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Hard constraints in control and state variables of multivariable
nonlinear processes resolved by elementary nonlinear decoupling?
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A model based control strategy for nonlinear multivariable processes having hard
constraints on both control and state variables, is derived based upon the concept
of Elementary Nonlinear Decoupling (END). In END a property space is defined
which has the same dimension as the control space and which permits inverse
control. An optimization procedure is used to design a property transformation that
gives the best solution in terms of performance, stability, robustness, etc. This
control strategy is shown to be convenient when control and state variables are
subject to hard constraints. When constraint limits are reached, new property
variables are introduced which approximate the variables to be constrained and
thereby achieving fast and accurate control on constraint boundaries.

Introduction

When designing a control strategy for a nonlinear multivariable system it is essential
that the problem of possible hard constraints in control and state variables can be
handled. In most procedures this problem is solved by employing an optimization
technique where the consequences of hard constraints are weighed against measures of
performance when the optimal control actions are derived (Polak 1971, Mayne and
Polak 1993).

In this contribution another approach is taken. The unconstrained END algorithm
(Balchen 1991, Balchen and Sandrib 1995) is applied as long as none of the control
and state variables ( and x respectively) have reached their constraints. When, say, one
of the state variables (x;) reaches a constraint (high or low) a new END strategy is
introduced which replaces the state variables (x;) with appropriate property variables
(Z;). Thereby an END control scheme is developed which keeps the control and state
variables within their boundaries until the system again returns to the unconstrained
operating conditions. Obviously if any of the control and state variables stay
permanently at their constraints, the system is not properly designed and must be
reevaluated from the design phase.

Short review of the END algorithm
Consider a general nonlinear multivariable process described by

X =f0x,u,v) 1)
where x € R": state vector, u € R": control vector, v € R*: disturbance vector, f € R": rate
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function vector. In addition to the model (1), a model must be defined describing the
measurements that are extracted from the process forming the basis for estimating the

process states
y=hx)+w (2)

where y € R™: measurement vector, h € R™: measurement functions, w € R™: measure-
ment uncertainty (noise).

For the system modeled above a property vector (z) is defined which describes the
quantities (properties) one wants to control to certain values (setpoints). The number
of such properties is related to the number of degrees of freedom of control namely r.
A mathematical model of the properties is

z=d(x) 3)

where z € R™ property vector, d € R™: property function vector.
Often the property transformation is linear so that

z=Dx ()

Nonlinear decoupling algorithms have the purpose of finding the control vector (u)
which drives the system in such a way that z = z, is a specified property rate of change
trajectory. One solution to this problem is known as input-output linearization
employing a differential geometry method to make the system invertible (Isidori 1989).
In the END algorithm the invertibility problem is resolved by designing the d(-) or D
to achieve invertibility, proper dynamic behavior of the inner system and robustness.

In the following (4) will be assumed describing the property transformation. Then
from (1) we have

2=24=Df(x,u,v) )
which can be solved by an iterative equation solver of the form
i = K.(-Nza— Df()) ©

The matrix K.(-) of (6) is there to assure convergence of (6) and can be found in many
ways. One way is to specify a linearized version of (6) to have constant eigenvalues
(A) such that

ou= — K.,(-)D?Su = Adu @)
leading to
)\ !
x.0=-A(p%Y) ®

A block diagram illustrating the END algorithm is shown in Fig. 1. It includes a
nonlinear estimator which has an updating matrix denoted K, (-) of unspecified form
since a number of algorithms may be used. It is seen that an estimate of  is derived
from the process model in the estimator. The feedback loop containing K, (-) generates
the proper control action (1) which satisfies Z= z,. It is also noted that in Fig. 1 the
integrator generating « from & is equipped with an antiwindup facility (AW) to prevent
this integrator from overcharging when the control variables go into saturation.
Furthermore it is noted that the vector ¥ which represents the measured disturbances,
gives a direct feedforward into the model. If all dominant disturbances are measured
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Figure 1. Blockdiagram of END algorithm.

and the model is nearly perfect, the updating signal from the estimator gain matrix
(K,(-)) will be small and white. The fewer disturbances that are measured, the more
power will be contained in this updating signal.

