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Dynamic system multivariate calibration by system identification
methods

ROLF ERGON¥
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In the first part of the paper, the optimal estimator for normally nonmeasured
primary outputs from a linear and time invariant dynamic system is developed. The
estimator is based on an underlying Kalman filter, utilizing all available information
inknown inputs and measured secondary outputs. Assuming sufficient experimental
data, the optimal estimator can be identified by specifying an output error model
in a standard prediction error identification method. It is further shown that static
estimators found by the ordinary least squares method or multivariate calibration
by means of principal component regression (PCR) or partial least squares
regression (PLSR) can be seen as special cases of the optimal dynamic estimator.
Finally, it is shown that dynamic system PCR and PLSR solutions can be developed
as special cases of the general estimator for dynamic systems.

1. Introduction

The first aim of the paper is to develop the theoretical basis for identification of the
optimal estimator for normally nonmeasured primary outputs y, from a linear, time
invariant and dynamic system, utilizing all available information in known inputs # and
measured secondary outputs y,. The basic insight behind this is that the y, measurements
may carry valuable information about the process noise v, which it should be possible
to utilize when estimating yy, as illustrated in Fig. 1. The problem is then to find a method
for identification of the optimal estimator model, and the practical use may be operator
support, failure detection and feedback control.

Although the primary outputs y, are not measured directly or measured only at a
slow sampling rate, information about y; may to a large extent be contained in the y;
measurements. The plant itself may thus act as an instrument for measuring y,, and the
process of finding the relation between y, and y; can therefore be seen as a form of
calibration. Since the plant generally is dynamic in nature, and since the available data
may be highly multivariate, it seems appropriate to use the terminology Dynamic system
multivariate calibration. Tt should be emphasized, though, that the optimal estimator
is found by use of well established system identification methods. As shown in the
paper, this is done by specifying an output error (OE) model with u and y, used as inputs.

The second aim is to study the relations between the optimal estimator for dynamic
systems and the static estimators obtained from linear regression and the multivariate
calibration methods widely used in e.g. chemometrics. In the static case we will find
models for estimation of primary dependent variables y, from independent variables u
and secondary dependent variables y.. The final aim is to indicate how these relations
can be used to develop multivariate calibration methods that can also handle collinear
time series data generated by dynamic systems.
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Figure 1. Basic principle for estimation of primary system outputs y; from known inputs u and
measured secondary outputs y, in presence of process noise v.

The use of both independent inputs u and dependent measurements y, as inputs in
a system identification procedure raises questions about identifiability and applications
on deterministic and perfect measurement systems. A preliminary discussion of this is
given in Ergon and Di Ruscio (1997). A comparison of ARMAX and OE models for
prediction of y, based on u and y; is given in Ergon (1998a).

The present paper is organized in the following way: Section 2 gives some
background and preliminaries. In section 3 the theory for use of secondary y;
measurements as inputs to system identification procedures is established. This results
in the central relations in the paper, giving the optimal y, prediction (a priori) and current
(a posteriori) estimators (17) and (23) for a class of linear, time invariant and stable
dynamic systems. It is further shown that identification by use of a standard prediction
error method results in unbiased estimators. Asymptotic estimation covariance results
are also given. In section 4 it is shown that least square estimation (LSE), principal
component regression (PCR) and partial least squares regression (PLSR) give
estimators that can be seen as special static cases of the optimal current estimator for
dynamic systems. The relations between these data based estimators and theoretical
estimators based on known or assumed static models and noise properties are also
presented, and the relation between two different PLSR algorithms falls out as a neat
result. Extensions of the PCR and PLSR methods to cover also dynamic systems with
collinear measurements are discussed in section 5. Section 6 gives some numerical
examples and Monte Carlo simulations, while conclusions and some remarks on further
research are given in section 7.

2. Background and preliminaries

Linear regression and static calibration methods have roots in the classical least
squares technique used by Gauss already in 1795 (Grewal and Andrews 1993), while
the name regression goes back to an anthropological paper by Galton in 1885 (Johnson
and Wichern 1992). The linear regression model arises in two different settings, that
are both special cases of the model used in Chapter 4 of the paper. The classical model
is concerned with the association between a random variable whose mean depends on
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a collection of fixed and known predictor variables (known inputs u), while in the other
setting all variables are random (secondary measurements y2).

When the number of estimator variables is large and the number of observations
is limited, the ordinary solution to the least squares problem gives very large prediction
covariance due to overfitting. This situation requires some form of regularization, e.g.
PCR or PLSR (Martens and Nas 1989). In many cases of great practical interest, the
estimator variables far outnumber the observations at hand. An example is product
quality characterization by use of near infrared spectroscopy, with several thousand
estimator variables (frequencies) and often less than one hundred observations. In such
cases, the estimator variables are often strongly collinear, and most of the information
can then be compressed into a few latent variables within a subspace of the variable
space. Basic tools for this data compression are singular value decomposition (SVD)
and principal component analysis (PCA), and the regression method directly based on
this is PCR, while PLSR combines data compression and regression in an iterative
approach. These tools for static multivariate data analysis are used in many scientific
fields like biometrics, chemometrics, econometrics and psychometrics. An industrial
example is given in Mejdell and Andersson (1994).

In parallel with the development of the PCR and PLSR methods, the field of dynamic
system identification (SI) has been developed into a sophisticated set of methods and
practical tools. The field of classical SI is summarized in comprehensive books, e.g.
Ljung (1987) and Séderstrém and Stoica (1989). At present, subspace identification
methods attract a great deal of interest, see e.g. Di Ruscio (1996) with further references.
In all forms of SI, one finds that LSE is used as a basic tool. It is, however, refined and
in some cases replaced by e.g. prediction optimization methods in order to account for
the noise influence in a proper way.

System identification is also closely linked to the Kalman filtering theory (Grewal
and Andrews 1993). This is done by use of innovation models, where the different
process and measurement noise sources are replaced by the white noise innovations in
an underlying Kalman filter.

