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A State Space Model for the Wood Chip Refining Process
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A detailed dynamic model of the fibre size distribution between the refiner discs,
distributed along the refiner radius, is presented. Both one- and two-dimensional
descriptions for the fibre or shive geometry are given. It is shown that this model
may be simplified and that analytic solutions exist under non-restrictive assump-
tions. A direct method for the recursive estimation of unknown parameters is
presented. This method is applicable to linear or linearized systems which have a
triangular structure.

Introduction

The contribution of this paper is to present a detailed state space model of the fibre
size distribution as a function of both time and refiner radius. The model can be used,
for example, in a model-based control system for a thermomechanical pulping (TMP)
process.

The first step in a model-based control system design procedure is the development
of a mathematical model of the process. A state space model of the TMP process can
be divided into three parts.

The first part is a description of the physical states, which are steam pressure,
temperature and velocity distributed along the refiner radius, pressure and temperature
in the steam ventilation chamber and in the refiner casing (see [7]).

The second part of the model is a description of the fibre states, which are
summarized as follows: the fibre-size distribution, distributed along the refiner radius,
in the refiner casing and in the blow pipe; the pulp velocity; the fibre temperature; the
wood consistency, distributed along the refiner radius, in the refiner casing and in the
blow pipe; and a description of fibre properties such as surface and flexibility.

The third part of the model is a description of the power absorbed by the refiner
motor because of fibre breakage (fiberization of chips and refining of separated fibres)
in the refiner.

These sub-models may be combined into a total model to describe the behaviour
of a TMP refiner from manipulated variables to states and measurements. The
manipulated variables may be summarized as follows: chip feed to the preheater,
preheater temperature, rotational speed of the screw feeder, inlet flow of water, disc
taper, input to the casing and ventilation chamber pressure control valves. Commonly
used measurements may be summarized as follows: pressure at the inlet, refiner casing
pressure, consistency in the blow pipe, axial thrust, power absorbed by the refiner, and
the fibre size distribution.
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This paper is restricted to the modeling of fibre size distribution. The problem of
determining a model for the fibre size distribution has only been partially solved. Some
results are presented, among others, by Corson [1, 2], Kano et al. [4], and Strand and
Mokvist [12].

These works focus on a description of the fibre size distribution in the pulp product.
The fibre geometry is assumed to be only one dimensional, and the sizes are usually
related to the specific power. Hence, the description of the fibre size distribution as a
function of both time and radius is omitted.

Modeling of Fibre Breakage
Two-dimensional Particle Geometry

Assume that the geometry of a particle, a single fibre, is described by the fibre length
I 'and the diameter or width d. Let M, be the weight of all fibres (dry wood) in a volume
element. Then M,x(l, d) is the weight fraction of the charge with particle size (/, d).
Hence, x(l, d) is the fraction of particles with geometric size (I, d).

Assume that the particle size reduction can be described as a rate process. Define
k as the breakage rate (breakdown parameter) which depends on wood species, plate
design and refining variables such as temperature, plate gap, etc.

Let g(l, d) be the fraction of particles with size (I, d) accumulated in a volume
element, or net generation, which may be described by the model

dx_f;;‘i): -k, d)x(l, d) + J: " f ", d, v, O, E)x(v, E)dvdE
(1)

where x(v, £) is the fraction of particles of size (v, &), k(v, &) is the breakage rate for
particles of size (v, &), and y(l,d, v, £) is the distribution function, which is the
probability that a fibre of size (v, {) is of size (I, d) after breakage by refining. /.. and
dmax are the upper size limit for the fibre length and the fibre diameter, respectively.

Equation (1) is a continuous model for the refining of wood fibres (in an ideal mixer).
Usually, for practical size distributions, a finite size interval is used. A discrete version
of Eq. (1) is then of interest.

