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The partial least squares algorithm: a truncated Cayley-Hamilton
series approximation used to solve the regression problem

DAVID DI RUSCIO¥}

In this paper it is shown that the PLS algorithm for univariate data is equivalent to
using a truncated Cayley-Hamilton polynomial expression of degree 1 <a =<r for
the matrix inverse (X'X) ' € R"*" used 10 compute the LS solution. Furthermore,
the a coefficients in this polynomial are computed as the LS optimal solution
(minimizing parameters) to the prediction error. The resulting solution is
non-iterative. The solution can be expressed in terms of one matrix inverse and is
given by By s =K (KIX"XK,) 'KIX"Y where K, € R"*" is the controllability
(Krylov) matrix for the pair (X"X,X7Y).

The iterative PLS algorithm for computing the orthogonal weighting matrix W,
which is presented in the literature is in this paper shown to be equivalent
to computing an orthonormal basis (using, .g., the QR algorithm) for the column
space of K,. The PLS solution can then equivalently be computed as
Bps =W, (WiX'XW,) 'WiX"Y, where W, is the Q-orthogonal matrix from the QR
decomposition K, = W,R.

Furthermore, we have presented an optimal and non-iterative truncated
Cayley-Hamilton polynomial LS solution for multivariate data. This solution is
found as the minimizing solution of a prediction error criterion.

1. Introduction

The Partial Least Squares (PLS) algorithm and its solution has got great attention
and is widely used in chemometrics, which is defined as The use of mathematics and
statistics on chemical data in Martens and Nzs (1989).

PLS was introduced by Wold (1975), (1985) as an algorithm for, e.g., computing
a solution By s for the regression coefficients B in a linear model ¥ = XB + E from
known data matrices X and Y. The PLS algorithm is analyzed in, among others, Martens
and Nees (1985), Manne (1987), Lorber et al. (1987), Helland (1988), Hoskuldsson
(1988), Frank and Friedman (1993), Burnham ef al. (1996) and ter Braak and de Jong
(1998).

While PLS have been used in many applications in chemometrics, there have been
few applications to system parameter identification. PLS have traditionally been used
on data from steady state systems, and for the problem of constructing a predictor for
the output of a system. However, PLS was used in subspace (dynamic) system
identification in Di Ruscio (1997) in order to compute a basis for the observability
matrix which is the basic in subspace system identification of dynamic systems.

PLS is in the literature presented as an iterative algorithm, i.e., partial or piece-wise
linear regression. One of the main contributions in the following paper is to give a new
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interpretation and description of the basic PLS solution. We will show that the basic
PLS algorithm is non-iterative and can be computed as the minimizing solution to a
prediction error criterion. This is believed to be of interest for the community working
with system identification in general, as well as to chemometricians.

We will try to give a discussion of the PLS algorithm which is as simple as possible.
We believe that this only can be done by introducing as few definitions and variables
as possible. In the literature the PLS algorithm and its solution is usually presented in
terms of so called score vectors, loading vectors, weighting vectors and various iterative
orthogonalization (deflation) processes, in addition to the solution for the matrix of
regression coefficients. This work has shown that it exists as a very simple non-iterative
algorithm for computing the PLS solution. It can be shown that the PLS solution can
be expressed in terms of some weighting vectors only. We will therefore concentrate
our discussion on these weights. A discussion and definitions of the scorc vectors,
loading vectors, etc, which usually are defined in connection with the PLS algorithm,
can be found elsewhere.

The rest of this paper is organized as follows. Some basic system definitions are
presented in Section 2. A basic preliminary result concerning the latent variable LS
solution is presented in Section 3. The PLS algorithm is reviewed and some new results
are presented in Section 4. The main contributions concerning the interpretation of the
PLS solution are presented in Sections 5 and 6. A real world example from the pulp
and paper industry is presented in Section 9 and some conclusions follow in Section
1.

2. Notation, basic- and system-definitions

Define y; € R™ as a vector of output variables at observation number k. The output
variables are sometimes referred Lo as response variables. Similarly a vector x; € R”
of input variables is defined. It is assumed that the vector of output variables y; are
linearly related to the vector of input variables x; as follows

w=B"x;+es, )

where e; is a vector of white noise with covariance matrix E(ee} ) and k is the number
of observations.

With N observations k= 1,...,N we define an output (or response) data matrix
Y € R¥*" and an input data matrix X € R"*" as follows

yi x{
y=|: | x=|:| 2)
YA xh

The data matrices Y and X are assumed to be known.
The linear relationship (1) can be written as the following linear matrix equation

Y=XB+E, €)}

where B is a matrix with regression coefficients. E € R"*™ is in general an unknown
matrix of noise vectors, defined as follows

ey
E=|: | “

en
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The linear relationship between the output (response) and the input data (or regressors)
is an important assumption and restriction for the PLS as well as any LS algorithm to
work.

We will in this work analyze systerns with multiple output variables in the data
matrix Y. This is often referred to as multivariable (or multivariate) systems.

If we only are interested in the matrix of regression coefficients B, then one should
note that it (for sieady state systems) usually is sufficient to consider one output at a
time and only investigate single output systems. This means that the multivariable LS
problem can be solved from m single ouput LS problems, i.e., each column in B is
cstimated from a separated LS problem.

Note also that (instead of modeling onc output variable at a time) equation (3) can
be transformed to an equivalent model with one ouput in different ways. Two possible
models with one ouput, which are cquivalent to the multivariable model (3) are
presented as follows

cs(Y) = (1, ®X)es(B) + cs(E), (5)
es(Y') = (X @1,,)es(BT) + cs(ET), (6)

where cs(-) is the column string operator and ® is the Kronecker product. cs(¥Y) e RN
is a column vector constructed from ¥ by stacking each column in Y on another. We
also have (1,,@X) e R"*" and cs(B) e R™.

Note that (6) can be constructed directly from (1) by first writing (1) as

Y= i ®IL,)cs(B") + ¢, 7

and then combine all N equations (k= 1,...,N) into a matrix equation of the form (3).

Howevcr, for the sake of completeness we will in general consider multivariable/
multivariate (multiple output) systems of the form (3).

One important application of the PLS algorithm is to compute projections. An
example is the problem of computing the projection of the row space of ¥7 onto the
row space of X".

In the literature PLS is usually presented as two algorithms, PLS1 and PLS2. PLS1
is concerned with univariate ¥ € R, and PLS2 is concerned with multivariate
Y e R™™. We will follow these definitions.

3. Preliminary results

We will in this paper consider Least Squares solutions which may be regularized
approximations to the Ordinary Least Squares solution, as defined below.