From a system identification and Kalman filtering point of view, it is intuitively
evident that the classical linear regression and the modern multivariate calibration
methods may be seen as special static cases of the more general parametric SI methods
for dynamic systems. An early attempt to look into these similarities was made in
Berntsen (1988), and the present paper includes a further and more detailed attempt to
do so (further developed in Ergon (1998b)). When these similarities are to be
investigated, three basic facts have to be acknowledged:

1. Methods of multivariate calibration are used to find models for estimation of
unknown output variables y from both independent and dependent known
variables x. In SI terminology this means methods for estimation of unknown
systems outputs y; from both independent systems inputs ¥ and dependent
system outputs y,. The basic observation here is that also dependent outputs y,
have to be used as inputs in the SI procedure.

2. When the multivariate calibration models are used for estimation, the y, outputs
are not known, and this will also be the case for the corresponding dynamic
system models found by SI. We are therefore lead to consider output error (OE)
models and not the qualitatively different ARMAX type of models used for e.g.
control design based on known y, outputs.

3. Inorder to find the optimal y, current estimate, the underlying Kalman filter must
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be of the predictor-corrector form, which is normally not the case when
innovation models are used in system identification.

These basic facts must be reflected in the theoretical analysis of the relations
between SI and LSE, PCR and PLSR, and this is quite independent of the specific SI
methods considered.

3. Secondary measurements as inputs in system identification
3.1. Statement of problem
Consider the discrete system model

Xi; 4 |=AX§ +Buk+Gvk (la)
)"I,k=Clxk+ Dl“&"‘wl.k (lb)
Yor = Coxp + Doty + oy, (Ic)

where x is the state vector, while vand w = [w{ w]]” are white and independent process
and measurement noise vectors with covariances

Ry Ru] _ [EWIWT Ewlw{]
Rg1 Rzz EWQWT EWQW{ ’

Also assume a stable system with (C,, A) observable and (A, G‘\/_R.,) controllable. The
assumptions of noise independence and state observability may be relaxed with
appropriate theoretical modifications, which, however, is beyond the scope of the
present paper. Note that some or all of the secondary y, measurements may be collinear
with some or all of the primary y; measurements.

Further assume that input—output data are available from an informative experiment
(e.g. Goodwin and Payne 1977), i.e. that data records for uy, yix and y,; for
k=1,2,...,N are at hand, with #, persistently exciting of appropriate order and a
sufficiently high number of samples. The problem is now to identify the optimal
one-step-ahead (a priori) ;-1 predictor based on past and present u; and past y;4
values, and the optimal ¥, 4 current (a posteriori) estimator based also on present ya
values.

Note that it is a part of the problem that past values of y, is not available as a basis
for the estimate of the present value of y,. This is a common situation in industrial
applications, e.g. in polymer extruding, where product quality measurements involve
costly laboratory analyses. Product samples are then collected at a rather low sampling
rate, and product quality estimates at a higher rate may thus be valuable.

R,=Ew™ and Rw=[

3.2. Optimal one-step-ahead predictor when y, is available

The model (1) can be expressed in the ordinary innovation form (Ljung 1987) given
by the following equations, where AK = A[K, K3]is the gain in a predictor type Kalman
filter formulation with white innovations e; and e;:

Xk+1=AX + Bu, + AlK, Kz][j]k (2a)
2

yig= Cixy + Dy + ey (2b)

Vau = G+ Dot + €. (2¢)
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The optimal one-step-ahead y, predictor with all measurements available and a
known iy will then be

X1 = A — K\C, — KC)xy (3a)
+ (B — AK\Dy — AKD))uy + AK vy 4+ AKyo (3b)
Va1 = Cixe + Dty (3c)

This will be the best linear one-step-ahead predictor if xp, v, and wy have arbitrary
statistics, and the optimal predictor assuming that x,, v and w; have Gaussian statistics
(Lewis 1986). This is also the predictor normally used in predictor error identification
methods (Soderstrom and Stoica 1989).

3.3. Optimal one-step-ahead predictor when y, is not available

As the predictor (3) is based on an underlying Kalman filter driven by both y, and
¥2, it will no longer be optimal when past y; values are not available, e.g. when used
with y;x=0. In a predictor error identification method, we must instead base the
prediction on an underlying Kalman filter driven by u and only the y, measurements.
With the assumption that (C;, A) is observable, the following innovation form can then
be derived from (1):

X0 = AxPPE + Bu, + AK9%ey (4a)
You = CEL™ + Doy + e (4b)

Here, K%* is determined by (Lewis 1986)
K9% = PO CHC,POFCT + Ryp) 7, (5)

where PP = E(x — x{)(xx — x££7)T is determined by the Riccati equation
PP = APP*A" + GR,G" — AP " CY(Co,PP™ C] + Ry) 'GP A" (6)
The y; output is then given by
yix = XL + Dug + O, (D
where
B = Cilxe — X£F) + wiy ®

is colored noise.

Theoretically, it is possible to identify the system determined by (4) and (7) using
yi and y» as outputs, i.¢. to identify (2) with a simplifed noise model employing K; = 0.
With many secondary y, measurements it is, however, a simpler task to use y; as an
input signal, and identify the output error prediction model (OEP model)

xCH = AU — KSEC)RE™ + (B — AKS*Do)us + AKS yas (9a)
yie= Cix{¥ + Dy + 0. (9b)
The corresponding input—output model is then

ik = Gi(g™ i Ou + Ga(g b O)yayp + Oy, (10)
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where
Gi(q~';0) = Ci(qgl — A+ AKSEC,) (B — AKSED,) + D, (11)
and
Gog~';0) = Ci(gl — A + AKSECy) 'AKY". (12)

Here, 0 is the true parameter vector, while ¢ ! is the unit time delay operator.
In order to identify the deterministic part of the system (10), i.e. Gi(¢~"; 6) and
Ga(g~"; 0), we model B by some unknown white noise sequence and use the prediction

