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Dynamic system calibration: The low primary output sampling
rate case

ROLF ERGONY
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In many industrial cases it is not feasible to measure primary outputs, e.g. product
quality, from production processes on-line. It is thus of interest to estimate such
outputs from known process inputs and secondary process measurements. In an
carlier paper it is shown that optimal estimators can be identified from data recorded
during an informative experiment, with the primary outputs sampled at the same
high rate as the inputs and secondary outputs. In the present paper it is shown that
optimal estimators can also be found from data where the primary outputs are
sampled at a low and possibly irregular rate.

1. Introduction

The theoretical basis for identification of the optimal estimator for primary outputs
i from a linear, time invariant and dynamic system, is presented in Ergon (1998). It
is then assumed that the y, outputs are not measured at all or measured only at a low
sampling rate. The optimal estimator utilizes all available information in known inputs
u and measured secondary outputs y,, which are assumed to be available at a sufficiently
high sampling rate. The basic insight behind this is that the y, measurements may carry
valuable information about the process noise v, which it is possible to utilize when
estimating yy, as illustrated in Fig. 1.

In Ergon (1998) it is shown how the optimal prediction (a priori) and current (a
posteriori) estimators can be identified by use of an ordinary prediction error method
with u and y, as inputs and y; as output. It is then assumed that also y, data at a high
sampling rate is available from an informative experiment with sufficient excitation
(e.g. Goodwin and Payne, 1977).

The present paper extends the theory in Ergon (1998) to cover the case where y,
experimental data is available only at a low and possibly irregular sampling rate. A
method for identification of the optimal estimators under this assumption is outlined
in section 2, including a method for finding initial parameter values for the optimization.
A simulation example in section 3 demonstrates the feasibility of the proposed methods,
and conclusions are given in section 4.

2, Theory
2.1. Statement of problem
Consider the discrete system model

x;(+1=AIk+BH;‘+GVk (la)
Vg = Cue + Dy + wyy (1b)
Yax = Coxg + Doty + woy, (lc)
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Figure 1. Basic principle for estimation of primary system outputs y, from known inputs u and
measured secondary outputs y, in presence of process noise v.

where x; is the state vector, while v, and wy = [wix wi,]” are white and independent
process and measurement noise vectors with covariances
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Also assume a stable system with (A, GV'R,) stabilizable. The assumption of noise
independence may be relaxed with appropriate theoretical modifications, which,
however, is beyond the scope of the present paper. Note that some or all of the secondary
y, measurements may be collinear, and also collinear with some or all of the primary
y1 measurements.

Further assume that high sampling rate data records for i and y, with
k=1,2,...,N, are at hand, with u; persistently exciting of appropriate order. Also
assume that y, ; data is available at a low and possibly irregular sampling rate, with
j=1,2,...,J, where J <N is a sufficiently high number and where each sampling of
y1,jcoincides in time with one of the uz and y,; samplings. The problem is now to identify
the optimal one-step-ahead (a priori) 1. -1 predictor based on past and present u; and
past y» values, and the optimal y, yx current (a posteriori) estimator based also on present
ya2x values.

2.2. Optimal one-step-ahead predictor

As past y; values are not available, the prediction must be based on an underlying
Kalman filter driven by u and only the y, measurements (Ergon 1999). With the
assumption that (C,, A) is detectable, the following innovation form can then be derived
from (1):

{0 = AXZFF + Buy + AK$eq; (2a)
yox = Cil® + Doy + e (2b)

Here, the Kalman gain K9 is determined by (Lewis 1986)
K9E = POEPCT(C,POPCT + R) ', 3)

where

POEP = E{x& . jkOEP)(xk _ ikOEP)T
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is given by the Riccati equation

POEF — APOHHT + GR;GI

— APPPCI(CLPOEPCY + R,,) ~'CLPYEPAT, 4)
The y, output is then given by
yix= CxP + Dy + 0, (5)
where
e = C 10 — X£5°) + wy (6)

is colored noise.
With both u and y, used as inputs, the system determined by (2) and (5) is turned
into the output error prediction model (OEP model)

8 = Al — K9ECy) 305 + (B — AKSED )y + AK9Ey,, (7a)
yik = QX + Dy + 0. (7b)

The corresponding input—output model is then

Yix=Gig 0w+ Go(g 5 0)yre + By, (8)
where
Gi(q 1;0)= Ci(gl — A+ AKSEC) (B — AKYED,) + D, (9)
and
GAqg~%0)=C\(gI — A+ AKSEC,) 'AKSE. (10)

Here, 0 is the true parameter vector, while ¢~ is the unit time delay operator.