Assuming for the sake of simplicity that (1) is replaced by its linearized version

0k = Adx + Bdu + Cév 9)

and assuming that the eigenvalues A of the equation solver are very large, it can be
shown that the resulting system after the application of END will be described by

x=(I—B(DB)"'D)}Ax + Cv) + B(DB) ‘34 (10)
It is obvious from both (8) and (10) that for a solution to exist the matrix

Déf—() =DB
du

must be nonsingular. The least requirement for this to be true is that dimz = dimu.
Furthermore it must be required that the dynamic system described by the state
equation of (10) has acceptable behavior, i.e. eigenvalues properly located in the left
half of the complex plane.
The dynamics of this system is determined by the eigenvalues of the matrix

(I—B(DB) 'D)A (1)
From (10) the main system transfer matrix is given by
x(s) = H(8)z4(s) (12)
where
H(s)= (sl —({— B(DB) 'D)A) 'B(DB)"! (13)

The transfer matrix of (13) can be characterized by the eigenvalues of (11) or when
converted into the frequency response matrix H(jw) by the maximal and minimal
singular values Gx(jo) and ¢4(jew). Thereby different methods for designing the
dynamic behavior can be derived by choosing the elements of the D matrix so that the
system becomes invertible with acceptable dynamic properties.

When choosing the properties to be controlled without concern for invertibility one
could arrive at the transformation z = D’ expressing the desirable but nonrealizable
property vector. The reason for the nonrealizability is that the matrix D°B most often
will be singular or the resulting dynamic properties of (10) are not acceptable.
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Figure 2. The feedback control around the END algorithm.

An alternative way of designing D is derived by defining the difference
Az=z—z7"=(D—D%x= ADx (14)

and from that an objective functional

J= J(AZTQAZ + u"Pu)dt

. (15)

= I (x"AD"QADx + u"Pu)dt
i}

where the matrices Q and P are chosen to give proper weight on the different quantities.
An optimization procedure based upon gradient calculations is developed to find
minapJ where AD is represented by its elements AD = {Ad;} converted into a vector.
By minimizing (15) the dynamic behavior of (10) is included.

The consequence of the End algorithm of Fig. 1 is that the nonlinear multivariable
system is replaced by a set of r integrators from z4 to z. This very simple process can
be controlled by diagonal feedback as shown in Fig. 2. The inner loop (I) contains the
control matrix G and has a reference vector zo. When there is no saturation in any of
the control variables, this loop will have nearly perfect response with very high
bandwidth. The outer feedback loop (II) contains a control matrix G, a reference vector
z9 and an output z°. This outer loop will be slightly degraded relative to loop (I). In some
cases the outer loop (II) can be omitted yielding a higher bandwidth performance.

The end algorithm with constrained state variables

The problem arising when control variables (i) are constrained (saturated) has been
dealt with in Balchen and Sandrib (1994). In short the solution is that for each
combination of saturating control variables 1, where the superscripts i and j indicate
which control variables are saturating, specific property transformations D are
defined expressing the priorities to be employed when the process is to be controlled
with fewer degrees of freedom.

Assuming for the sake of simplicity that the control saturation is taken care of by
this method, a similar principle is employed to handle state variable constraints.

In addition to (1) and (2) the state constrained case has the extra condition

c(x)<0 (16)
The simplest realization of (16) is

X imin inzxrrm]x (1?)
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where x; is one of the components of x.

The proposed strategy is to replace the constraints in x by representative constraints
in z and labeling these Z. In doing this it is observed that the number of state constraints
that can be handled at any time is equal to or less than the number of unconstrained
(unsaturated) control variables (degrees of freedom). In other words, if there are only
two unconstrained control variables available, only two state variables can be controlled
to stay on the constraints (maximal or minimal). Thus all the other state variables have
to stay inside acceptable operating ranges. The way to achieve this is to design the D
matrix with this in mind.