Suae—1=Gi(g s O + Golg ™3 Oyyas, (13)

where 8 is the parameter vector used in the prediction model. The prediction error
E14= Y1k — Vixk-1 15 then

e1x=1[Gi(g ™ 0) — Gi(g ™ "; D)l
+[GAqg 50— Gug™ é)]yz.k + Oy (14)

When evaluating the result of minimizing a scalar criterion function (Séderstrom
and Stoica 1989)

. 1
VN(G):dCII:—' El_kE{J_-]. (15)
NS

we must now consider the fact that y,x and 9 are not independent. Note, however, that
when Gy(g ' 0)=Gy(g";0) and GAg~ % 0)=Gy(q';0), we will from (8) simul-
taneously obtain

Eeely = EQOL = CPOCT + Ryy. (16)

Since P?** is the minimized prediction state estimation covariance given the y,
measurements, this represents a true minimum. From (10) to (12) we thus obtain the
optimal one-step-ahead prediction estimator

Viax—1= Ci(gl — A + AKFECy) ~'[(B — AKYED)uy + AK$Eyo,] + Dy, (17)

3.4. Optimal current estimator when Yy, is not available

In order to utilize also current y, values, the optimal estimator must be based on an
underlying predictor-corrector Kalman filter (Lewis 1986). This results in the following
output error model (OEC model):

yix=CiI — K$C)(gl — A + AK9EC;) “'[(B — AKSEDy)ur + AKSFy, 4]
t C K95 (3ox — Do) + Dyt + s (18)
Here we introduce the colored noise
Ui = Ci(o — xEC) + wi g, (19)
based on
X5 = (I — KSEC)x ™ + K95 (yay — Dawg). (20)
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Minimization of the criterion function (15) will now result in an optimal estimator
only if

EYyyt = C\PPCT + Ryy — CIK$*Roy — Rio(KS5)'CT, @2n
with PP = E(x; — X2 )i — X£5€)" given by
PYEC = (] — K§EC)POE (1 — K9EC,)T + K9ERH(KSE)', (22)

simultaneously is at a minimum. Since PP%¢ is the minimized current state estimation
covariance, this is true only when Ry; = R3, =0, and an optimal current estimator is
therefore obtained only in this special case. It will then become

Vi = O — K§*C)(gl — A + AK$EC,) " '[(B — AKSEDo)uy + AKSFy 4]
+ CK9(y24 — Do) + Dy (23)

If R, # 0, the common part of the w, and w, noise may be modeled as delayed white
noise, which requires an extension of the state vector. A special example of that is given
in section 4.2 below. It is generally doubtful, however, if an OEC model with an
extended state vector in a practical case will give better identification results than an
OEP model.

3.5. Theoretical y, estimation covariance

When the OEP model (10) or the OEC model (18) are identified using a large data
set, i.e. when N — %, the estimates ¥; x- 1 and ¥ 4 will be asymptotically unbiased
when we use either only u or both # and y; as input signals. The asymptotic estimation
covariance, however, will depend on the model and the quality of the data. In the
following we assume perfect model and noise information, and derive theoretical
asymptotic expressions for the prediction and current y, estimation covariances.

The underlying Kalman filter driven by u and the y, measurements is governed by
the well known Kalman filter equations (5) and (6). As the prediction estimate y) k-
is directly based on Xf*, the theoretical asymptotic prediction estimate covariance
becomes

Cov(iue—1) = EQnx = Yk — )0k — e —1)" = CPPCT + Ryy.
The theoretical asymptotic y, current estimation covariance is
Cov(y14) = EQre— Yad)0re — Mae)” = CPPECCT + Ry, (25)

with P?*¢ given by (22).
For comparison purposes we also state the asymptotic covariance resulis for an

estimator based on only u as input. The state estimation covariance PPV = E(x, — V)

(e — XYY is then determined by the Lyapunov equation

POEU = APPFUAT + GR.G, (26)
and the resulting asymptotic y; estimation covariance becomes
Cov(31.) = EQrx— M)0ix — 710" = CPPUCT + Ry (27)

Assume now for convenience a scalar y, measurement. When the estimators (17)
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and (23) are identified and validated by use of independent data sets with N— o, we
will then find the theoretical root mean square error

[

RMSE= \

1 N
NZ(ym—yﬁ)MaPcHRn, (28)
k=1

where y{% is either 31 4 — 1, ¥1.44 OF J14, while P = P p = PPC or P = P according
to (6), (22) or (26).

4. Multivariate calibration as special cases
4.1. Assumptions according experimental setup and data

Consider again the system (1) with the optimal y, current estimator (23), and expand
the input « with a vector d of unknown offsets or disturbances, i.e. use u = [d” u},]",
where u,, is the known vector of manipulated or measured inputs. Let the input u; be
piecewise constant over periods that are much longer than both the time constants in
the underlying continuous system and the discretization sampling time, and assume
possibly collinear observations y; ; and y,; at the end of each such period. Also assume
that d; is a white noise sequence, i.e. that the unknown offsets and disturbances are
independent from one observation to the next. With a piecewise static input vector
. and enough time for settlement, it follows from (1) that the observations will be
given by

d i
= [CiI—A) ‘B+D;][u ]_+ S vegiyxtwn, (292)

A k= —=

d 4
y?;=[C2(I_A) IB+D2][H ]+ 2 vkgz‘j_&ﬁ‘wzj‘, (29]3}

i k=-—w

where g, and g, stand for the impulse responses from v to y; and y,. All measurements
are thus linear combinations of d and u,, plus noise, and since we assume a stable system
with piecewise constant inputs and a settling time shorter than the data sampling time,
this noise will be approximately white. Note, however, that since the noise terms in (29)
are partly determined by the common process noise v, they will not be independent,
as required for the optimal current estimator (23). For calibration purposes it is also a
normal procedure to use mean values of the measurements over a certain period of time
in order to reduce the noise, but this does not affect the theoretical analysis.