3.1. Definition
Consider a Least Squares solution of the form

By =W, p* ®

where W, € R"™™“ is a weighting matrix, a is the number of significant componenis
(latent variables) which is restrictedto | <a<randp* € R%is the LS optimal solution
fo

B

—_——
p* = argmin[lY + XW,pl|f. )



120 David Di Ruscio

Furthermore, the optimal p* and the LS solution By corresponding 1o the particular
weighting matrix W,, are given by

By = W, (WIX"XW,) "W XY (10)
and
p*= (WIXTXW,) WXy (1)

where we assume that (Wi X"XW,) ™" is non-singular for some 1 =a=r.

Note that any square non-singular matrix W, gives the OLS solution
Bows = (X"X) 'X"Y. Hence, M = OLS in Equation (10).

Furthermore, choosing W, = V, where V; € R"*“ is the a first columns in the right
singular vector matrix V from the SVD,

S 0 .
x=usv'=1u: v ]W. VaI"
AP

where U;RM*“ and S$;R“*“ gives the PCR solution (truncated SVD solution),
By = V|Sl 'UTY.

We will in this paper show that the PLS solution can be defined similarly.

Notec also that W, span the column space (range) of the solution By. W, could
thercefore have been defined as the range %(B w) of the solution, instead of a weighting
matrix.

4. The PLS solution

The PLS algorithm for computing a solution to the regression problem is presented
by Wold (1975) and (1985). This algorithm is an extension of the NIPALS (power
iteration) algorithm for computing principal components published in Wold (1966). We
will also refer to Frank and Friedman (1993) for a review and pscudo code presentation
of Wold’s PLS algorithm. We will give below a different ad-hoc description of the PLS
algorithm which has some similarities to the description by Helland (1988).

The normal equation is of central importance in LS problems and its solutions.
Thercfore it makes sensc to study the PLS algorithm with the normal equation as a
starting point. The normal equation XY = X"XB(W) substituted for a LS solution
B(W)=WW'X"XW)~'W'X"Y yiclds

XTy=X"XWW'X"XW) 'W'X'y. (12)

where we in the following discussion assume univariate ¥ € R”. The extension to the
multivariate case will be clarified later. The first weight vector w, in the PLS weighting
matrix W can be taken directly as the correlation w, = X”Y when Y is a vector. When
Y is a matrix then w, can be taken as the left singular vector of X"Y which corresponds
to the largest singular value. This is equivalent to putting w, equal to the eigenvector
corresponding to the largest eigenvalue of the matrix X TYY”X. Power iteration is a
convenient tool for this computation.

The PLS algorithm was probably derived in a rather ad hoc manner, Helland (1988).
Having this in mind, it is not too strange to choose a weight vector w, = X"Y. For the
sake of convenience w is often scaled, c.g., the choice w, = X"Y/|[X"Y |- gives an
orthonormal weight vector, i.e., wiw, = 1. However, as also pointed out in Helland
(1988), this scaling is not necessary. In order not to complicate the discussion we choose
not to use scaled weight vectors.
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Substituting this and W, = w, into the normal equation gives us a residual
w2=w, —X'XB, where B, =W (W{X"XW,) '"W!w, and Wi=w. (13)

Note, that B, is the matrix of regression coefficients computed by the PLS algorithm
when the number of compenents is equal to @ = 1. It is now important to note that
wiw, =0, i.c., w, is normal 1o the residual w,. Hence, this residual w, after choosing
Wi =w, =X"Y is the 2nd weight vector used by the PLS algorithm. We now define a
normal equation for the residual, i.c,

w,=X"XB; where By =Wo(WIX"XW,) 'Wiw, and W, =[w, w,l. (14)

The residual
W3 =W, XTXBQ (] 5)

is taken as the 3rd weight vector in the PLS algorithm. We now define yet a new normal
equation

wi=X"XB3 where By=Wi(WiX"XWs) 'Wiws and Wi = [w, w, wa). (16)

From this it is also simple to show that wiws = 0, because w is normal to the residual
wa. The other weight vectors w, for i =4,...,a are defined similarly. The procedure
for computing the weight vectors which is outlined above is presented in the following
Theorem 4.1. We can now combine the above equations to give the following normal
equation which give us an expression for the PLS estimate of the matrix of regression
coefficients
B PLS
M

R

I's
X'"Y=X"X(B,+B,+B;+---+B,). a7

This shows that the problem of computing the PLS solution can be reduced to computing
the weight matrix W,.. We have the following theorem for computing the weight vectors,
i.e., the columns in matrix W,.

4.1. Theorem (PLSI: weight vectors and LS solution)

Given data matrices X € RN’ and univariate Y € R¥. The weighting matrix
W, € R"™“ used by the PLS algorithm can be computed as follows. The first weighting
vector wh, i.e., the first column in matrix W, = [w---w,] can be taken as

w, =X"Y (18)

when Y is univariate. The other weights w,, ..., w, are computed recursively from w,
Wi =w, and X"X as follows. Compute forall i=1,...,a— 1

wiv1=w;—X'XB; where B;,=W,(W!/X"XW,) '"WTw; (19)
where W; increase by one column for each iteration, i.e.
Wi=[w,---w;]. (20)

Finally, the PLS solution for the matrix of regression coefficients B is given by

Bus= >, B, (21)
i=1

which is equivalent to
Bps = W(WiX'XW,) 'Wiw,. (22)
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Theorem 4.1. states that the PLS solution Byis can be expressed in terms of a
weighting matrix W, € R"*“ where a is the number of components. The number of
components are usually bounded by 1 < a < r. We shall here note that when a = r then
W, is square and non-singular because W, is an orthogonal matrix, and that the PLS
solution is equal to the ordinary LS estimate, i.e., Bps = Bos.

In Helland (1988) it was shown that the weight vector also can be computed as
Wisr =w, — X XW:(W!XTXW,)'W!w, where w, = X"Y. However, we can show that
w,+1 can be computed from W; and any of its columns, i.e., we have the following
alternative equation which can be used instead of Equation (19)

W,'+|=Wj_XTXH,'WjVj-_l,...,f (23)
where

H,=W,WIX"XW,)"'W/ 24

We shall here note that the matrix product X" XH, is an oblique projection. The algorithm
for computing the weighting matrix W; in Theorem 4.1. can be viewed as an
orthogonalization process, e.g., Gram-Smith orthogonalization, Golub (1983). The
weight vector w; computed after the ith iteration is orthogonal to the previous weight
vectors w, ..., wi_. This means that W/'w; =[00...w{w;]". The orthogonalization
process in Theorem 4.1. is not unique. For instance, define a non-singular scaling or
transformation matrix 7 € R“*“. It is then evident that any weighting matrix defined
as W,: = W,T gives the same PLS solution. This can be proved by substituting W,I" for
W, in Equation (22).

In the literature the PLS algorithm for multivariate ¥ data is denoted PLS2. In this
casc we have the following result.