Let the fraction x(/, d) be described by the discretized mean fraction x;; which fits
the geometric constraints

ql,.d)y=

i;<f515—| V i=1,...,nl (2)
di<d=d;~, V j=1,...,nd 3

X11 and xp,q are the coarsest and the finest fractions, respectively. A discrete version
of the continuous model, Eq. (1), is then

d.z'(,'j
ql‘i = df

g i=1,...,nl
=3 > Yekiaxia— k; ,--v{'. e 4
d-ll=l71 1dXid X i j=1,....nd 4)

where the distribution function yj is the probability of a fibre of size Id being reduced
to size ij after breakage. k.4 is the corresponding breakage rate for particles of size Id.
Let the fractions x;; be ordered in an nind dimensional vector given by

xT= [x“ X2 v o Xl « v - X1ndX2nd . - -xrllmf] (5)
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With the order specified by Eq. (5), Eq. (4) may be written in the matrix form
g=x=—(—-T)Kx ©)

where K € Rrind*nlnd is diagonal with elements k;, and T e R""*"" s lower
triangular with elements 7. Note that the matrix element k,;,; may be set to zero
because the material in the finest size interval remains in the same size interval after
breakage.

The structure of the matrix I may be described by:

1. The lower triangular part of the matrix I" will be sparse when nd > 1, i.e. some
elements in the lower part are zero.

2. T' may be divided into a number ndnd of submatrices with dimensions nd x nd.

3. I may be divided into a number nd(nd+ 1)/2 triangular submatrices of
dimension nd x nd.

4. Each triangular submatrix has nl(nl + 1)/2 elements different from zero.

5. T has a number nd(nd + 1) nl(nl + 1)/4 elements different from zero.

6. Ifi<lorj>dthen ylf =0where i=1,...,nlandj=1,..., nd

The first item is due to the assumption that particles cannot be broken into larger
particles. This same assumption leads to the triangular structure of I".

Trying to formulate the matrix I" in general, a pseudo code suitable for programming
on a computer is presented.

Algorithm 1

Generation of the elements 7y, in the lower triangular matrix I' € R"*" where
n=nlind.

forj=1,...,nd

fori=1,...,nl
ri=i+({—Dnl
ford=1,...,J
forl=1,...,i
s:=14+(d—1Dnl
Vrst = Vi

The structure of the matrix Eq. (6) is illustrated for the special case where nl =3 and
nd= 2 in Example 1 in the section of examples.
The distribution functions must satisfy

> y.=1 Vs=1,...,n 0

because of the definition of y as the probability of a particle being broken into smaller
sizes.

One-dimensional Particle Geometry

Assume that the geometry of a particle, a single fibre, can be described by the fibre
length 1 only. In this case, by putting nd = 1, the model, Eq. (4), may be reduced to

Qi‘—'z Yikxi—kixi ¥V i=1,...,nl ®
1=1
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or in matrix form, given by Eq. (6), where K € R™*"'is diagonal with elements k;, and
I' e ®™* is lower triangular with elements 7. Note that y;; is the probability for a
pal;ticle with a length interval / to be at a length interval i after refining, and hence
2 yya=1L

We have maximum nl(nl + 1)/2 unknown distribution parameters };;. This number
may be reduced by assuming that the distribution parameters can be normalized. In this
case, the distribution parameters are only dependent on the ratio /;/1;, (j > i), and not
on the absolute values of I; and I;. Hence, the number of unknowns is reduced to nl.
In this case, the distribution parameters are related to the normalized distribution
parameters defined as shown in Eq. (9).

The normalized distribution parameters may be collected in the lower triangular
matrix [". We have

Pi—j+1 {{le,...,VHl—]}_i=1,...,i}

i~ . . 9
T {rm.;.l (li=nl)j¥1, ..., nl) ©)

_}'| 0 . 0-

Y2 71 0
r= 7 0 (10)

Yni-1 VPai-2 ... F1 0

| Fm Pai-1 e P2 i

The elements in the ni-th row (7;) will have a special form because the finest size fraction
has a range from /,; to zero. In fact it includes an infinite number of size fractions.

To further reduce the number of parameters, some results from Olsen [8] are
adopted. Assume a constant ratio, ¢, for all particles given by

_ﬁ_é_ _ _ln!'
T h T T an
or
L
c'=— Vi=1,...,n (12)
lo

where ¢ < 1. The normalized distribution parameters in Egs. (9) and (10) may then be
taken as

i=1—¢" gi=pic " F=clm (13)

where m is an empirical scalar parameter. By construction, the normalized distribution
parameters satisfy
nl—j

2?5+?:ll—j+l:l Vj=l,....fd 14
i=1

Equation (14) states that each column in the distribution matrix I" has a sum equal to
one, which is sufficient for

ni
> xi=1 (15)
i=1

When theratio cis given, only the parameter m remains unknown, and hence the number
of unknown distribution parameters is reduced from from sl to 1. The total number of
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unknown parameters in the model, Egs. (6) or (8), is nl, i.e. nl — 1 breakage rates in
K and 1 for the distribution functions in I'. If the feed and output size distributions are
known, then nlnd — 1 parameters may be determined from Eq. (6) because we have
nind — 1 independent equations. The problem of determining the unknown parameters
will be discussed below.