4.2. Least squares estimation

If both 4 and u,, are completely known, there is no need to utilize the information
in the y, measurements, we can simply solve (29a) as an ordinary least squares problem.
In our case, however, we consider d as unknown, and the y, measurements may then
give valuable information about d and indirectly also about y,. In the following analysis
we assume that u,,; is a persistently exciting stochastic signal, and that all data are
centralized, i.e. that d;, u,. ;, v ; and y,; are stochastic variables with zero mean. For
details about centralization and the subsequent modification of the estimator, see e.g.
Martens and Nzes (1989). We also assume observations of u,, ;, y1; and y, ; from an
informative experiment with samples for j=1,2,...,J.
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In order to use the Kalman filter formalism, we model d; as generated by white noise
through a pure delay system. In the same way we model the common noise part e, ; in
y1.jand y, ;as generated by a delayed white noise sequence. Expressing y; and y, as linear
combinations of z=[d" e/]" and u,,, we then arrive at the dynamic system

d
Zj+1= Ite‘]j O =é€,; (30a)
Y1.i=Luzj + Ligtim j + €, (30b)
Va,; = Lnzj+ Loty + €1, (30c)

where the detailed expressions for the L matrices follow from (29), and where e, j, e ;
and e;; are white and independent noise sequences. This is a dynamic system as
given in (1) with A =0, B=0 and G =1, and the algebraic Riccati equation (6) then
results in

PO = P, = Ez;7]. (31)
From (5) follows that the Kalman gain related to the y, measurements is
K9 =P,LI(L:P,L} + Ryp) ™', (32)

where Ry, = Ee, je} ;. With A = B = 0 and an appropriate change of notation according
to (30), the OEC model (18) now gives

M= Ll]K'?E()"ZJ = Lptyj) + Ligttyj +
= (Li2 — LiyyK$* Loo)umj + L K55y, + ;. (33)
With

- . [B
=tk i o | + 97 (4
2
this gives

B= [Bl] — [(le - LUK?ELQZ)T] (35)

B? (Lll K gE)T
In the same way as with the parameters in (18), we can find B, and B, in (34) by

identification of an OE model. In this special static case, however, we find from (9) that
X% P =), and from (19) and (20) with appropriate change of notation we then find

Y= Lnzj— LnK$¥Lazj— LuKS%; + e, (36)

which shows that i, is a white noise sequence. We can thus find unbiased parameter
estimates directly as the solution to a least squares (LS) problem. In order to show that
this is the case, we collect uy,;,z/, y1,, ¥3;. €l jand e3; forj = 1,2,...,J in data matrices.
From (30) we then find

Y, =ZL{,+ U,L + E, (37a)
Y2=ZL% + U.LL + E,, (37b)



86 R. Ergon
and from (34) the ordinary LS solution

[g;] =( ﬁ]w"* vl) [gi]l’l (38)

Utilizing that z;, e,; and e,; are independent white noise sequences, and introducing
R, = Eu,, ju,;, we further find

Vo= ppa s ot )
m Y-
N[ yp |1 121 = LyR, Ly P,LY + LzzR LL+ Ry (39)
and
1 R.LT ]
R PN @0
By use of the matrix inversion lemma (Kailath 1980), we now readily find
fi’l] [(le - LnKzQElﬁ)r]
= 41
i LukSE L @b

with K§* according to (32). This shows that the LS solution asymptotically is equal to
the theoretical result (35) based on Kalman filtering formalism.
Without known manipulated inputs, i.e. with u,,; = 0, the model (30) is simplified

to
Zj+1 = €y (42a)
yj=Liz;t e, (42b)
Y2 =Laz; + €2, (420)
resulting in the simplified theoretical estimate
y1;= LiK95y, ;= LiP,LY(L,P,L] + Rz) 'y, (43)
or with y{;=y1,B
B = (L K9")" = (L,P.L5 + Rn)~ 'LoP.L1. (44)

The expectation (41) of the LS solution is in this case simplified to
EB=EY'Y,) 'Y3Y, = (LoP.LY + Ry) 'L P.LT. 45)

This simplified connection between ordinary LS estimation and Kalman filtering
without dynamics was found also in Berntsen (1988), but then without the general
dynamic model (18) as a basis, and also limited to the case where L, =1 (or at least
invertible) and e, =0, i.e. the case where y, are noise free measurements of all states
in the system (possibly after a similarity transformation).
We end this subsection on LS estimation by an analysis of the asymptotic covariance
of the y, estimates. The models (30) and (42) imply a state estimation covariance matrix
EP = P_as given in (31). Appllcatlon of the general asymptotic covariance expression
(25) on the model (30) thus results in

Cov(yiu) = LI — KS§ELy)P,(I — K5 L) LT, + L K9* Ryo(KS®) LT, + Ry, (46)

where K9 is given by (32). If the simplified model (42) is used, L, is here replaced
by L, while L;; is replaced by L,.
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4.3. Principal component regression

With a large number of y, variables and a limited number of observations, the
estimator (38) may give very large estimation covariance due to overfitting. In the
common case with collinear y, variables, we can then make use of the fact that the
information can be compressed into a smaller number of latent variables determined
by the total number of independent variables in « and z. We then first collect all input
data in either X = [U,, Y,] or X =Y,, dependent on the problem formulation. By use of
an appropriate number of principal components A (Martens and Nzs 1989), the data
is then expressed as

X=TP'=[tit;...4]P" = [1,75...5,]"P", (47)

where T is the score matrix and P is the loading matrix.