4.2. Theorem (PLS2: weight vectors and LS solution)

Given data matrices X € RY*" and Y € RV*". The weighting matrix W, € R"“
used by the PLS algorithm can be computed as follows. The first weighting vector wy,
i.e., the first column in matrix W, = {w,...w,] can be taken as

wi:=u, where USV': =X"Y and U=1{u,...un) (25)

i.e., w, can be chosen as the left singular vector which corresponds to the largest
singular value of matrix X"Y.
The other weights wa, . . .w. are computed recursively fromW, = w,, (X'Y);: = X"Y
and X"X as follows. Compute for all i=1,...a—]
XTY)i1 =~ X" XWWIXTXW) " WDHXY); (26)
and
Wis1t = Uy where USVTQ=(XTY)H] and U [ul-'-um] (27)
where W; increase by one column for each iteration, i.e.
Wi=lwi...wl. (28)
Finally, the PLS solution for the matrix of regression coefficients B is given by
Byis = W (WIX"XW,) 'WiX'Y. 29

We will here present some alternative formulations for the problem of computing
the PLS weighting vectors. The weight vectors in Theorem 4.1. can equivalently be
computed by the following process
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X,W,WrXfX

Xr' T X:' - T xr T wr .
! wIX Xw; (0)
) W.‘w=X;?ﬂY (31)

withw, =X"Y and X, = X.
The following formulation can also be used in the univariate case (m=1).

. W;’.W;

Wit =W, _X?X“’;W—F.X?X‘E (32)

where w; = X"Y. Note however that the weight vectors com puted from this last process
may differ from that presented in Theorem 4.1. by a different scaling. This last
formulation will be used in the analysis of the PLS algorithm.

The PLS algorithm can be implemented with different formulations of the
orthogonalization process, as pointed out above. However, it is important that these
weight vectors span the same subspace. The subspace spanned by these weight vectors
will be pointed out in the next section.

5. Relationship between PLS and a controllability matrix

It is now important to recognize a relationship between the weight matrix W, and
a so called Krylov marix. It is known that the problem of computing many orthogonal
decompositions has an cquivalent problem of computing subspaces for a Krylov matrix.
Correspondence with Krylov matrices and orthogonal decompositions are pointed out
in Golub (1983). In the control literature the Krylov matrix is known as the
controllability matrix,

We will later present the relationship between the PLS solution and the problem
of computing the subspace spanned by a controllability matrix. First let us illustrate how
the ordinary LS solution is related to a controllability matrix of the pair (X7X,X"Y).
We have the following proposition.

5.1. Proposition

The ordinary LS solution B o.s can be expressed in terms of the controllability matrix
of the pair (X"X,X"Y) and the cocfficients of the characteristic polynomial
det(U, —X'X)Y=X+p 2 "+..-4p,i+p,.,. Assume that X'X is non-singular,
then

Bos=X'X) 'X"Y=K,p (33)
where K, is the controllability matrix for the pair (X"X,X"Y), defined as
K,=[X"Y X"XX"Y X'X2X"Y---(X"X) 'X"Y], (39)

and p is a vector formed from the coefficients of the characteristic polynomial.

5.1. Proof

From the Cayley-Hamilton Theorem we have that X'X satisfies its own
characteristic polynomidl, i.e.,

X'X) +pX"X) '+ +p X X4 p, =0 (35)

where pa, ... ,p, .1 are the coefficients of the characteristic polynomial det(Al, — X" X).
This can be used to form the matrix inverse
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X'X) '= '—(p,f,-+p,- XX A4 - paXTX)TT P XTX) D (36)

Pr+i

which is derived by post-multiplying (35) and then solving for the inverse. Substituting
(36) in the LS solution gives Equation (33) where

_ |
p pr*l

and the proposition follows. O

peprv--p2 11" 37

A consequence of Proposition 5.1. is that the ordinary LS solution can be expressed
as a linear combination of the columns in the controllability matrix. The coefficient p, +
in the characteristic polynomial can be computed as p, .= det(X"X) = Lidz--- 4.
Assume that X"X is singular (rank deficient) or nearly rank deficient, then, p,+1 =00r
approximately zero. The problem of computing the vector p given by Equation (37) may
in this case be ill-conditioned. This illustrates the problem with the OLS solution when
X"X is nearly rank deficient. We can instead look for a regularized solution in the
subspace spanned by the (reduced) controllability matrix K, where 1 =a=r.

In fact, we will below show that the column space of the weighting matrix W,
computed by the PLS algorithm and the column space of the reduced controllability
matrix K, coincide.

5.2. Proposition

The weighting matrix W, which results from the PLS algorithm is related 1o the
controllability (Krylov) matrix K, of the pair (X"X,X"y).
The weight matrix W, is given by the following QR decomposition

K.=W,.R, (38)

where K, € R™*“ is the controllability matrix and R, € R**“ is an upper triangular
matrix.
The weight vectors w; is a linear combination of the columns in the controllability,
Le.
W,=K.Ri' (39)
where Ri 'is upper triangular.

The following are equivalent. W, is an orthogonal/orthonormal basis for the column
space of K. The columns of W, span the same space as the columns of K.

5.2. Proof

This proposition can be proved from the weight vectors as computed in Theorem
4.1. and the controllability matrix K .. We simply have to prove that R, = WK, is upper
triangular or that W, = K Ry '. A proof is presented in Appendix B.

Note that Helland (1988) has pointed out that the space spanned by the columns
in the PLS weighting matrix W, and the space spanned by the Krylov sequence
XY, ...,(X"X)“ 'X"Y is the same. O

Define now the QR decomposition of the controllability matrix as
K.=Qu.R (40)

where O, e R *“is orthogonal and R e R“*“ is upper triangular. A QR decomposition
of the relationship (38) is then given by
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W.=0.R; (41

where R, = RR, ' (usually diagonal and R, = I) also is upper triangular.

This implies that the weighting matrix W, computed by any PLS implementation,
irrespective of scaling, etc., have the same column space as Q.. Furthermore, this
column space can be computed from the QR decomposition of the control lability matrix
K. An orthogonal PLS weighting matrix is then defined as W,: = Q,. These important
results are presented in Theorem 5.1,

5.1. Theorem (PLS: a QR decomposition of a Controllability matrix)

Given data matrices X € R"*" and Y € RY*™, Define the (reduced) controllability
(Krylov) matrix from X, Y and the number of components 1 <a=<r as Sollows

K.=[X"Y X'XX'Y X"X)’X"Y-..(X"X)*" 'X"Y). (42)

The column space of the weighting matrix W, and the controllability matrix K, coincide.
The QR decomposition is a numerically stable method for computing the column space.
We have

K.,=Q.R (43)

where R € R“*“ is upper triangular and Q e R'*“ is orthogonal.
A Q-orthogonal PLS solution is then given by

Bors= Qu(QaX'XQ.) 'QiX"Y. (44)

Furthermore, for univariate Y, i.e., when m = 1, then the orthogonal weighting matrix
W. which resulis from the PLS algorithm is identical to Q.. up lo within sign
differences., i.c., the PLS weighting matrix is given by

W,= Q.. (45)
Hence, when m = 1 the PLS solution is given by
Bpis = Bopus. (46)

We have defined the LS solution defined in Theorem 5.1. for the Q-orthogonal PLS
solution (QPLS). The reason for this is that this solution differs from PLS (more
precisely PLS2) when Y is multivariatc (multivariable), i.c., when m > 1. However, the
QPLS solution is identical 1o the PLS solution when m = 1, i.c., when Y is univariate.