Radial Fibre Size Distribution
Model Development

The fibre particles are assumed to have an average mass flow rate L in the radial
direction. Because we are considering the fraction of specified fibre particles, x;, with
individual mass flow rate Ly, it is necessary to compensate for deviations in flow rate
from L, by diffusion. We will assume that the deviation from average flow rate is
described by

Ji=Lgxi— Lx; (16)

where j; is the mass flux of diffusion for fibre particles of type i times unit area, or mass
flow rate of diffusion.

A mass balance of solids for one size fraction over a length Ar in the radial direction,
L.e. over a volume element AV = AAr, gives

d
at (Mpe: AVY = (LA x:), — (LAX) o ar

\S J L -
v v

rate of mass net rate of mass supply
accumulation by flow

+GA) = GiA)r+arl
\—I_.._}
net rate of mass
supply by diffusion

+ Mg AV
\_Y__J

net

supply
by
refining 17

Dividing by AV and taking the limit as this dimension approaches zero, we get
d 1d 1a
o )= T i) jiA) + i
M) = = L (LAX) 5 o (i) + Myg (18)
A mass balance for the flow of solids or dry fibres gives
d 1
o M= — x5 LA (19)

Substituting Eq. (19) into Eq. (18) gives

0. ox; 19
A)+ i
M; A Br(J A)+ Mgg (20)

Xt & _ _
ot " or
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which holds foralli =1, . . ., n. Equation (20) can then be written by vector notations.

ox ox 148
—=—-Li————(A)+M 21
My 137 A gy YA T Mp 21
The diffusion component j; and the term g; need further definition.
The scalar g; represents the net supply of material of type i because of refining.
We will assume that the flow rate of diffusion, j;, may be described by

soa (M Ax;)
_LA— d: ar V

where d; is the dispersional coefficient for particle number i. Equation (22) can be
written in matrix form

i=1,....n (22)

_ pdMAx)

IA=
J ar

(23)
where D € R"*" is diagonal with elements d;.

The model, Eq. (21) combined with Eq. (6), can now be described by the following
matrix partial differential equation

ox ax 1 @
e —_— S — +
or Ve O + MA D o (MMAx) + Cx 24)
where
C=—-(U-DK (25)

and x e R" are the vector of fractions. vy= L;/M;is interpreted as an average velocity
of the fibres in the radial direction of the refiner, which depends on the radius, r.

Equation (24) can be placed in dimensionless form for convenience in analysis by
introducing the dimensionless time ¢* and the dimensionless radius r”

* | tl * r—r
vfl’z_f‘l g ra—r (26)
Substituting * and r" into Eq. (24) yields
ax  ox 1, 9 .
" — = - #7 +
o Tor maPl g MADTCx 27)
where
* 1 " Fa—n
= —D C'= C 28
velira — r1) 73 (28)

Boundary and Initial Conditions

We will first discuss the boundary conditions for the model, Eq. (24), when the
dispersional term is omitted. In this case, only the left-hand boundary conditions are
needed. We have

x(rl) =XF (29)

where xr is the fibre distribution of the feed. In this case the model is suitable for

prediction of the output fibre distribution, because x(r;) may be determined from the
model.
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The full model, Eq. (24), including the dispersional term, need both left-hand and
right-hand boundary conditions. Let v/, be the average velocity of the feed. Then, proper
boundary conditions at the inlet are

1 d(MAx)
t, —_ —— D R
valx(t, ri) — xr) M,A ar
If no diffusion in the feed flow is assumed, proper boundary conditions at the inlet may
be chosen according to Eq. (29).
The right-hand boundary conditions may be

ax

o =g (31)

(30)

where the gradient at the outlet is defined by g(x).
If the output fibre distribution x- is known, proper right-hand boundary conditions
can be chosen such as:

Vpx(t, r) = Wypx, (32)

where W is an outlet classification matrix, usually the identity matrix. and vp, is the
average velocity at the outlet.