For convenience we now limit the treatment to the case where u,,; = 0, i.e. to the
case where X = [y2 y2, ... y2v]". By making use of the fact that P’P =, i.e. T = XP and
7;= P'y,;, the system (42) is now replaced by

Lj+1 =€y (48a)
Y =L12, +€|J' (48]3)
;= P'Lyz; + Pley;. (48¢)

With y,; replaced by 7; and using y7;=~ t/B;=~yIPBr, i.e. B~ PBr, we now find
the theoretical estimator (44) replaced by

B=P(P'L,P.LIP+ P'R,P) 'P'L,P.L], 49)
while the LS solution B = (Y1Y,) 'Y7Y, is replaced by the data based PCR estimator
B=pP@T) 'T'Y, = P(P"X"XP) ' P'X"Y,. (50)

4.4, Partial least squares regression

The aim of partial least squares regression (PLSR) is to improve PCR by finding
latent variables that explain both the X and the ¥, data, and there exist at least two slightly
different PLSR algorithms (Martens and Nas 1989). Also here we limit the treatment
to the case were u,,; = 0, and it is convenient to start with the PLSR method of Martens
that makes use of linear combinations 7, = W'y, (where W is found iteratively and
where T}, T, in (53) below is non-diagonal). The result of this is that (42) is replaced
by the PLSR,, model

Zj+1 =€y (51a)
ni=Lizite, (51b)
;=W Lz + Wey,. (51¢)
The theoretical PCR estimator (49) is then replaced by the theoretical PLSR estimator
B=W(W'L,P.LIW + W' R W) 'W'L,P.L], (52)

while (50) is replaced by the data based PLSR estimator
B=W(ThTu) 'ThY, = WW'X"XW) 'WTX"Y,. (53)

The original PLSR method of Wold uses linear combinations ty = (W7Py) ~ ' W'y;,
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with the same W matrix as Martens and with a special loading matrix Py and a diagonal
matrix T Tw. The model (42) is then replaced by the PLSRy model

Zj+1 = €y (54a)
yU=L12j+£|J (54b)
Tw,; = (WTPW)_ IWTL;z; + (WT Pw) ! WTE'),J. (54C}

With W(W' Py) T instead of W, the theoretical PLSR estimator (52) becomes
() 'WILPLIW(E) "
+ () "WRaW() T

= W(WTL,P LW + W/ R, W) "W/ L,P,L], (55)
while the data based PLSR estimator (53) becomes
B=w()TIO) T WIXTXWE) TG WIXTY
= WPHW) (TETw) ' Thy = WWTXTXW) "WIXTy,. (56)

1
B=W(}) T( ) () 'W'L,P.LT

We see from this that Py disappears from the estimator expressions, and that the final
theoretical as well as data based estimators are the same for the Wold and Martens
algorithms. This equivalence is of course well known (Martens and Nas 1989),
although the treatment by use of Kalman filtering formalism is new.

5. Dynamic system PCR and PLSR solutions

Assuming independent measurement noise, the optimal y, current estimate for
dynamic systems given in (23), may also form a basis for dynamic system solutions
using PCR or PLSR (DPCR or DPLSR). It is then natural to split the secondary
measurements into y,x = [y31x y54]1", where yz x are the secondary measurements that
are linked to y; only through a static system. When some or all of the y»; » measurements
are internally collinear, they can be replaced by latent variables as in (48), (51) and (54),
i.e. both PCR and PLSR may be used. Using e.g. the score definition in the PLSR method
of Martens, i.e. = WTy,,, the OEC model (23) will then be replaced by

Yiue=C(I — KEWCy — ECgl — A — KW' Cy — KF Cn)] .
[(B — AKP*W' Dy — AKE D)y + AK% 1y + AK X yaak]
+ C, K% (1, — WTDy ) + C K9 (Y220 — Doatir) + Dy iy (57)

The Kalman gains are here determined as the solution to the Kalman filter equations
(5) and (6) with C, = [(W'Cx)" C%]" and

Ry = [EWWzlwgl W EWTWHWE]
2 EwnpwhW Ewnwlh

If we find the © variables by use of the PLSR method of Wold, we have to replace W*
with (W7 P,,) ~'W’, while the PCR method uses P” instead of W,

When the current estimator (57) is identified by use of a prediction error method,
also past 7, values will be used as a basis for determining y, x4, with reduced estimation
covariance as the expected results, and we can in fact look and treat the latent variables
as ordinary measurement signals. An essential assumption is here that the linear




Dynamic system multivariate calibration by system identification methods 89

relations between ys; ; and 7, given by P", W or (W' P,,) " 'W" are time invariant and
determined as in the static case either by PCA or by the iterative PLSR algorithms. Note,
however, that time invariance is an essential assumption also in the general model (23).

If all or some of the y»; measurements are internally collinear, these measurements
may also be replaced by latent variables in order to reduce the variance in the solution.
However, since y, is linked to y, through a dynamic system, the iterative PLSR method
cannot be expected to work, and we must be content with using SVD or PCA to find
these latent variables. They may also then be combined with known inputs and other
measurements, and also with other latent variables found by PCA or PLSR.

With u = 0 and yx, =0, equation (57) is simplied to

P = Ci(I — KEW' Cy)gl — A(] — KEWTCyy)] ' AK% 1+ C K% ., (58)

showing the dynamic relation between the collinear time series y,; represented by t and
the time series y;.

6. Simulation examples

Simulation studies are undertaken by use of Marlab, primarily the dlsim.m function
in the control system toolbox (Grace et al. 1992), the prediction error method
implemented in the pern.m function in the system identification toolbox (Ljung 1991),
the least squares operator and the eig.m function. With an appropriate OE model
specified, the pem.m function identifies the optimal prediction estimator (17) or the
optimal current estimator (23), where u and the secondary measurements y, are used
as input signals. The corresponding OE model using only u as an input, may also be
identified. For validation comparisons, the RMSE criterion in (28) was used.

