, which is based on square root factorizations of covariance
matrices, is proposed in this paper: A factorization of the output covariance from a
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Figure 3. Standard deviation a,.

nonlinear vector function is directly determined by “perturbing” the nonlinear function
with the columns of the factored input covariance, without explicitly calculating the
linearization and with no differentiations involved.

The method is more accurate than the ordinary Jacobian linearization, and the
method can be applied to models where the Jacobian is not well defined. It also has the
advantage that Jacobian matrices do not have to be derived symbolically. The method
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Figure 4. Standard deviation 4.
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is particularly simple to implement, and it is numerically cfficient for large models.

The proposed linearization method was studied in connection with the extended
Kalman filter algorithm. The method is, however, generally applicable as an alternative
to the Jacobian lincarization in estimation algorithms that are based on first- and
second-order moments of the stochastic variables.

Appendix

The accuracy by which the proposed linearization method in Section 2 can be used
to determine approximations for covariance matrices is analyzed below. It is assumed
that the expected value, %, and covariance, X, of x is known. For analysis purposes, it
is also assumed that the distribution of x is Gaussian. The covariance matrix ¥ for
y = f(x), determined from equation (9), is compared with the “true” covariance by
expanding the nonlinear model in a multidimensional Taylor series. Hence, for the
analysis it is assumed that the nonlinear function f(x) is analytic.

As in Section 2 the function f(z) = £(S,z) is introduced, where Sz=xand S, is a
quadratic square root factorization of X, $,87 = X. The dimension of z and x is n, and
the dimension of y is m. A Taylor series expansion of f(z) around the expected value
Z=S§, 'X can be expressed as

> i
?(Z) — i"(i + AZ) — E D:‘.\A_(“_z))'r Z

i=0 !

(A.1)

where the operator D, (-), which acts on i"(z) on a component-by-component basis, is
defined as

Di.() = (Az'V,) ()

- K 9 L. LAY
- (A= et he +Az.,azn)()- (A2)
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The “true” expected value, ¥, is then

yr=E[fz+ Az)] =E

Zr_[(%zmz:f;z +‘_ +hars )(f(z))L ] .

il

The elements of Az are uncorrelated with zero expectations and equal, symmetric
distribution. Equation (A.3) can then be simplified

a').i' alf azf .
(gt ,2.)0(:)) E[AZ]
y=t@+ 3 - : (A4)
“ @)

where Az is an arbitrary element in Az. All odd moments of Az are zero because the
distribution is symmetric.
Element number k in y — §r can now be expressed as

§ @G

Ye— Je,r=fil® + Az) — Elfu(Z + Az)] = T

o4 a4 N\ . .
- (Gt o)), _Fia
_ 2 _ i (A.5)

and clement (k, I) of the true covariance matrix Y7 is
Yok, D)= E[(x — er)1 — Fu0)]
_ (Az'V.) (f: ;(?))lr 7 (AITV;)‘U:(!))L 7
-£[(3® )z )]

i=1 i! j'
A - (AZTV7) (f&(?))ls* %
I[,_z. i! j
( (}_;p 1 JJ)UI(Z)) F[AZ}J])
X\ 2
=1 @)

( i (2,: o ?,)(ﬁ(?)) E[AZ"‘J)
R :
i=1 (21)1

x L[g wiﬂ)}@(z»lz 2 J

-, 32’ .
( i’ ( P 2,)()&(1)) _E[Azz'])
F = (21)!

2

%N - )
oo ( :';— 1 H_QJ)UI(Z)) _E[AZ7JJ
w|'S g/ lees
=1 @

(A.6)
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The last two terms in equation (A. 6) cancel, and Yv,-(k 1) is further simplified:

Yk, 1) = z (E < (6 ‘f‘(?)l’ *) ( f:(?)L 7) )

p=1

5 ((2 (a g,fa(;)J? ,)Fﬁz‘“ J)

p=1 =1 (2!')!

(sl Jmer)

=1 (?J’}'

The terms containing odd derivatives are separated from the terms with even

derivalives:
g+ ge+n
(d ).+|fi(’)[7 1) ((:]?_,;‘I |f-‘(z)|z—i)
Yok, 1) = Z 21 2’ '"(2, N ])l P o __E[AZZJ+2J'l 2]
P

T Elaz]

i=0j=0 Z+ 1!
.
( z;fh( }’! ;) ( Q_JfI[T)lv })
+3 (3 3% A
p=1 Ni=1j=1 Qi) @y
X (E[Az%* %] — E[Az‘”IE[Az”]))- (A8)

For a Gaussian distribution the even moments of Az are (Papoulis 1984):
E[Az%]1=13....-(2g— Dok, o4 =1.0. (A.9)

The covariance determined by using the proposed linearization method is derived from
cquations (8) and (9). Element (k, ) of the covariance matrix is determed as

Y(k,D)= > S.(k,p)S.(L.p) (A.10)

where

1 - -
Sykp) =5 iz +e,) — i@ —e,))

16 (V- V) Gl

i=0 i!
gD
~ T f i a2 fk(z”z—i

: LVLUQ)I)—(&_ )

_;n( (2i + 1)! _2;} Qi+ 1)! (A.11)

Using equations (A.10) and (A.11) an expression for clement (&, /) of the covariance

matrix is obtained:
d(?r 1) d{ZJ
P IC )

Yk.n= Z ( ,En Qi+ 1) (2;+ H!

r=1 i

(A.12)
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By comparing the true covariance in equations (A.8) and (A.9) with the covariance
determined in equation (A.12) and the covariance determined by the ordinary Jacobian
linearization method, which corresponds to using only the first derivatives in equation
(A.12) (i = 0,j = 0), it is clear that the proposed method is slightly more accurate than
the Jacobian linearization method. The two methods coincide if all odd derivatives,
except the first derivatives, of f(z) are zero, otherwise the new method is more accurate.
It is also worth noting that equation (A.12) would determine the true covariance for a
symmetric distribution where the even moments of Az are:

E[A7¥] = 0¥ =10.
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