The assumption about diffusional flow has included a new problem, namely that
of defining the boundary conditions at the outlet, r = r,. This is a general problem for
second-order partial differential equations.

If the application of this model is to predict the outlet distribution, then the
dispersional term may be neglected with advantage.

The initial conditions are irrespectively given by

x(ty, r) = x(t1) (33)

Simplified Fibre Distribution Models
Static Model Without Diffusion

Assume that the dispersional coefficients d; Vi =1, . . . , nare small or zero, and that
the dynamics in Eq. (24) can be neglected. Then a simplified static model for the fibre
size distribution in the radial direction yields

x_1 Cx (34)
ar vy

where C € 'R"*" is given by Eq. (25).
Equation (34) can be integrated over the refiner radius interval r; =< r < r; with the
feed size distribution x5 as boundary conditions. That is

x(ry) =xr (35)

If vy and C are constant, then an analytic solution exists that is given by

x(ry=e  xf (36)
Usually, vyis a function of both time and radius, i.e.

dr=vfd£=>r—r1=J ! dv 37
¥y vf
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and the analytic solution of Eq. (34) is

"
CI dv

x(ry=e "7 xg (38)

provided C is constant. The solution may be verified by substitution into Eq. (34), or
developed by the method of characteristics. The method is based on the observation that
Eq. (34) can be changed to a differential equation in time along the “characteristic” Eq.
(37), and the resulting equation may be integrated directly [see also Eq. (46)].

Dynamic Model Without Diffusion

If the diffusion term in the model, Eq. (24), is neglected, then the following dynamic
model for the fibre size distribution in the radial direction will result.

—+ vf_r =Cx (39)

If vy and C are constants, then an analytic solution to Eq. (39) exists.
In the Laplacian s-domain, Eq. (39) is reduced to a set of first-order, ordinary
differential equations in the variable r.

dx(s, 1
M=—(C—s!).1u:(s,1r')+ ! x(t=0,r) (40)
dr Vy Vr
with solution
| PN i
x(s, r)= c(c o v x(s, r|)+J. e(c h ve le(r= 0, v)dv 41)
1 f

The inverse Laplace transform of the first term on the right-hand side of Eq. (41) is a
simple shift in time. The inverse Laplace transform of the second term on the right-hand
side, the convolution integral, is more difficult. But note that the initial condition,
x(0, v), does not involve time, and may be regarded as a constant for the Laplace
transform. We thus have

= - | R e vHie (_rov),
x(t, r)=ec v x(r—r r',r.)+—f e v {Lf e( "J’) ds]x(O. v)dv
vy Vil ZJ'U y—jeo
(42)

r—v
The s-domain integral in the bracket is a Dirac é-function at r— v, =0. If the
mtegration in v is changed to an integration in time, by 7= (r — v)/v, we have
oron r—r 'r_»;l o r—r;
x(t,ry=e wxlt——, r )+ eto{r— ©,r—va)dr  (43)
Vr 0 Ve
Because of the definition of J, we have

r= ﬂ _
x(t,r)=e" x(r -I ; ay rr) +e“x(0, r — vsi) (44)
f
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In the case that the initial time is = f, and not ¢ = 0, the solution can be modified and
written

_ . r—r
e x(ty, r—vt—1y) if 1— 1 <—

Vs

x(t,ry=\ ,.,
C r—nr . r—rn
e v ox\t— s Tl if r—t=

Vs vy

(45)

where x(t,, r) = x(t,) is the initial condition, and x (¢, 1) = xris the boundary condition
at the inlet, i.e. the feed distribution.

The same result could perhaps have been obtained more directly by the method of
characteristics. The method is based on the fact that Eq. (39) can be written

dx ax ox
— + = 46
a o e & “o
along the characteristic line
r=vf(t—t1)+r1 (4?)

in the r, f plane. Equation (46) can be directly integrated along the characteristic line,
Eq. (47), and Eq. (45) verified.

