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Constrained and regularized system identification
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Prior knowledge can be introduced into system identification problems in terms of
constraints on the parameter space, or regularizing penalty functions in a prediction
error criterion. The contribution of this work is mainly an extension of the well
known FPE (Final Production Error) statistic to the case when the system
identification problem is constrained and contains a regularization penalty. The
FPECR statistic (Final Production Error with Constraints and Regularization) is of
potential interest as a criterion for selection of both regularization parameters and
structural parameters such as order.

1. Introduction

In practical system identification it is often desirable to introduce prior knowledge
into the problem, rather than relying completely on the data. If the model structure is
assumed to be fixed, there are still several approaches, cf. Figure 1:

@

(2)

Constraints on the parameter space, for example to ensure stability (Tulleken
1993, Johansen 1996a), convexity of an optimal control criterion (Foss and
Johansen 1997), fulfillment of balance equations and steady-state data (Kramer
et al. 1992, Thompson and Kramer 1994), frequency-domain data (Eskinat et
al. 1993, Eskinat 1995), and explicit belief about parameter values (Bai and
Sastry 1986). When the model is overparameterized, additional equality
constraints are needed to make the problem well-posed and to avoid trivial
solutions (Gawthrop et al. 1992, De Moor et al. 1994, Moons and De Moor
1995).

Regularization, i.e. penalties on non-smooth behavior of the model (Tikhonov
and Arsenin 1977, Larsen and Hansen 1994, Johansen 1997), deviation from
explicit belief about parameters, and deviation from a prior known model
(Kramer et al. 1992, Thompson and Kramer 1994, Johansen 1996a).
Regularization is a general method that improves the robustness and allows
identification of non-parsimonious models (Dayal and MacGregor 1996,
Sjoberg er al. 1994, Sjoberg et al. 1993).

Prior knowledge in terms of constraints and penalties can be implemented directly in
a prediction error method (PEM) framework (Johansen 1996a), or the penalties can be
reformulated into equivalent prior distributions in a Bayesian system identification
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Constraint

Constraint

Figure 1. Priorknowledge in terms of penalties and constraints can be combined with empirical
data in an optimization formulation of the identification problem.

framework (Peterka 1981, Tulleken 1993, Karny ef al. 1995). Relevant optimization
methods are discussed in Kunisch and Sachs (1992).

The main idea is that explicit application of prior knowledge will improve the
robustness of the identification algorithm, eventually leading to more accurate or useful
parameter estimates, in some sense.

The continuation of this paper is as follows: In section 2, we formulate the
identification problem with regularization and constraints as an optimization problem,
taking the standard PEM as the starting point. The solution to this problem is briefly
discussed. The main part of this paper, section 3, describes how the MSE (Mean Squared
prediction Error) can be estimated. With the standard PEM, the FPE statistic is a well
known estimate that is asymptotically unbiased under some conditions (Akaike 1969,
Soderstrom and Stoica 1988). A generalization of the FPE statistic to cover regularized
models was derived in Larsen and Hansen (1994). Here, this statistic is generalized
further to also cover constrained and regularized system identification problems.

2. Regularization and constraints

Suppose a model structure, i.e. a set of equations parameterized by a d-dimensional
parameter vector 0, is given. The parameter vector can be estimated using a standard
prediction error estimator, €.g. (Stderstrom and Stoica 1988)
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Ope(Z") = arg min Vy(0; 2")

N
Vn(0;2Z") =}'V2 £(t;0)
=1

on the basis of a finite data sequence Z" = ((u(1), y(1)), (u(2), y(2)), ..., (N), y(N))),
where e(1; 0) = y(t) — $(t;Z' 1, 0), and y(¢) and u(t) are the system’s scalar outputs and
inputs at time t, respectively. The one-step-ahead prediction $(¢; 2", 0) is computed
by solving the model equations with the parameter vector 0.' The parameter set D, is
assumed to be compact, and the predictor is assumed to satisfy the necessary
smoothness conditions such that a unique minimum of Vy exists.

If the identifiability of the model is poor, or the data are not sufficiently informative,
or the model structure is over-parameterized, or fundamentally wrong, the prediction
error method may not be robust, giving highly uncertain estimates. In general, some
form of prior knowledge can be applied to improve the robustness of the identification
problem. An approach to introduce prior knowledge in terms of penalties and
constraints to the prediction error method was described in Johansen (1996a), and
briefly reviewed in the introduction. Such penalties are closely related to the method
of regularization (Tikhonov and Arsenin 1977) as discussed in Johansen (1996a, 1997).
Regularization is a general method for improving the robustness of mathematical
algorithms by imposing additional regularity constraints on the solution. Mathemati-
cally, the problem we are now suggesting to solve has the form

VIE(0;Z%) = Vn(0;Z%) + yQ(0)
subject to
G(0)=0,K(0)=0

where G and K are smooth functions defining the equality and inequality constraints,
Q) is a stabilizer for the problem, and y >0 is a regularization parameter.?