6.1. Example 1. A second order system with a first order process noise model

The intention of this simulation example is primarily to support the theoretical
development of the optimal prediction and current estimators (17) and (23). As a starting
point, the following continuous second-order process model with an additional
first-order process noise model was used (e.g. interacting mixing tanks or thermal

processes):
-1 1 0 0 0
x={ 1 =2 1 x+ |1 u+ |0V (59a)
0 0 —1 0 1

=l 1 0 0 ]x+w (59b)
y=[ 0 1 0 ] xt+tw (59c¢)

The system was discretized assuming zero order hold elements on the & and v inputs
and a sampling interval T = 0-1, resulting in the discrete model

09092 0-0863 0-0044 0-0045 0-0002

Xk+1 0-0863 0-8230 0-0863 [x; + | 0-0908 | uy + | 0-0045 |vy (60a)
0 0 09048 0 0-0952,

Yiu=1[1 0 O] xx+ wiy (60b)

y2.=[0 1 O] xx+ wox. (60c)
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The system was then simulated with u; as a filtered PRBS signal with autocovariance
r.(p) = 0-5 (Soderstrom and Stoica 1989, example 5.11 with o = 0-5), i.. an input that
was persistently exciting of sufficient order. The scalar noise sources v, wix and wax
were independent and normally distributed white noise sequences with zero mean and
variances given below.

The simulated system was identified using OEP and OEC models with u; and y2;
as input signals and y;, as output signal, using N = 10000 samples.

The OEP model (10) was specified as

nnoge= (0,13 3],0,0,[3 3], [1 1]1, (61)
i.e. a model
A @
with
Bi(qg "Y=bug '+bpq *+bag”? (63)
Bi(q ) =bug ' +bng ' +bng’ (64)
Fi(g )=1+fug "+ fog *+fiuq” (65)
Fo(g V=1+fnq "+ foq " +fnq? (66)
The OEC model (18) was specified as
nnoec = [0,[3 41,0,0,[3 31, [101], (67)
i.e. the same model as (62), but with B>(g~") altered to
By(q )= bt bug '+bng +bng . (68)

As the main purpose of the simulations was to support the theory, no attempt was
made to find the model order and model structure from the data. The model order can,
however, be found by ordinary use of one of the several available subspace
identification methods, e.g. Di Ruscio (1996), and a systematic method for finding the
structure is presented in Ergon and Di Ruscio (1997). No attempt was made to force
Fi(g™ ") and F,(g ") to be identical, which they theoretically should be.

Each identified model was validated against an independent data set with the same
number of samples and the same noise variances as used for identification. Validation
comparisons between the different identified models were based on the root mean
square error criterion (28).

As abasis for comparisons given a specific experimental condition, each model was
identified and validated in M = 100 Monte Carlo runs using independent data sets. In
order to limit the influence of local minima problems, each identification and validation
given a specific data set was repeated R = 5 times with randomized initial B parameters
(Bijyr+1 = by~ (1 +0:5¢), with e as a zero mean and normal random variable with
variance 1).

The mean RMSE values and RMSE standard deviations for N = 10000, r, =0-1,
r»z = 0-01 and varying r, values are given in Table 1. The table also includes theoretical
RMSE values V Cov(y14«-1) and V Cov(¥; 4) computed according to (24) and (25).
The agreement between results based on simulation and theory is obvious.
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Table 1. Validation RMSE mean values with standard deviations and theoretical mean values
for OE models with varying primary measurement noise variance. The number of samples

was V= 10000
14T OEP OEP,;L OEC OEC,;-
10-8 0-0177 = 0-0005 00177 0-0173 = 0-0006 0-0173
1077 0-0177 £ 0-0005 0-0177 0-0173 = 0-0006 0-0173
10 ‘f 0-0177 + 0-0005 00177 0-0173 = 0-0005 00173
1073 0-0181 + 0-0005 0-0180 0-0177 = 0-0005 00176
104 0-0204 = 0-0006 0-0203 0-0200 £ 0-0005 0-0200

1073 00363 = 00004 00362  0-0361 +0-0003 0.0360

The results in Table 1 were obtained by use of N = 10000 samples in each data set.
To indicate expected results for a more realistic number of samples, Monte Carlo
validation results for models based on also N= 1000 and N = 200 samples are shown
in Table 2. Here the y, variance is kept constant, r,, = 0-0001, otherwise the conditions
are the same as above.

Table 2. Validation RMSE mean values with standard deviations and theoretical mean values
for different numbers of samples. Here, ry; =0-0001, and the RMSE values are
multiplied by 10000

N OEU OEU,, OEP OEP,, OEC OECy,
200 350 %115 379 233 £ 66 203 223 + 54 200
1000 379 +59 379 20918 203 204+ 18 200
10000 379+17 379 2035 203 200£5 200

Table 2 also includes results for an OE model with only « used as input. The model
was then specified as

nnogy = [0,3,0,0,3, 1], (69)

ie.
yl_k=g23 :zuk+e* (70)

with
B(g )Y=biq '"+bg *t+big? (71)
Fg Y=14+fq "+fq *+fiq > (72)

As expected, Table 2 shows increased estimation error when the number of samples
is reduced from N = 10000 to more realistic values.

In order to visualize the degree of model misfit behind the RMSE values in the
tables, specific validation responses for models based on N = 200 samples are shown
in Fig. 2. This figure also gives a representative picture of the improvement achieved
by including y, as an input signal.

6.2. Example 2. Least squares estimation

For an application of the least squares estimation in subsection 4.2, assume a process
stream with varying but known concentrations i, , i, and i, 3 of three substances A,
B and C, and varying concentrations d,, ¢, and ds of three other substances D, E and
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05

20 a0 40 50 60 70 80 sa 100

Figure2. Segment of validation responses for the OEP model (10) using both u and y, as inputs
(dashed, RMSE = 0-0239) and the OEU model (70) using only « as input (dotted,
RMSE = 0-1078). The experimental conditions are givenby r, = 1, r1; = 0-0001, r = 0-01
and N = 200, and the ideal validation response is shown by solid line.