In the case that v, is a non-linear function in the r,  plane given by Eq. (37), the
solution of Eq. (39) can be shown to be (by the method of characteristics)

"

ec“""’x(t.,r—j vdr) ift—n<z
1

x(t,r)= cf%dp r { (48)
e n”’ x(t—J —dv,rl) if t—n=1
rn V¥
where
"1
7= dv (49)
r Vf

is the residence time.

Determination of Breakage Rates from Experiments

The solutions of the fibre size distribution models reported in this paper, when the
dispersional term is neglected, are of the form

x=e" DKy, (50)

Suppose that the input feed size distribution xr, the output size distribution x and the
residence time t© are measured (see Refs. [5] and [6] for an apporoach to the
measurement of pulp residence time). If I' is known, then there are n+ 1 unknown
breakage rates in the matrix K which may be determined from Eq. (50).

The solution to this problem involves a method for the computation of the matrix
exponential in Eq. (50). For a general matrix, the computation of the matrix exponential
is usually based on iterative methods, i.e. series methods (Taylor and Pade, etc.) or
matrix decomposition methods (diagonalization and Jordan decomposition, etc.) [10].

Define for simplicity

T=(@ — DKz (51)
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where T € R"*" is lower triangular, and I" and K were defined above. The matrix
exponential is defined as

F=e" (52)
In this case, T is lower triangular, and the matrix exponential F = e” may be computed
directly by the recursive algorithm by Parlet [9]. This method is based on the properties
that, if T is lower triangular, then F is also lower triangular with the same structure as
T, and that F and T commute, i.e.

FT—-TF=0 (53)
The diagonal elements in F are determined by
fu=¢el Vi=l...,n (54)
Equating the coefficients in Eq. (53) gives
i—1
Jii(ty — 1) = t5(fy — fu) + ) > (tufi—fuli) (55)
=j+1

which can be used to compute one superdiagonal of F at a time, beginning with the
diagonal, Eq. (54). When T is n X n, approximately n/3 multiplications are required
to form F. Difficulties may arise when T has confluent eigenvalues.

In the confluent case, the algorithm has been modified by the use of the limit

L f. Lt it
fufi_ o i
it i — by =t L — i

=fii (56)

An interesting property of F is that, while the columns of T sum to zero, the columns
of F sum to one.
The breakage rates are determined as the solutions of the first n — 1 equations in

e(K)=x—Fxpg=0 (57)
Because of the lower triangular structure of F, it is possible to compute k; successively
by solving the ith equation &; = 0, starting with i = 1 and ending with i =n— 1. The
following algorithm is employed.
Algorithm 2
Determination of k;, i=1,...,n—1

Step 1. Compute k, from

ei(k) =x, —en Dkl =0 (58)
Provided xr # 0 and x; # 0, it follows that
1 X
kiy=—In— 59
' un—Dr xp 59)

Step 2. Compute k; by solving
eik)=xi— 2 fixr;=0, YV i=2,...,n—1 (60)
i=1
by an iterative method.

Note that only the ith principal sub-matrix Fj;, i =n — 1, of the exponential F is
necessary for the computation of the ith equation &;(k;) in Step 2.
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An iterative Newton method may be used to solve k; from Eq. (60), which is the

following iteration scheme 5 1
F1_gp_ (96 o
kf ki (ak,)p & (61)

where p is the index of iteration. The Jacobian dg,/0k; may either be approximated by
a forward difference scheme or implemented analytically. In the analytic case, the
Jacobian is determined by differentiating Eq. (53) (see [3] for a derivation). In this work,
a forward difference approximation for the Jacobian is used, and found satisfactory.

The algorithm, Eq. (61), needs to be initialized with an initial value k? for the
breakage rate k;. It is observed that the initial values may be chosen in a relatively wide
range, and that the algorithm converges in a few steps. However, the algorithm may
be sensitive to large initial values, i.e. for initial values which satisfy eX >> %, because
of the problem of division by a zero or an almost zero number. A good initial choice
may be 0 < k{ <k, where k, is determined analytically in Step 1.

If the constant ratio method to determine the distribution functions };;, as described
above, is applied, then one parameter, m, in addition to x and xr, has to be specified.

In this case, for a specified m, the n — 1 unknown breakage rates can be computed
from the procedure above. Hence, m may be interpreted as a tuning parameter.