Theorem 5.1. slates that the weighting matrix W, can be computed directly from
a single QR decomposition of onc single data matrix. This data matrix is the
controllability (Krylov) matrix which is defined in terms of X and Y.

Note also that putting W,, = K, also gives the same PLS solution. This can be proved
by substituting W, =K,R, ' into the solution and using the assumption that R, is
non-singular. We have the following proposition with proof.

5.3. Proposition (PLSI: a non-iterative solution)
Given data matrices X € RV*" and Y € R". The PLS solution is given by
B[’I,S = Knp* (47)

where K, € R""“ is the controllability matrix for the pair (X"X,X"Y) and the
polynomial coefficient vector p* e R* is determined as the LS optimal solution 1o

p* = argminlV ). (48)
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Bpis

v =¥ —XK.plp, (49)
hence,
p*=(KIX"XK,) 'KIX"Y (50)
which gives the PLS solution
Brs=K.(K!X"XK,) 'K/X"Y (51

where we have assumed that (W.X"XW,)™" is non-singular for some 1<a<r.
Furthermore, the minimum is

V(p*) = trace(Y"Y) — mace(Y' XK (K X"XK,) 'K:X"Y) (52)

5.3. Proof

A truncated Cayley-Hamilton polynomial approximation of the matrix inverse in
Equation (36) is defined as

X™X) i=pud, +pXTX 4 paXTX) A -+ pXTX) ! (53)

when | =a=<r, which substituted into the OLS solution (X'X) 'X"Y gives the
truncated solution

B(m)=K.p (59

where K , is the controllability matrix and p is the coefficient vector. Instead of putting
the vector p equal to the coefficients in the truncated characteristic polynomial, the
vector p is taken as the LS optimal solution to the squared Frobenius norm of the
prediction error. Hence,

p* =argminV(p), (55)
where the PE criterion for the coefficient vector is given by
By,
——
Vp) = I¥ —XK .pl}
= trace(Y'Y) — 2trace(@" K1 X"Y) + trace(p" K[ X" XK .p) (56)
Putting the gradient
dv » .
_d;(;P ) _9KTXTY + 2KIX'XK.p 7

equal to zero gives the optimal solution (50) which substituted into (47) gives (51).
Furthermore, the minimum value (52), can be found by substituting the optimal
truncated polynomial coefficients p* into (56).

Proposition 5.3. and Theorem 5.1. is believed to be important for its simple and
non-iterative interpretation and implementation of the PLS algorithm. The problem of
computing the PLS solution to the LS problem is in the literature presented as an
iterative algorithm, or piecewise lincar regression algorithm.

6. Multivariate extensions

We will in this section propose a new latent variable regression method for
multivariate Y data. The solution reduces to the PLS1 solution for univariate Y data. The
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new method is an extension of PLS1 to incorporate multivariate ¥ daia. The method
is found to be optimal compared with PLS2.
Consider the OLS solution substituted into the model, 1.e.

BULS
— _A .

Y=XX'X) 'X"Y+E (58)
where F is the prediction error. Let us, instead of using the inverse (X”X) ! as in the
OLS solution, use a truncated Cayley-Hamilton series approximation for the inverse,
ic.,

X'X) = pid, + poX X A pyXTX) A -+ p(XTX) (59)

where a is the number of components which we will restrict to be bounded byl=a=r,
Hence, we have the following prediction error

B(‘I'I.S
r N . - o
E=Y—X@d, +p2X'X + psX"X) + --- + p(X"X) ZWX"Y (60)
which can be expressed as
K“ pl!m
- - i A - N pllm
E=Y-XIX'Y X'X)X'Y --- (X'X)* 'XTy] : (61)

Palm

Let us now find the coefficients PupPas ..., p, that minimize a norm of the prediction
error and use these optimal cocfficients in the expression for the truncated LS solution.
Define this solution

K“ ,Ullm
a - - A - 0 Pllm

Beps = XY (X'X)X'Y o (X'X)* 'X7Y] : (62)
.pu]m

for the truncated Cayley-Hamilton PLS solution, or Controllability PLS solution. We
have the following theorem

6.1. Theorem (Controllability PLS solution)

Given data matrices X € R**" and Y € RN*" and a number of components
1 =a=r. The optimal solution is

1}(‘;:-1_5:([)[1,-+])2XTX 1 ]J_\(XTX)? *'---+p“()(TX)u ])X?.y
D pXTX)Y Xy (63)

i=1
where a vector with the polynomial coefficients
P*=Ipi p: - pueR (64)
is found from the solution 1o the LS problem
p*=arg rr}}in”cs(}’) X,p|lr- (65)

The minimizing solution is given by
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pE=XIX,) 'X,cs(Y) (66)

where
X,= [es(XXTY) cs(XXT'XXTY) cs(X(X?X)“ IXTY)] e RM>«  (67)

and where c¢s(-) is the column siring (vector) operaior.

6.1. Proof
The prediction ervor, Equation (60), can be written as
X.i"
[ A ]
es(E) = cs(Y) — [es(XXTY)  esXXTXXTY) -o- cs(XXTX)* 'XTV)]p (68)

where p is defined in (64). Using that V(p) = |[E|l- = |lcs(E)||» where E is the prediction
error (i.e. a real matrix), gives the LS optimal solution (66) by putting the gradient
dV(p)ldp = 0. See also Appendix A for an alternative proof. |

The above method denoted CPLS is clearly a latent variable method for multivariate
Y data. All variables in ¥ are used to identify a common vector p € R of latent variables.

Note also that the CPLS algorithm gives the same solution as the univariatc PLS
algorithm applied to the model (5). See Appendix A.

7. Optimal weights

From the discussion in this work we have shown that the PLS estimate By s can
be expressed in terms of X, Y and a weighting matrix W, € R"“, and that this weighting
matrix is a function of a polynomial cocfficients.

It makes sense that different LS regression methods are different becausc they are
using different weighting matrices. This means in other words that different weighting
matrices give different least squares regression methods.