The idea is that the penalty term € will attract any uncertain parameters in the model
structure towards reasonable regions of the parameter space. Uncertain parameters are
characterized by alow sensitivity of the criterion V (€; Z") with respect to perturbations
in the corresponding sub-manifold of the parameter space. Hence, the penalty yQ(6)
should contribute significantly to the criterion (relative to Vy(0;Z")) when 0 is in this
sub-manifold. As mentioned in the introduction, the penalties can be selected on the
basis of prior knowledge and desired properties such as e.g. smoothness, stability,
convexity, additional equations not in the model, and explicit parameter knowledge.

The parameter estimate minimizing the above constrained and regularized
prediction error criterion is denoted Oggc,,. The asymptotic properties of this estimator
in terms of bias and variance is discussed in detail in Johansen (1997) for the case when
there are no constraints. A particular interesting property is that the total parameter error
(bias plus variance) can be smaller than the Cramer-Rao lower bound, which is valid
only for asymptotically unbiased estimates such as the PEM. It is expected that if the
constraints are based on “correct prior knowledge”, the asymptotic properties are

'The extension to multi-step-ahead predictors and systems with multiple inputs or outputs
is straightforward.

*This formulation can be easily extended to the case with multiple penalties and
regularization parameters.
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unchanged in the constrained case. If this assumption is violated, additional bias may
be introduced, but in any case the variance is decreased.

The estimator properties when there are only constraints (no regularization) is
discussed in some generality by Eskinat (1995).

3. The final prediction error
We define the MSE (Mean Squared prediction Error) as

MSE = EQ/(t) — $(: 2", 6Z"))

for some arbitrary estimator O(Z"). The variables Z", Z'~! and y(f) are viewed as
stochastic and E is the expectation with respect to the joint distribution of these
variables, so MSE is the ensemble average over all possible identification data
sequences of length N, and future data sequences.

The MSE contains information about the expected prediction performance of the
identified model. Such information is valuable for a number of purposes, including
validation, selection of model structure and order, selection of the regularization
parameter 7, and finding the optimal balance between bias and variance, see also (Xin
et al. 1995). Unfortunately, since the underlying probability measures in system
identification problems usually are unknown, the MSE must be estimated empirically.
There exists a wide number of methods:

® A separate data sequence (independent of the identification data) can be used to
estimate the MSE empirically. The major drawback is that an extra data sequence
is needed. The other techniques we will discuss do not require this.

® The method of cross-validation is a widely applied technique (Stone 1974). The
idea is to use a subsequence of the data for identification, and the remaining for
estimating the MSE. This process is repeated for different subsequences, and the
results are averaged. A closely related resampling technique is boot-strapping
(e.g. Carlstein 1992). The major drawbacks of such resampling techniques are
in general the additional computational complexity and the lack of strong
theoretical results on their statistical properties.

® For the case without regularization and constraints, there are numerous closely
related techniques such as the FPE (Final Prediction Error) statistic (Akaike
1969), the AIC (Akaike Information Criterion) (Akaike 1974), the MDL
(Minimum Description Length) statistic (Rissanen 1978), the GCV (Generalized
Cross-Validation) statistic (Craven and Wahba 1979) and other approximative
cross-validation statistics (Stoica et al. 1986). They all make use of the average
residuals, but make a correction for the dependence between the residuals using
asymptotic considerations.

The main purpose of this paper is to discuss the extension of the classical FPE statistic

1+d/N = =~
FPE(Z") = 1—d/N Vi (Op; ZN)

derived from the standard prediction error method formulation to the generalized
formulation with regularization and constraints.
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3.1. FPE with Constraints

First, we observe that the introduction of constraints (but no regularization) leads
to a trivial modification of the FEP:

1+ ~
FPEC(Z") = 1_—3;}2,{ Vi (Ope; ZY)

where the degrees of freedom is dy=d —d,. Here d, is the number of linearly

independent and active linearized constraints at the point 0p¢. This modification can be

made rigorous by the application of the Implicit Function Theorem in order to

reparameterize the criterion function at the point 6p¢ in terms of a dy dimensional

parameter vector, as suggested in Johansen (1996a).