In order to identify the deterministic part of the system (8), i.e. Gi(g~ ';0) and
G(q ', 0), we model % by some unknown white noise sequence and use the prediction

Sra-1=Gilg " O+ Golg ™5 D)yau, (1)
where 0 is the parameter vector used in the prediction model. The prediction error
E1 k= Yk "§’1J<|k—1 (12)
is then
e =[Gi(g ™" 0) — Gi(g " 0wy
+[GaAqg™"50) — Galg ™ 0)lyox + i (13)
In a standard prediction error method, we should now minimize a scalar criterion
function (Stderstrom and Stoica 1989), e.g.
¥
Van(6) = dCl[ . 2 Sl.ke-{;k}- (14)
Ni=,
Since y« is not generally available in the low y; sampling rate case, we must give the

prediction errors zero weight when y,; does not exist. We thus minimize

1 & . 1 _
VJ(U) = det [J Z Gkﬁl‘kﬁ{_k:l = det l}z ELJ;S{J], {15)
Lol f= ]

=1
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where o, = 1 for those sampling instants where y;x exists, while o = 0 when y, does
not exist. Since past y,x values are not used in ;4 1, we will asymptotically obtain
the same result by use of (15) as by use of (14). In any case, however, we must consider
the fact that y,; and @ are not independent. Note, though, that when
Gi(g ;0)=Gi(g ';0) and Gxg~';0)=Giq ';0), we will from (13), (6) and (4)
simultaneously obtain

EBLjS{J:El?jﬁ}.:C]POEPC.{"‘ Ry (16}

Since P°** is the minimized prediction state estimation covariance given the y,
measurements, this represents a true minimum. We will thus be able to identify the
optimal one-step-ahead prediction estimator given by (8) to (10):

?]j|k—[ = C;(ql—A +AK?£C2) l.
[(B — AKSEDy)ug + AKS y,,] + Dyt amn

2.3. Initial parameter values

Minimization of the criterion function (15) requires reasonably good initial
parameter values. In the ordinary high y, sampling rate case, i.e. when (14) is minimized,
a least squares approximation (ARX model) can be used for this purpose (Ljung 1991).
In the present low y, sampling rate case, however, this is not possible. A solution to
this initial model problem is first to identify (2) by use of a prediction error or subspace
identification method (see, e.g. Di Ruscio 1997), and then to find the parameters in (5)
by ordinary least squares regression. An example given in section 3 demonstrates that
this initial model is then improved by minimization of the criterion (15). Identification
of (2) can also be done by use of some of the y, measurements as input signals, as shown
in Ergon (1999).

2.4. Optimal current estimator

In order to utilize also current y; values, the optimal estimator must be based on an
underlying predictor-corrector Kalman filter (Lewis 1986). This results in the following
output error model (OEC model):

yik= G — K$ECo)(ql — A + AK$ECy) .
[(B— AK*Dy)us + AK$Fy24]

+ CiKY (y2 — Dotty) + Dyt + . (18)
Here we introduce the colored noise
Ui = Ci0o — X05) + wiy, (19)
based on
x0PC= (I — KS"CHL™ + K§5(yau — Dawy). (20)

Minimization of the criterion function (15) will now result in an optimal estimator only
if

Eyf = CIPPCT + Riy — CIK$"Ray — Ri(CIKS"), (21)
with

POEC — E(Ij _ iﬁm)({, — j}?ﬁC}T
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given by
POFC = (I — K§EC)POPF (1 — K9EC)T + K9 R,(KSE), (22)

simultaneously is at a minimum. Since P%*C is the minimized current state estimation
covariance, this is true when and only when Ry, = R}, =0, and an optimal solution is
therefore obtained only in this special case. We will then identify the optimal current
estimator

Ve = Ci(l — K?ECz)(qf —A+ AKQECZ)_ L
[(B — AKYED))u, + AKSEyy ]
+ C K9 (y24 — D) + Dy (23)

If Ry # 0, the common part of the wy and w, noise may be modeled as delayed white
noise, which requires an extension of the state vector. Itis generally doubtful, however,
if an OEC model with an extended state vector in a practical case will give better
identification results than an OEP model.