We will in this section show that there exist an optimal weighting matrix, i.e., a
weighting matrix W, which minimizes the squared Frobenius matrix norm of the
residual ¥ — XB(W,). We will also show that therc exist a minimum number a of the
columns in the weighting matrix.

The resulting optimal LS solution is, not surprisingly, identical to the OLS solution.
However, this result is belicved to be of interest and will be used in the next section
in order to develop a regularized estimator for the PLS weighting matrix.

7.1. Theorem (The estimate of the regression matrix)

Assume that Y € RV™™ and X e RV*" are the known data matrices. Given a
weighting matrix W, € R"*“ where a is the number of components which is bounded
by 1 =a=<r. The solution B(W,,) of the matrix of regression coefficients B given by

BW,) =W, (WiX"XW,) '"WiX"Y e R"™", (69)

where we have assumed that W!X"XW, € R“*“ is nonsingular, satisfy the weighted
normal equation

WIX'Y = WIX'XB(W,) (70)
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7.1. Proof
Theorem 7.1. can be proved by substituting the LS solution B(W,) defined in (69)
into the weighted normal equation (70). [l

Note the obvious that when W,, is equal to the identity matrix and XX is non-singular
then B(W,) is identical to the ordinary least squares estimate.

We will now search for the weighting matrix W, which is optimal in the sense that
it minimizes the Frobenius norm of the residual. Assume first for simplicity that W, is
equal to a vector w € R". The general case will be discussed and presented later. The
squared Frobenius norm of the residual is in this case given by

VIXww'XTY _ ey WIXTYY X
w/ X" Xw wiX"Xw -
where we also for the sake of simplicity have assumed that Y is a vector.'

The minimizing weight vector w can be found by putting the gradient of V() with
respect to w cqual Lo zero. The gradient is given by

aviwy 2X"YYTXw(w X"Xw)— WTXTYY?XW(ZX?XW)

Viw)=|Y—XB. [} =Y"Y (71)

dw W X Xw)> 2)
Putting the gradient equal 1o zero gives
TyT T
TyyT — E_X Y Y. Xﬁ T
XYY Xw == = X X (73)

This is a generalized eigenvalue problem, i.c.,
wX"YY" Xw
w' X" Xw
is a generalized eigenvalue of the square matrices X"YY"X and XX and w is the
corresponding generalized eigenvector.

From this we have that a solution in general can be computed by a generalized
cigenvalue problem as stated in the following theorem.

A=

1.2. Theorem (genceralized eigenvalue problem)

The optimal weighting matrix W, € R"*“ where the number of components is
bounded by | < a <r, which minimize the PE (defined here as the squared Frobenius
matrix norm)

V(W) =Y — XBW, )|} = trace(Y'Y) — trace (Y XW.(WIXTXW,) 'W!XY).

(74)
can be computed by the following generalized eigenvalue problem
XYY XW,=X"XW,A, (75)
where
A= WIX'XW,) "WIXTYY'XW, € Re* (76)

is a diagonal matrix with the generalized eigenvalues on the diagonal, and where W,

'Noié thatifYisa mair_i_x then the matrix model ¥ = XB + E can be wriﬁen as a vector model.
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is the corresponding generalized eigenvector matrix. Furthermore, the minimum value
of the PE .
VW) = ||Y — XBW)|F- = trace(Y'Y) — trace(A.). (77)

7.2. Proof

We will prove the Theorem from an expression of the covariance matrix of X Y.
Substituting the LS solution B(W,) into the model gives

Y = XW,(WIXTXW,) 'WIXY. (78)
Pre-multiplication with X" gives the normal equation
XTY = X"XW.(WIXTXW,) '"WIX'Y (79)
and post-multiplication with Y'XW,, gives
- 3 .
XTYYTXW, = XTXW, (WIXTXW,) 'WIXTYY'XW, (80)

which is equivalent to the following generalized eigenvalue problem
XTYY"Xw,=X"XW, A, (81)

where W, is the generalized eigenvector matrix of the square matrices XYY" X and X" X
and
Ao=WIX'XW,) 'WIX'YY'W, (82)
is the corresponding generalized cigenvalue matrix.
Note that the above is equivalent to formulate the correlation matrix of X Y given
by the normal equation, i.e.
XTY(XTYY = X"XW, (WIX"XW,) '"WIXTYY"XW,(WIX"XW.) 'W.X'X (83)
Post-multiplying with W, gives Equations (81) and (82).
The minimum value can be found as follows:
VW.) =Y = XBW.)|fi
= trace(Y'Y) — trace(Y'XW, (WIX"XW,) 'WIX"Y)
= trace(Y'Y) — trace(W.X"YY'XW (WIX"XW,)" ") (84)
-

X'XW, A,
Substituting for the stationary condition Eqguation (75) gives
VW) =Y — XB(W)Ili = trace(Y"Y) — trace(A.). (85)

We have here used that trace(AB) = trace(A’B") for two matrices A and B with
compatible dimensions. ]

The generalized eigenproblem in Theorem 7.2. can be solved by the QZ algorithm
(Golub 1983). The weighting matrix W, can be computed in MATLAB as
[Aa,Bb,q,Z,V]=qz(X"YY'X,X"X) and putting W, = V(;, 1: a).

Note that W and A also can be computed by the MATLAB function eig(.,-), ie.,
[W, A] = eig(X"YY"X, X"X). The weight matrix corresponding to the first a generalized
cigenvalues is then given by W,: = W(:, 1: ). Note that it is possible to compute only
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the a first generalized eigenvectors. However, we rccommend to use the MATLAB
function gz(-,-) instead of using the function eig.

Investigations of the above results indicated that the resulting LS optimal solution
is the same for all m = a =< r, and that this solution is the same as the OLS solution. A
question is whether the minimum number of components is @ = m or not. In the case
when XX is non singular the above corresponds to take the weights from the columns
space of the OLS solution (X"X) 'X"¥. We will in the next section use the results
presented in this section to develop a regularized estimator for the PLS weights.

8. An estimator for the PLS weights

The number of parameters in the PLS weighting matrix W, is ra but it is rm
parameters in the PLS solution Bp s. Assume the existence of a parameter estimator for
the PLS algorithm. It makes sense that in order for this parameter estimator to have a
unique optimum, it must be a function of at least 7m parameters, and not a function of
all ra unknown parameters in W,. We have here assumed 1 <m<a.

Inorderto formulate the PLS algorithm as an estimator we must find the relationship
between the PLS solution and rm unknown parameters. This relationship is presented
in the following theorem.