Examples

Example 1

The following example will illustrate the structure of the matrix Eq. (6). Assume
a breakdown of particles in an ideal mixer, and that the size of each particle may be
described with the length [ and the diameter or width d. Let the length operator I be
discretized in nl = 3, and the diameter or width operator d in nd = 2. The model, Eq.
(4), may be ordered as the matrix system given by

X1 X11
X1 X2
d| X X3)
5 xp| = T (Is— 1)K X12 62)
X22 X22
| X132 L X32]

where I is the 6 X 6 dimensional identity matrix and K is given by

(k0 0 0 0 O]

0 k0 0 0 0

|0 0 kyw0 0 ©
K=lo 0 0 ko0 0 63)

0 0 0 0 kxO

0 0 0 0 0 0

and the matrix of distribution functions

o 0 0 0 O

0 0 0 O

_| v 0 0 0
"800 »20 0 (©9

v v 0y y% 0

L v3 8 3 v vB 3
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n2} : 02p el b
R " 0 — .
t;0 0s | 15 2 0 0S 1 1.5 2
Dimensionless time Dimensicaless time

Figure 1. Analytical solutions of the fibre distribution models, Eqs. (34) and (39).

Example 2
Analytic and numerical solutions of the simplified fibre size distribution models,
Egs. (34) and (39), are shown in Figs. 1-3. The fibre geometry is assumed to be
represented by the length only. We have used nl = 6, ¢ = 0-7, m = 4 and dimensionless
time and radius. The input and output fibre distribution is specified to be

xf=[1-0 0 0 0 0 0] (65)

xT=[0-000001 0-004999 0-095 0-35 0-3 0-25] (66)
Algorithm 2 gives

K = diag[57-451 23-056 11-684 4-817 3-005 0] (67)

Figure 1a,b shows static profiles for the models given by Egs. (34) or (39), for two
different feed size distributions. The static profiles of these models are identical. The
model predicted a small change in the output distribution, when x was changed to the
case shown in Fig. 1b. The output distribution was predicted to be

x"=[0-0 0-004 0-086 0-34 0-31 0-26] (68)

Figure 1c,d shows dynamic profiles for the model, Eq. (39), for two different initial
distributions.

The analytic solution of the static profile, given by Eq. (39), compared with
numerical solutions for different precisions of the space discretization, is shown in Fig.
2. Figure 2b,c.d are obtained by solving 30, 60 and 180 different equations, respectively.
This illustrates the value of an analytical solution, in order to reduce the computational
burden and increase the precision of the solution.



State Space Model for the Wood Chip Refining Process 231

| ) Static analytiesol.
l :

Figure 2. Analytical and numerical solutions of the static profile, Eq. (39).

This same effect is illustrated in Fig. 3, which shows the analytic solution of the
dynamic profile at r = r,, given by Eq. (39), compared with numerical solutions for
different precisions.

Example 3

This example shows simulation results for the full model, Eq. (24), including the
diffusion term. The dispersional matrix is assumed to be D = d! for simplicity. The other
system data are the same as in Example 2.

Figure 4 shows the effect on the static profile by varying the dispersional coefficient
d for left-hand boundary conditions given by Eq. (29), and Fig. 5 the effect on the
dynamic profile. Figure 6 shows the effect on the static profile by varying the
dispersional coefficient d for left-hand boundary conditions given by Eq. (30).

Conclusions

A relatively complex and detailed distributed model for the description of the fibre
size distribution is presented. It is shown that this model may be simplified and that
analytic solutions exist under non-restrictive assumptions. These solutions produce a
valuable tool for the understanding of the refining of wood chips to fibre and fines.
However, the main purpose of this model is to be part of a larger model which may
be used in model-based control of the TMP process. The model is basically coupled
to the overall model through the pulp velocity, which facilitates the control of the
product fibre size distribution.