2.5. Theoretical y, estimation covariance

When the OEP model (7) or the OEC model (18) is identified using a large data
set, i.e. when J — oo, the estimate ¥y - ; or y; 44 will be asymptotically unbiased when
we use either only u or both u and y, as input signals. The asymptotic estimation
covariance, however, will depend on the model and the quality of the data. In the
following we assume perfect model and noise information, and derive theoretical
asymptotic expressions for the prediction and current y, estimation covariances.

The underlying Kalman filter driven by u and the y, measurements is governed by
the well known Kalman filter equations (3) and (4). As the prediction estimate ¥,y - 1
is directly based on x{£F, the theoretical asymptotic prediction estimate covariance
becomes

Cov(Fiak—1) = EQre — Y- D01k — Frap— 1) = GPEPCT + Ry, (24)
with P??* given by (4). The theoretical asymptotic y, current estimation covariance is
Cov(F1) = EQe — P Vix — Y1) = CPPCT + Ry, (25)

with PP5€ given by (22).

Assume now for convenience a scalar y, measurement. When the estimators (17)
and (23) are identified and validated by use of independent data sets with N — o and
J— o, we will then find the theoretical root mean square error

N

RMSE = \-/}L- > G —yi o VEPCT+ Ryp» (26)
k=1

where y{¥ is either y; 4 — 1 or ¥1 4 according to (17) or (23), while P = P or P = PF¢

according to (4) or (22).

3. Simulation example

Simulation studies are undertaken by use of a prediction error method implemented
in Matlab by use of a numerical Gauss-Newton method. With an appropriate OE model
specified, the optimal prediction estimator (17) or the optimal current estimator (23)
is then identified.
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The simulation example is basically the same as an example presented in Ergon
(1998), only modified with respect to the y, sampling rate. The intention is now
primarily to verify that the optimal estimators will be found also in the low y; sampling
rate case, and we choose to limit the simulations to the OEP estimator (17). As a starting
point, the following continuous second-order process model with an additional
first-order process noise model was used (e.g. interacting mixing tanks or thermal

processes):
-1 1 0 0 0
= 1 =2 1 |[x+|[1|u+]|0|v (27a)
0 0 -1 0 1

w=l 1 0 0 |x+w (27b)
yv2=[ 0 1 0 Jx+w. (27¢)

The system was discretized assuming zero order hold elements on the « and v inputs
and a sampling interval 7= 0-1 (see Ergon (1998) for the discrete model). The system
was then simulated with 1 as a filtered PRBS signal with autocovariance r.(p) = 0-8¥!
(Soderstrom and Stoica (1989), example 5-11 with o =0-8), i.e. an input that was
persistently exciting of sufficient order. The scalar noise sources vi, Wi and wy; were
independent and normally distributed white noise sequences with zero mean and
variances r, = 0-1, r;; = 0-0001 and r = 0-01.

The initial parameter values were found by identification of an ARMAX model
using N samples with 4, as input and y,  as output, followed by a least squares estimation
(LSE) of the static relation between the state vector x{*" and y . The ARMAX model
was specified as

A(g yu=B(g Yu+ Clg e, (28)
with

Al@ H=1+aqg "+aq *+aq?, 29)

Bg )=big ' +bg *+hq* (30)
and

Clg )=1+ag ' +eqg 2 +esg ™. G1)

The OEP model (7) was then identified with i« and y,« as input signals and y, ; as
output signal. It was assumed that y, ; was recorded at every tenth u, and y, sampling,
resulting in J = ::; samples. The OEP model was specified as

_ Bl(q _2 BE(q_ 1) OEP

yl.k‘_}“;.'@_l)uk Faq l)yu-"'é’& (32)
with

Bi(g ")Y=bug "+ big >+ biag (33)