8.1. Theorem (The number of unique PLS paramerers)

Assume that a weighting matrix W, withm < a < r for the PLS solution Bp.s is given.
The PLS solution can be expressed in terms of X € R¥*", Y € RV*" and a weighting
matrix w € R"*™ with only rm parameters as follows

Bpis =w(w X" Xw) 'wiX"Y (86)

where the weighting matrix w is the eigenvectors of W.(WIX'XW,) 'W!X'YY'x
corresponding 1o the m largest eigenvalues, i.e., w is a solution to the Jollowing
eigenvalue problem

WAWIXTXW,) "WIX'YY Xw=w] 87)
where
2=WXTXw) "wIXTYY Xw e Rm>m (88)

8.1. Proof

It results from putting the two expressions for the same solution equal to each other.
We have

Bpis(W,) Bpis(w)
r A ) r A A1
W.(WIX'XW,) '"WIXTY =ww X Xw) 'wiX"Y. (89)
Post-multiplication with Y'Xw gives an eigenvalue problem Zw = iw, i.c.,
Z 2
P . S - F: A ) : : -y
W (WIXTXW,) " WIXTYY Xw = w(w X Xw) "w/XTYY X, (90)

O

We can now present the PLS algorithm as an estimator.
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8.2. Theorem (PLS optimization criterion)

The PLS estimate Bpys of the matrix of regression coefficients B can be expressed
in terms of X € RV", Y € RY*™ and an estimate W of a single weight vector w € R
The PLS estimate is given by

Bps =w@ XTXw) '"W'XTY 91
where
W =argminV(w) (92)
where (we for simplicity consider only m = 1)
V(w)=trace(Y'Y)— A (93)
where ; , .
_WXY =)V X—z)w
! w' X" Xw ) 9
and for PLS we choose
=Wy :Xry XTXH“XTY,H‘:::Ka(KzXTXKa) tht-s (95)

where a is the number of components and K, is the controllability matrix for the pair
(X"X,X"Y). The vector w,, can also be computed from Theorem 4.1. Furthermore,
this can be written as

w' XYY Xw wl(2XY7 — 22w

_ Tyy — ‘
V(w)=trace(Y'Y) X X XX (96)
and ,
wi@X"Y7" — 22w
Vo) = Y~ XBeslE + 5 G o7
where
Bw)=ww'X"Xw) 'w'X'Y (98)

Theorem 8.2. is important from a statistical point of view. It implies that PLS is a
regularized prediction error estimator. It implies that it is only one single weight vector
w which has 1o be estimated. The theorem also defines a class of regularized 1S
estimators, i.e., one estimator for each choice of vector z € R’. Note that z= 0 or
z=X"(Y — XBy ) gives the ordinary LS estimator and that z = X" (Y — Becg) gives the
PCR estimator. The vector z can be viewed as regularization parameters which attract
the parameter estimator 1o a point in the parameter space.

The solution to the optimization problem can be found from a generalized
eigenvalue problem. The solution is presented in the next theorem.

8.3. Theorem (PLS as a generalized eigenvalue problem)
XY —2)¥'X —Zw=X"Xwi (99)

where we R’ is the generalized eigenvector corresponding to the generalized

eigenvalue

W XY X—z2)w
w' X Xw

2 (100)

where
Z=Wai1 (101)

Finally, the PLS estimate of the matrix of regression coefficients B can be computed
from the generalized eigenvector w, X and Y as follows
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Bps=ww X" Xw) "wix'y (102)
8.2. Proof
We have that the residual of the normal Equation is
z=X"Y - X"XW, (WIX"XW,)~'WIX"y (103)

where z is the residual of the normal equation, e.g., z=w, . ;. We have shown that W,
can be replaced by a weight matrix W,, when m < a. This gives

XY —z=X"XW,(WLX"XW,) "WIXTY. (104)
The covariance matrix of XY — z post-multiplied by W,, is expressed as

Am
A

R}

XY -2XY-2)'W,=X ?xw,,,(r_m’,",x?x Wn) 'WIXTYYTXW,,  (105)
which is a generalized eigenvalue problem for W,, and A,,.
Consider the following regularized PE criterion
V(W) =Y = XB(W,,)|}} + trace(WE(2XTY — ) W, (WEXTXW,,) 1. (106)

This can be written as

X“’?—X W’" Ai?’:‘
' - A - k)
V(W,,) = trace(Y? Y)— erCC(W,;:',(XTY — 2UXTY - z)! W,,,(WI,XTXW,,,) !
=trace(Y"'Y) — trace(A,,) (107)

Note that the second term in the PE is equal to zero if the weighting matrix W,, is
orthogonal to the residual z. Hence, the estimator attracts weighting matrices such that
.
W, =0.

9. Examples
9.1. Example
Consider the following example from Hansen (1992)

Y X B E
— T Y
027 [o016 0-10 [an 0-01
025|=|017 0-11| |1.00]+| —0.03 |. (108)
3.33] [2.02 1.29 002

The problem addressed is to find the best estimate of B from given data matrices X and
Y and knowledge of the model structure (3).

7-01
Bovs 8_40], IBowslle = 10-94,|Y — XBy |- = 0-02. (109)
1-1703 )
Bps= 0.7 473_], |Brisll- = 1-3885, ]| ¥ — XBpilr = 0-0322. (110)
[1-1703
B'[']'LS = _07473 I, I!I.g]“g“} - ] '3885, Y — X[g'['” _sll,r.' = 0'0322_ (1 ] ])
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A major difficulty with the above ordinary least squares solution Bous in (109) is
that its norm is significantly greater than the norm of the exact solution, which is
IB|lr = V2. One component (a = 1) was specified for the PLS and TTLS algorithms. See,
e.g., Fierro et al. (1997) for a description of regularization and the Truncated Total
Least Squares (TTLS) solution. The PLS and TTLS solutions are almost similar for this
example. The effect of the latent variable (a =) solutions is that regularization is
introduced in order to stabilize the solution.

9.2. Example

Assume that data matrix X € R¥*" and Y € RN are given and that we want fo
compute PLS estimate of the regression matrix Byis by using a =2 components. We
have shown that the solution to this problem is to first compute a weighting matrix

W=[w, weR>? (112)
where the two columns in the weighting matrix can be computed as
w,=XTY, 113)
o X ?XW| W'{W|
HEE wiX"Xw, ~ (114

Note that wiw, = 0. It is often convenient to scale the columns so that W'W = 1. In this
case we have

W =X"Y, wy = T‘vl‘_1
O W)

W . XTXW| . W, (l ]5}
Vo=w — e Wp— S
? " wiXTXw, ? (W)

This example shows that there is only r unknown parameiters in the weighting matrix
W, i.e., the parameters in w,. The PLS algorithm computes w, as the solution to the
problem of minimizing Y — Xw||r (when [wi|l- = 1).

9.3. Example

Given data matrices X, Y and the weighting matrix W,. We will in this example
illustrate that the columns of W, can be expressed as linear combinations of the columns
in the controllability matrix K, of the pair (X"X,X"Y). The weighting vectors w, and
wy, defined in Example 9.2, can be written as

) . 1
IW| 'i“lr"‘:_]= [XrY XTXX? Y][(l) 1] (]]6)
where
1= W_T}_{.wa’
wiwy

is an eigenvalue of X'X.