A method is presented for the estimation of parameters in the model from
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Figure 3. Analytical and numerical solutions of the dynamic profile at r = rz, Eq. (39).

measurements of the fibre distribution at two locations, usually the feed and the product
distribution. It is shown that the estimates may be recursively determined.
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Appendix
A method for computing the differential of the matrix exponential will be discussed.
The matrix exponential

F=e" (69)
satisfies
FT—TF=0 (70)

Suppose T is perturbed to T+ d7. The matrix exponential of the perturbed matrix will
be F+ dF. In this case, Eq. (70) yields

(F + dF)(T +dT) — (T + dT)(F + dF) =0 an
Neglecting the second-order terms d7TdF and dFdT gives
dFT — TdF = dTF — FATE Z (72)

which is seen to be the matrix differential of Eq. (70). Equation (72) may be solved for
dF when T and dT are known. Z is introduced for simplicity, which may be seen below.
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Figure 4. Analytical and numerical solutions of the static profile, Eq. (34), and Eq. (24) with
diffusion. Boundary conditions given by Egs. (29) and (32).

Assume that the perturbation d7 is lower triangular, as 7. In this case, Eq. (72) may
be solved for dF by applying the algorithm by Parlet [9].

The diagonal matrix differential elements df;; are determined directly by using the
chain rule on fi;, i.e.

d_ff,‘ = eliidr;; (73)

The matrix differential elements df;; below the diagonal are determined by equating the
coefficients in Eq. (72), i.e.

zy= *2 (Aeixfis — firdtns) (74)
g
i1
dfi (e — ri) = ti(dfy; — dfi) + . 2 r (tidfy; — dfintyy) + zij (75)
=j+

In the following algorithm, a pseudo code is presented for the determination of d¥
suitable for programming on a computer.

Algorithm 3

Computation of the lower triangular matrix differential dF e R">" for T, dT and
F as input. The eigenvalues of T are assumed to be distinct.
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Figure 5. Analytical and numerical solutions of the dynamic profile at r = r,, Eq. (39) and Eq.
(24) with diffusion.

fori=1,...,n
dﬁi=fudf.'i
forl=1,...,n—1
forj=1,...,n—1
ir=j+1
fork=1,...,i
2y = dtufiy — fudty + z;

fork=j+1,...,i—1

wij: = tudfyy — dfut; + wy
df,; = ti(dfii — dfi) + wy + 2
Y (1 — tu)

In the confluent case, an expression for the limit of df}; as 1;; approaches ¢;; is of interest.
However, to handle the case of multiple or close eigenvalues of T it may be possible
to use a block version of the above algorithm. An algorithm for computing F=e” in
this case is presented in Parlet [9].

The determination of the breakage rates in Algorithm 2 from the Newton method,
Eq. (61), is dependent on the Jacobian of the error function of &.

The differential of & with respect to a differential increment in dK, ie. the
differential of Eq. (57), is given by

de= —dFxr (76)
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Figure 6, Analytical and numerical solutions of the static profile, Eq. (34), and Eq. (24) with
diffusion. Boundary conditions given by Egs. (30) and (32).

and hence

de dF
dk; = El_xr a7

The following figure illustrates the structure of dF/dk;.

i 0
F
gjc—fmwf—) " " . (78)
X ...x
T
column i
Define the following partitioned form
dF i
dr dk; 0
& | e 9
dk;
If only the ith vector element dg;/dk; is of interest, then
de’ dFy; .
= - XF (80)

dk; dk;
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where £' € R’ and xf € R’ is the ith part of £ and xf, respectively, hence

de’ o dfis
—_—=— ) — 81
o, ’Z,l &, (81)
and Eq. (61) is complete.
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Nomenclature
A Cross-sectional area at radius r, m?
d; Dispersional coefficient, m%s
D Diagonal matrix of dispersional coefficients
d Particle diameter or width operator, m

Ji Mass flow of diffusion, kg/s

k; Breakage rate or selection function, I/s

K Diagonal matrix of breakage rates

Yij Distribution or breakage function,-

¥i—j+1 Normalized distribution or breakage function,-

Jm-j+1 Normalized distribution or breakage function for the finest size fraction

number nl,-
r Lower triangular matrix of distrubtion functions
1 Particle length operator, m
I; Length of particle of type i, m

c Ratio (/;/1;) between a fibre of length I; and /;,-
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Parameter in normalized distribution functions,-
Average mass flow of fibres, kg/s

Mass of fibres per unit length, kg/m

Radical space coordinate, m

Radius at the inlet of the refiner, m

Radius at the periphery of the refiner, m

Time, s

Volume, m?

Mass fraction of fibres of type i, kg/kg

Fibre size distribution at the inlet r = r|, kg/kg
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