Biq™ ") =buq '+ bng ?+bng 7, (34)

Fi(g)Y=1+fuqg™ " +fug *+fisg™’ (35)
and

Fq )Y=1+fug " +fog > +faq > (36)
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Table 1. Validation RMSE mean values and standard deviations and theoretical mean values
for different numbers of samples. Here, r, = 0-1, r;; =0-0001 and rz = 0-01, and the
RMSE values are multiplied by 10 000

N J ARMAX + LSE OEP OEPyeor.
400 40 557+ 298 353154 203
2000 200 354 =80 23440 203
10 000 1000 332+35 216+ 17 203

As the main purpose of the simulations was to show the feasibility of the low
sampling rate solutions, no attempt was made to find the model order and model
structure from the data. The model order can, however, be found by ordinary use of one
of the several available subspace identification methods, e.g. Di Ruscio (1997), and a
systematic method for finding the structure is presented in Ergon and Di Ruscio (1997).
No attempt was made to force Fi(g~ ') and Fx(g ') to be identical, which they
theoretically should be.

Each identified model was validated against an independent data set with the same
number of samples and the same noise variances as used for identification. Validation
comparisons between the different identified models were based on the root mean
square error criterion (26).

As a basis for comparisons given a specific number of samples N, each model was
identified and validated in M = 100 Monte Carlo runs using independent data sets. In
order to limit the influence of local minima problems, each identification and validation
given a specific data set was repeated R = 5 times with randomized initial B parameters
(bijr+1 = bij (1 +0-5¢), with e as a zero mean and normal random variable with
variance 1).

The mean RMSE values and RMSE standard deviations for different numbers of
samples are given in Table 1. The table also includes theoretical RMSE values
\ Cov(¥ 14~ 1) computed according to (24).

As expected, Table 1 shows reduced estimation error when the number of samples
is increased from realistically low values to N = 10 000. In all cases, however, the OEP
model is considerably better than the ARMAX + LSE model. For a high number of
samples, the OEP estimation variance approaches the theoretical value. The results are
quite similar to the corresponding results in the high y; sampling rate case with J =N
given in Ergon (1998).

In order to visualize the degree of model misfit behind the RMSE values in Table
1, specific validation responses for models based on N = 400 samples, are shown in
Fig. 2. The figure also gives a representative picture of the improvement from the initial
ARMAX + LSE to the final OEP solution. Note that the number of y, measurements
behind each model is only J = 40.

4. Conclusions

Known optimal estimators for non-measured primary outputs y, from e.g. an
industrial plant, assumes experimental identification data with y, sampled at the same
rate as known inputs « and secondary measurements y, (Ergon 1998). In the present
paper it is shown that these asymptotically optimal estimators can be found also from
experimental data where y, is sampled at a lower and possibly also irregular rate. As
in the previously known case, the optimal estimators are obtained by identification of
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Figure 2. Segment of validation responses for an initial ARMAX + LSE model (dashdot,
RMSE = 0-0551) and the OEP model (7) (solid, RMSE = 0-0313). The experimental

conditions are given by r, = 0-1, ryy = 0-0001, rp, = 0:01, N = 400 and J = 40, and the ideal
validation response is shown by dotted line with o-markings at the j sampling instants.

output error (OE) models. In this case, however, initial parameter values must be found
by a novel method, which is also outlined in the paper.

As the basic problem in the paper is formulated, the goal is to identify optimal
estimators for y; in (1), i.e. for

Yix=Cx+ Dugy +wiy. 37)
More precisely, though, we want to find estimators for the noise free part of yi, i.e. for
Zix = Coxg + Dyig, (38)

and this is in fact done in the optimal estimators (17) and (23). We may, therefore,
replace Viux-1 and yigx in these estimators with Zy 1 and Zy. The theoretical
asymptotic covariances (24) and (25) will then be altered to

Cov(Zup-1) = E(e — Zup— 1)z — Zp—1)" = CPECY (39)
and
Cov(zy) = E(z — 2z — Z)” = CLPYCCTL (40)

The feasibility of the proposed method is demonstrated by a simulation example,
using the proposed method for determination of initial parameter values followed by
the proposed prediction error method implemented in Matlab.
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