The property transformation to be applied when state variables i and j have reached
their constraint values is thus

7=D'x (18)

(18) indicates that two of the property variables have to be allotted to the constrained
states x; and x;. Thus, as an example, if the number of control variables is r=3 and
the number of states is # =8 one could have a case with

10000000
D°=101000000 (19)
00100000

indicating that x,, x, and x5 are to be controlled. The designed property transformation
for this case will be of the form

[ 1 dyp dis du dis dig dy dls]
D=

dy 1 dn du dys dy dy diy
du dn 1 du dis dyw dy du

(20)

Assuming that states x4 and x¢ are reaching their constraint values simultanecusly, the
appropriate D) matrix could be

N 1 dp di du dis die dn dis
D% = dy dp dyp 1 dy di dy dn
dy dn dun di dis 1 dy dsw

This D* matrix indicates that the original emphasis on x, has been kept while x; and
x3 have been deemphasized in order to be able to handie the constraints in x4 and xs.
The elements d; introduced in D* are mostly very small. Some of them will probably
be so small that they can be neglected and made equal to zero. When none of the state
variables reach their constraint values, the property transformation will return to that
of (20) which has been optimized for the unconstrained case. The design of the matrix
DY is done offline.

Further discussion of the algorithm is conveniently done in relation to a concrete
example.

21

End control of a stirred tank reactor with two consecutive reactions
Consider a chemical reactor with two consecutive and parallel reactions

ki ks
A—->B-oC
L

ki D
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where k; are the reaction rate constants for the three reactions which have reaction rates
rg=kica, rc=kscg and rp = kscp

The reaction rate constants are temperature dependent

E;
k= koexp( — 22 22
where ko, £; and R are constants and 0: reactor temperature.

Four differential equations describe the mass balances in terms of the concentrations
(cx...cp) of each component:

f:a=(—c,q+c,m)%—r3 (23)
é‘3=(——cg+cgg)%+ra—rc-—rp (24)
te=(—cct et re (25)
egz(—ep+cm)%+rg (26)

The differential equation describing the energy balance is
. q 1

=(—0+0)=+—

0=(— 0+ 0o) vt o

where p, ¢, V, AH,; are constants, g: feed flow, Q: heat flow.
In summary the state, control and disturbance vectors are:

(_Mlvrg—Aszrc—M3VrD+Q) (27)

X= [Cﬁichcfch’ 9]T (28)
u=1g,01" (29)
v = [¢ca0, Cao, Ccor €0, Do) (30)

The following numerical values of model parameters are used:

kio=1-0X 10", kyg=4-5 X 10, k2g=1.0X 10" E, = E;=E;= 13X 10°, R=8-3,
p=1,c=42X10°,V=10°, AH,= —5 X 10°, AH, = = 55X 10, AH; = =5 X 10°
Unom = [0-513,70-188 X 10°]", v, = [1,0,0,0,350]".

Since the process has two degrees of freedom, we define a desirable property

transformation
o_[o10 00]
b [0 0001 3D

which means that we want to control the concentration of the desirable product B and
the temperature 6. Differentiation of (23)-(26) yields

UWW(—xi+w), 0

. UV(—x2+wv), 0O
p=40_ WV(—x3tws), 0
ou 0

V(= x4+ va),
1/V(—xs+vs), UUpcV
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Even though the matrix

(#2)

is nonsingular another matrix D must be designed because the dynamics of the inner
system (10) becomes unacceptable.
An adequate matrix D which secures stability of the inner system will be

[au1r00 0]
b _[ 00001 G2
where d1, = 0-5. An optimization of the other elements of D could have given some

improvement of the performance, but that is not important here. In addition to the END
algorithm of Fig. 1 the system is controlled by an inner loop

005 0 ]).

(loop I as shown in Fig. 2 with G =[ 0 005

The responses of this system are shown in Fig. 3a—j where one of the system parameters
k3o is changed from 1.0 X 10" to 1-5 X 10" and back again.

As can be seen from Fige. 3g the concentration cp is first increasing and then
decreasing again. If the component D is an undesirable byproduct and we want ¢p, to
be less than 0-45 we may design a new property transformation.

i d”“0010]
b [00001 (33)

which replaces that of (32) when ¢p > 0-45. At selected intervals short tests are made
to see if the system can be returned to the unconstrained transformation (32). In Fig.
4g that happens after the fourth test when ¢p again becomes less than 0-45. The results
of this strategy are shown in Fig. 4. Itis clearly seen that ¢, is controlled on its constraint
with only small overshoots.

Conclusion

Elementary Nonlinear Decoupling (END) can conveniently be modified to handle
hard constraints in states by replacing these states by new properties to be controlled.
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