9.4. Example (Real world data from a pulp and paper mill)

A refiner experiment was designed in order to investigate the relationship between
refiner manipulable variables and the freeness of the pulp. The freeness is one of the
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main variables which are frequently used as a measure of the quality of the pulp. The
Jour input variables used in the experiment are the refiner plate gap u, |mm], the flow
of dilution water u; [kgis), the refiner casing pressure us [bar] and the dosage screw
speed u4 [1000 Kg/h). The sampling rate for the experiment was one hour. N = 16
samples of the freeness was measured in the blow-line and in the latency chest. The
freeness in the blow-line y, was analyzed in the laboratory from samples which were
taken each hour. The freeness in the latency chest y, was measured by a Pulp Expert
analysator, also with one hour sampling rate.
The data is organized into X and Y as follows.

[ 9.3 0.54 45 130 ]

) i
83 0.64 4.0 13-0 ;i: ;gz
9.3 0-54 4.0 130 ot
83 0-64 45 130 290 108
83 0.54 45 13.0 Tt 19
93 0.64 45 13.0 1 200
83 0-54 40 13-0 T g

| 9306440130
X=17.0 070 45 11.0 [ Y= 203 220 (117)

80 060 40 110 f;g }2;
8.0 070 4-5 11.0 bt
8.0 0.70 4.0 11-0 pi
7.0 060 40 11.0 oo
80 060 4.5 11.0 e
7.0 070 40 110 A

| 7.0 0-60 4-5 11-0 ] -

The X and ¥ data was centered (sample mean removed from each variable) prior to
identification. The data was first used to compare the multivariate algorithms CPLS,
PLS, SIMPLS and PCR. The results are illustrated in Table 1.

Table 1. Comparison of the multivariate regression method CPLS against PLS, SIMPLS (see
Section 10.5) and PCR. The norm [[¥ -~ XByl: where By, is the solution from the particular
Method, is taken as our PE criterion and is presented in the table

CPLS PLS SIMPLS PCR

194-798 195-103 195-103 196-027
185-171 186621 186714 193.759
174.322 176-327 178-369 188-108

68-795 68-795 68-795 68-795

=]

A B

This example clearly illustrates the optimality (minimizing PE) of CPLS compared
to PLS, SIMPLS and PCR.

Assume now that we are only interested in a good model for the freeness y, in the
blow-line. The model predictions will in this case be improved by including y; in the
X data matrix, i.e., as an additional regressor.

Table 2 shows that the prediction of y, is improved by incorporating y, as a
regressor. This is quite expected since the regressor y; is an indirect measure of the
response (output) y,.

We also note that the Truncated Total Least Squares (TTLS) method gives larger
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Table 2. Comparison of the univariate regression methods PLS, PCR and TSVD. uy, u,, s
us and y, are used as regressors, i.e., in order to define the X data matrix. y, is used as
the response variable, i.c., in order to define Y. The norm [[Y — XBuwl|- where By is the
solution from the particular Method, is taken as our PE criterion and is presented in the

table
a PLS PCR TTLS
1 7293 7570 76-85
2 7276 7277 76-52
3 69-73 72.36 244.6
4 64-47 64-49  141.66
5 57-31 57-31 12493

PE compared to PLS and PCR. This is also quite expected since TTLS are minimizing
an objective function ||X — Z|}} + [[Y — ZBrmsfl?, which is a solution to the errors-in-
variables regression problem where not only ¥ is subject to errors but also X is assumed
to be subject to errors. Note that PLS and PCR gives biased solutions for B in case of
an errors-in-variables model.

The reliability of the different models should be investigated further by model
validation. This work is in progress.

10. Discussion
10.1. Weights W, from the SVD of the controllability matrix K,

In Burnham et al. (1996) an Undeflated PLS like solution (UPLS) was proposed
in order to illustrate the need for the deflation process in PLS. It was proposed that the
weighting matrix W, should be taken as the a left singular vectors of X'Y. We have in
this paper proved that the PLS solution in general is related to the controllability matrix
K, of the pair (X"X,X"Y). In the univariate casc we have B = K,p* (Theorem 5.1. and
in the multivariate case

Kn‘ I”Ilm

- » N plfm
Benms = [XTY X"X)X"Y ... (X"X)y 'X'Y]

pﬂ'lﬂl

(Theorem 6.1.). A more general aliernative to UPLS is then to take the weighting matrix
W, equal to the a first left singular vectors of K., i.e., W, = U(:, 1: @) where USV r=K,.

Another choice is to choose W, equal to a controllability matrix of the pair (X X, wy)
where w is equal to the first singular vector of X”Y. We have found that this basis (W,
from SVD of K,) for multivariate Y data, in some cases gives smaller prediction errors
compared (o the multivariate CPLS solution in Theorem 6.1., however, in most cascs
it gave larger PE. Note that CPLS is the minimizing solution to a well defined prediction
error, but that the above solutions have diffuse statistical properties. We mcention this
as a comment to the UPLS solution, and will not elaborate this further.

10.2. Prediction

In chemometrics one is often only concerned with the prediction properties of the
model. One of the main points for using PLS instead of PCR (truncated SVD solution)
is that PLS usually gives a smaller prediction error compared to PLS, for the same
number of components. This is also illustrated in Example 9.3. The reason for this is
that PCR uses only information in X in order to construct the pseudo inverse, but as
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shown in this paper, the parameters in the approximate inverse used by PLS is taken
as the minimizing parameters of the prediction error.

10.3. Bias on parameter estimates

Like PCR, PLS gives bias free estimates in case of measurements noise only (noise
on Y), assuming that the rank of X actually is @ <r and that the same number of
components is used in the two algorithms.

PLS may give a bias on the parameter estimates in case of an errors-in-variables
model, i.e., in the case when X is corrupted with measurements noise. Note that also
OLS and PCR gives bias in this case. An intcresting solution to the errors-in-variables
problem is the Truncated Total Least Squares (TTLS) solution of De Moor et di. (1996,
Fierro et al. (1997) and Hansen (1992).

10.4. Bias and variance

Based on our simulation experiments, we believe that PLS is a valuable tool in order
to stabilize the solution in case of a rank deficient or ncarly rank deficient data matrix
X. The problem of choosing the number of components 1 <a <r is in general a trade
off between bias and variance, and model validation. The number of components a used
to compute the PLS solution is a regularization parameter. The bias and variance
properties of the PLS solution should be investigated further. However, we will refer
to Johansen (1997) for a discussion of bias and variance because of regularization in
system identification.