3.2. FPE with Regularization

Second, an extension of the FPE to the case when there is regularization (but no
constraints) can be found in Larsen and Hansen (1994):

L+ d(y)IN

. N =
FPER(y; Z") L —2dy(y)IN + d\(y)IN

'VN(QREG,] ;ZN)

where the two different expressions for the model’s degrees of freedom are given by
di(7) =t(S(y)) and da(y) = tr(S(y)S(y)), where

S(y)= (HN(éREG.y) + ]’HQ(@RECF.y)} ! 'HN(éREG,}')
Hy(0)=ViVy(0;Z")
Ho(0) = ViQ(0)

3.3. FPE with Constraints and Regularization

Finally, we discuss the case when both regularization and constraints are being
applied. The idea is to reparameterize the FPER statistic in terms of a lower-dimensional
parameter vector by eliminating parameters corresponding to the active constraints, and
compute the value of the reparameterized FPER criterion. This was suggested in
Johansen (1996a), and the details follow.

In a neighborhood of Ogec,, the constraints are approximation by their lineariza-
tions:

Agl—bc=0, Ag0—bx=0
where
Ac=VaG(lrec,)
Ax= VBK(éREG.-})
be = Vo G (frec,)0rec, — G Orec.,)
by = Vo K(0rec.)0rec,; — K(Orec,)

Keeping only the active and linearly independent constraints at ém;_.}., it is clear that
Orec,y satisfies:
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Abgec, —b=0

where dim(A ) = d, X d,, and A contains the active and linearly independent rows of Ag
and Ag. Likewise, b contains the corresponding elements of bg and by. Without loss
of generality,” it can be assumed that the d-dimensional vector 6 can be decomposed
into a pair of d, and (d — d.)-dimensional sub-vectors 0, and @, and the A matrix into
two sub-matrices A; and A; such that

o)

dim(A,) = d, X d,, dim(A;) = d. X (d — d,), and rank(A,) = d,. Now, it is clear that 0,
satisfies
9] '—'Al l(b - AZG‘Z)

Hence, an approximate (linearized) reparameterization of 0 in terms of the
(d — d,)-dimensional vector 8, is defined by

o= (g;) _ (A. '(bg: Agﬂz)) —Pl—g

where the least inequality is an implicit definition of P and g. Notice that the above
approximation is exact at the point Orec;. Defining

éEEﬁ.;- = (é{aem-s éinm.}-)
it is clear that
Vi(Brec,: Z%) = Va(Pbogec, — g: 2"
= Vn(barecy)

where the last inequality is a definition of the reparameterized criterion Vy. Now we
are in a position to apply the FPER statistic to define FPECR since the constraints are
removed in the re-parameterized version of the criterion:

1+ do(y)IN

e = Vi (éREG.}'; z")
1 —2dy(y)IN + di(y)IN

FPECR(y; Z") =
where the two different expressions for the model’s degrees of freedom are given by
d,(y) = tr(3(y)) and d>(y) = tr(S(y)S(y)). Moreover,

S() = (An(Osxe0,) + YHo(borec,)) ™' Hy(Orrec;)
where
Hy(62) = V§,Vn (023 Z)
Hq(0,)=V30(6,)

*The ordering of the elements in the vector 8 can be rearranged to achieve this.



Constrained and regularized system identification 115

3.4. Discussion

The derivation of the classical Final Prediction Error is based on first order
Taylor-expansions (linearization) (Soderstrém and Stoica 1988). The error introduced
by the linearization of the constraints is therefore expected to be of the same order as
the other approximation error in the derivations. The asymptotic statistical properties
of the FPECR criterion is therefore expected to be similar to those of the FPER criterion,
see Larsen and Hansen (1994).

The above criteria can be easily generalized to a MIMO system identification
framework, including multiple regularization penalties with separate regularization
parameters.

Some of the above methods for regularization and FPE-like statistics are
implemented as part of a computer-aided modeling tool for developing operating
regime based models (Johansen 1996b, Johansen and Foss 1997), which are closely
related to Takagi-Sugeno-Kang fuzzy models (Takagi and Sugeno 1985).

4. Concluding remarks

A general framework for introducing prior knowledge in terms of penalties
(including regularization) and constraints into non-linear system identification
problems was described in Johansen (1996a). In the present paper, the FPE statistic is
extended to handle the case when the prediction error criterion is augmented with
penalties and constraints, leading to the FPECR. This statistic is useful both for model
structure identification and selection of regularization parameters.
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