F. Also assume a scalar primary property y; and p = 3 secondary noisy y, measurements
that all are linear combinations of the six concentrations. In order to find the relation
between the estimator variables u,, and y,, and the y, property, a calibration experiment
is performed on the system, with a data sampling interval such that the unknown
concentrations are independent white noise sequences. We thus have a system as given
in (30) with e. = 0.

Calibration experiments were performed in M = 100 Monte Carlo simulations. 1n
each experiment, d, u,, e, and e; were generated as normally distributed random
numbers, with r,; = 0-0001 and with diagonal covariance matrices R;= P,, R, and Ry.
The parameters in P., R,, L1, Li2, Loy and Ly, were uniformly distributed random
numbers in the interval (0, 1), while the parameters in Ry, were uniformly distributed
random numbers in the interval (0, 0-01). The resulting mean parameter values for the
theoretical estimator (35) were

b=10"*.[1675 3048 — 1347 —4712 13191 1021]" (73)

Least squares estimation according to (38) with N=10000 samples gave the
corresponding mean parameter values

Bw-10000=10"*-[1692 3049 — 1350 — 4720 13186 10301, (74)
while N =200 samples gave the mean parameter values
bn-200=10"%-[1863 2658 — 880 — 4035 12346 840]". (75)

The mean theoretical RMSE value RMSEy.., =V Cov(yi4) with Cov(yin)
determined according to (46) was

RMSE ppeor. =V Cov (y14¢) = 0-1136. (76)

Least squares estimation according to (38) with N= 10000 samples and validation
against an independent data set gave the mean value
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RMSEy = 10000 = 0-1134, an
while estimation and validation with N = 200 samples gave the mean value
RMSEN =300 = 0-1182. (78)

We notice here that the reduction from N = 10000 to N = 200 gave a significant
impairment in all entries of the estimated parameter vector, while the overall RMSE
values are very much the same. This shows that the optimum represented by the
theoretical solution is not a very distinct one, which explains why regularization
methods like PCR and PLSR can give good y; estimates even though the estimated
parameters might have significant errors.

6.3. Example 3. Multivariate calibration

Assume the same system as in Example 2, but now with p =200 noisy y,
measurements. As in Example 2, the mean RMSE results from Monte Carlo runs
(reduced to M = 17) were determined using the theoretical least squares estimator (35).
In addition, the data based least squares estimator (38), and the corresponding PCR and
PLSR estimators with both u and y, as inputs (generalizations of (50) and (53) with
X =|U, Y,]) were determined. The number of principal components used in the PCR
and PLSR algorithms were A = 6, which was easily found from the eigenvalues of the
X"X data matrix (for a typical simulation with N =200 observations, these were
in descending order 4; = 31410, 2870, 2065, 1369, 862, 356,4-6,4-4,4-2,...).

The mean validation RMSE results are shown in Table 3, where RMSE s jheor =
V Cov(y14), with Cov(y ) determined according to (46).

Table 3. Theoretical and validation RMSE mean values for LS, PCR and PLSR models based

on different number of samples.
N RMSELS theor. RMSEU MSEPCR RMSE” 5y3
200 00112 0-2288 0-0169 0-0169
400 00112 0-0171 0-0171 00170
800 00112 0-0128 00157 0-0157

As can be seen from Table 3, the LS method gives very poor results for N = 200,
which is as expected since 203 estimator parameters are determined. For N = 800, the
least squares estimates have a mean variance that approaches the theoretical mean value.
The PCR and PLSR methods give far better results for N =200, but show little
improvement for an increased number of samples. There are no obvious differences
between the PCR and PLSR methods, which is as expected with the randomly generated
data that is used.

6.4. Example 4. Dynamic system PCR and PLSR solutions

For an application of the dynamical DPCR and DPLSR solutions in section 3, three
independent filtered white noise sequences v=[v{ v vi]” were generated. The
following continuous system of three independent second order systems was then used
as a starting point:
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-1 0 0 1 0 0 000

0 -1 0 0 1 0 000
o 0O 0 -1 0O 0 1 " 000 (79a)
o o 0 -1 0 o | 100

0O 0 0O 0 -1 0 010

| 0 0 0 0O 0 -1 | 00 1
w=[1 1 1 0 0 0]x+w (79b)
y2=[ Ly 0 Jx+w (79¢)

Here, L, was a 200 X 3 matrix with uniformly distributed random parameters in the
interval (0, 1). The system was discretized assuming zero order hold elements on the
inputs and a sampling interval 7= 0-1. The system was then simulated with v, w; and
w, as independent and normally distributed white noise sequences with zero mean. The
R, and Ry, covariance matrices were diagonal, with uniformly distributed random
parameters in the intervals (0, 1) and (0, r») respectively, while w;, was normally
distributed with variance r,; = 0-0001. Different values of ry; were used as described
below.

The simulations started with r» = 0-01. In order to find the appropriate number of
components, the PCR and PLSR estimators (50) and (53) based on N = 200 samples
were first determined for different numbets of components A. In addition the dynamical
DPCR and DPLSR models according to (57) were identified using the OE model (see
Ljung, 1991, for definition of nn)

mI:[O, [2, e ,2], 09 09 [21 CECI 92]9 [09 . 90]] (80)

Each model was identified in M =10 Monte Carlo runs, with validation against
independent data sets with N =200 samples. The resulting mean RMSE values are
plotted in Fig. 3.

From Fig. 3 we find the optimal number of components A =3, which is not
surprising since the system has three independent noise sources. The figure also

0.02 .
oo | 4 g
o016 -\ + PCR
0.014 | * DPCR
0.012 | :
0.01 |
0.008 |
0.006 |
0.004 |
0.002 |

I B R

Figure 3. RMSE mean values as function of number of components used in PCR, PLSR, DPCR
and DPLSR models for ry; = 0-01, based on 10 Monte Carlo runs with N =200 samples.
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indicates that PLSR is slightly better than PCR, and that the dynamic solutions are better
than the static ones.