10.5. SIMPLS

We are aware of the variant of PLS which is denoted SIMple PLS discussed in ter
Braak and de Jong (1998). SIMPLS gives the same solution as PLS for univariate ¥
data, but gives in general different solutions for multivariate ¥ data. This is illustrated
in Example 9.3. Like PLS, the first weight vector w; in SIMPLS can be taken as the
left singular vector of X'V, i.e., w, = U(:, 1) where USVT = XTY. The next weight
vectors are computed iteratively as follows. Put w; = w and forall i = 2, . . ., a construct
a projection matrix P; = X" Xw,/(w!/X"Xw;). The weight vector w; can be taken as the
first left singular vector of (I, — P)X'Y, i.e., w;= U(:, 1) where (I, — P)X"Y = USV".
As also pointed out by ter Braak and de Jong (1998), SIMPLS may in some cases give
a smaller PE than PLS2 (for multivariate ¥ data and the same number of components).
On our Example 9.3. SIMPLS gives equal or larger PE compared to PLS. However,
the CPLS solution which is presented in this work gave smaller PE than both PLS and
SIMPLS. Note that a well defined PE criterion is defined for the CPLS solution, but
such a PE criterion docs not exist for PLS2 and SIMPLS.

11. Conclusions

The PLS solution for univariate Y data is equivalent to using a truncated
Cayley-Hamilton series approximation to the matrix inverse (X’X) ' in the OLS
solution. This implies that the PLS solution can be written as Bp s = K ,p* where K,
is the controllability matrix for the matrix pair (X" X, X"Y). Furthermore, the polynomial
coefficients (in vector p* e R“), are determined as the LS optimal solution to the
squared Frobenius norm of the prediction error, i.c., p* = argmin,|Y — XK.p|?.
Furthermore, this implics that the controllability matrix K, is a valid weighting matrix
for the PLS solution. Hence, the PLS solution for univariate ¥ can be computed directly
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as Bpis = K (K?X"XK,)'K7XTY. We have proved that the PLS solution for univariate
Y data is non-iterative. Hence, there is no need for any deflation (rank one reduction)
process for computing the PLS solution.

The optimal polynomial coefficient vector p* may be a function of both ¥ as well
as the X matrix, i.c., it results in the minimal PE. This is probably the reason why PLS
often gives a smaller PE than the corresponding PE by using a PCR solution, assuming
the same number of components. In PCR the approximate inverse of X "X is constructed
from information in X only.

The usual algorithm for computing the PLS weighting matrix W, which is presented
in the literature is equivalent to computing an (orthogonal matrix with orthonormal
columns) basis for the column space of the controllability (Krylov) matrix. This basis
is equivalent to the Q-orthogonal matrix @, from the QR decomposition of the
controllability matrix., i.e., a Gram-Schmidt procedure can be used to compute
orthogonal Q, that satisfy K, = Q.R where R is upper triangular. Furthermore, an
orthogonal PLS weighting matrix is W,: = Q,, and the solution can equivalently be
computed as Bps = Q.(01X"XQ,) ' QIX"Y.

A QR updating technigue (one column at a time) can be used to compute the QR
decomposition of K, and thereby avoiding explicit formulation of the controllability
matrix K. The problem of computing an orthogonal basis for the controllability sub-
space may be better conditioned compared to explicitly forming the controllability
matrix. The problem of forming the controllability matrix may be ill-conditioned due
to rounding off errors when computing powers of X X. The so-called Arnoldi’s method
to construct the basis for the Krylov subspace should be considered.

The PLS solution is not optimal for multivariate ¥ data. This is shown by
counter-example. An optimal latent variable LS solution Bcpis is presented in the paper.
This optimal solution follows from an extension of the Cayley-Hamilton series
approach that we derived the PLS algorithm for univariate data to incorporate
multivariate data. The optimality is illustrated by real world data from the pulp and paper
industry.

A. Appendix—proof of Theorem 6.1.
The expression for the PE, Equation (60), gives
cs(E) = cs(Y) — (1. ®X)es(K.(p)) (118)

where we have used that cs(AXB) = (B"®A)cs(X) for the column string (vector)
operation of the product of the triple matrices (A, X, B) with compatible dimensions,
see, e.g., Vetter (1973). Furthermore, Equation (118) can be written as

cs(E) = cs(¥Y) — (I, ®X)bes(K . )p (119)
where p e R%, (1, ®X) e R™”™ and where we have defined (and introduced)
bes(Ko) = [es(X"Y)  es(Xxx"y) --- cs((XTX)Y X"Vl e R™*¢ (120)

as a block column string operator.
Equation (119) can be solved for p in a LS optimal sense by minimizing
V(p) = |les(E)|} with respect to p. This gives the optimal parameter vector

p* =M'cs(Y) (121)



Partial least squares algorithm: truncated Cayley-Hamilton series approximation 139

where we have defined
M=(,RX)bcs(K,) e RN >« (122)

and where M'=(M'M) 'M" is the Morc-Penrosc pseudo-inverse of the
matrix M. n

B. Appendix—proof of Proposition 5.2.

We want to prove that W,=K_ R[ 'is upper triangular.
From Theorem 4.1. we have that

w =X"Y (123)
wiri=wi— X XWic,ei=1,...,a— 1 (1249)

where it is important to note that
ci=(WIX"XW) 'Ww, € R® (125)

is a vector. This implies directly that w;, is a linear combination of the sequence
wi, X Xwi, X" Xwa, ..., X Xw;.

From this we can prove that w; is a lincar combination of the sequence
wi, X' Xwi, X" X)?wy, ..., (X"X)  'w, as follows.

From the above we have that w, is a linear combination of the sequence
wi— 1, X' Xwy, X" Xwy,, ..., X"Xw;_ . Substituting for w», ..., w;_ into this sequence, by
noting that w;, is a linear combination of w, and X" Xw,, w; is a linear combination of
w2, X' Xw; and X" Xw,, and so on, proves that w; is a linear combination of the columns
in the controllability matrix K; of the pair (X”X, w,). By induction, this must also hold
fori=a.

The fact that W, = KR ' is upper triangular follows from the fact, as proved above,
that each column w; in W, only is a linear combination of columns 1 to i in the
controllability matrix.

We will illustrate the proof for i =1,2,3 in the following.

i=1
o ,T'W
wo=w, —c, X' Xw, where ¢, = ﬁw‘] (126)
which is a linear combination of X”Y and X" XX"Y.
i=2
W2 Cz
——,
W3 = Wy X7X [W] H-’z] lC2IJ (127)
Ca
where
c2=(WiX"XW;) " 'Wiw, (128)
which can be written as
K3 _
r - A_- e L l
wi=[w X'Xw, X'XPw] | —ci+catcen (129)

C1Cz2
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Hence,
1 1 1
[W| Wa W]] = IW| XTXW| (XTX)ZWI] 0 —c¢ - (C| +cnt+ Cn)
0 O cicn
(130)
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