The RMSE values for different numbers of components are related to the explained
proportion of the sample variance in a principal component analysis. This is a function

of the sample eigenvalues 4, = 4,= .. .=/, given by (see, e.g. Johnson and Wichern
1992) X
. ) . s
explained proportion of sample variance = STV (81)
=144

where p =200 is the number of predictor variables.

For a simulation using M =100 Monte Carlo runs with r»=0-01, the explained
proportion of the sample variance for A = 1, 2, 3, 4, 5 and 10 were 0-594, 0-666, 0-689,
0-696, 0-703 and 0-736.

The models for A =2, 3 and 4 were also determined using M = 100 Monte Carlo
runs, with mean validation results and standard deviations as shown in Table 4.

Table 4. Validation RMSE mean values and standard deviations for PCR, DPCR, PLSR and
DPLSR models for ry; = 0-01, based on N = 200 samples and with different numbers of
components

RMSEpcr RMSEppcr RMSEpsg RMSEpprsr

0-0124 + 0-0044 00121 + 0-0059 0-0103 = 0-0015 0-0095 * 0-0020
0-0100 * 0-0009 0-0091 = 0-0017 0-0097 £ 0-0006 0-0086 % 0-0007
0-0100 £ 0-0009 0-0091 = 0-0011 0-0099 + 0-0008 0-0089 * 0-0008

RPN S N .

The results clearly indicate the improvement obtained by use of the dynamical
DPCR and DPLSR solutions. A statistical analysis is, however, beyond the scope of
the present paper.

The PLSR and DPLSR simulations were finally repeated using also r,, = 0-001 and
r=0-1. Mean results based on M = 100 Monte Carlo runs with A =3 are given in
Table 5, indicating that the improvement obtained by use of the dynamical model
increases with increasing y, noise level. At the same time the explained proportion of
sample variance decreases. For ry; = 0-1 the optimal number of components is in fact
A =2, with slightly reduced RMSE values as compared with use of A =3.

Table 5. Validation RMSE mean values and standard deviations for PCR, PLSR, DPCR and
DPLSR models, based on N =200 samples, A =3 components and with different y,
measurement noise. The explained proportion of sample variance with A = 3 is also given

¥ RMSEPLSR RMSEDPLSR iﬁ:ffsm expl. var.
0-001 0-00301 = 0-00028 0-00305 * 0-00020 0-99 0-95
0-01 0-0097 + 0-0006 0-0086 + 0-0007 0-89 0-69
01 0-0318 = 0-0035 0-0257 + 0-0054 0-81 0-19

7. Concluding remarks and further research

Optimal prediction (a priori) and current (a posteriori) estimators for non-measured
primary ouput variables y, from e.g. an industrial plant, are developed. These estimators
utilize all available information, also in secondary output measurements y,. The
theoretical results are supported by results from a Monte Carlo simulation, Although
the estimators at present are restricted to systems that are fully observable through the
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y, outputs, preliminary results show that an extension to a wider class of systems is
possible. Industrial applications in e.g. polymer extruding are now investigated, with
promising preliminary results.

It is further shown that the general dynamic optimal current estimator in the special
static case results in a least squares estimator valid for problems where the estimator
variables include noisy measurements. This is also extended to cover principal
component regression (PCR) and partial least squares regression (PLSR), and as a result
it is shown how the PLSR methods of Wold and Martens are related to each other. The
practical usefulness of this is not further investigated. The theoretical developments
concerning static estimators are also supported by Monte Carlo simulations.

Finally it is indicated how dynamic system PCR (DPCR) and PLSR (DPLSR)
solutions can be achieved as special cases of the general dynamic system current
estimator. As demonstrated in a simple simulation example, this may result in some
reduction of the y, estimation covariance, compared with ordinary PCR and PLSR. The
full potential of this, theoretically and in practical applications, are open questions.

As the basic problem in the paper is formulated, the goal is to identify optimal
estimators for y; in (1), i.e. for

Yiu= Cixg + Dyt + wig. (82)
More precisely, though, we want to find estimators for the noise free part of y;, i.e. for
216 = Cixi + D, (83)

and this is in fact done in the optimal estimators (17) and (23). We may, therefore,
replace Jiux—1 and yu in these estimators with Zy 1 and Zi. The theoretical
asymptotic covariances (25) and (26) will then be altered to

Cov@ue—1) = E(ze — Zp— )z — Za-1)" = CPOCTL (84)
and
Cov(zy) = E(ze — zap)zx — Zup)’ = CLPOPCCT. (85)

The methods presented in the paper have the obvious drawback that they require
experimental data where also the primary y, measurements are sampled at a fast rate.
In many cases, this may be very impractical and costly. It is, therefore, a need for
methods that can identify the estimators from the y, data that are normally available
from product quality analyses at a slow sampling rate. Since the optimal estimators are
based on output error (OE) models, the solution to this important problem is in
theory surprisingly simple. The OE models do not use past y, values, and it is there-
fore not quite necessary to minimize the scalar criterion function (15),
Va(6) =det[%,)3f_ls,,ks{k], based on fast sampling rate y, data. Asymptotically, the
same results will be obtained by minimization of

. 1
VJ’(H) =det [} 2| S]JB:{;], (86)

based on y; values at a slow and possibly also irregular sampling rate. The standard
prediction error identification algorithms must then be modified accordingly, and a
preliminary analysis and simulation results show that this is quite feasible. The main
problem is to find good initial parameter values for the minimization, and methods for
this is now under investigation. To obtain useful results, the number J of sampled y,
values must be sufficiently high, which may mean that data have to be collected over
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a long period of time. This is no major problem with modern control and operator
support systems.

The insight refiected in (86) also opens for the development of algorithms that
update the estimators recursively, as the plant parameters vary slowly with time. This
is a common situation in industrial plants, and recursive algorithms are therefore in
many cases necessary.
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