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Modeling and Simulation of Phase Equilibrium in Dynamic
Systems
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The article reports an investigation on how to efficiently describe phase equilibrium
in dynamic systems, and how to solve the resulting equations numerically. An
overview of possible solution strategies is given. Different thermodynamic models
are briefly reviewed, and important algorithms like PT flash are described. A flash
tank with a mixture of propane and propylene is simulated to illustrate some
different solution strategies.

1. Introduction

Thermodynamics is a mature theoretical field, and the last 25 years have seen a rapid
progress in thermodynamic models enabling realistic computer simulations. The theory
is traditionally rooted in steady state thinking (Denn, 1987), yet dynamic simulation
studies are reported (e.g., Gani et al., 1991). During the last 10 years, process simulators
which solve dynamic equilibrium problems (e.g., SPEEDUP, 1993; HYSYS, 1995)
have emerged.

It is thus important to have a good overview of how such computations are
performed in order to be able to assess the (often implicit) assumptions that are
introduced, and the quality of the results. Also, it is important to have an idea of what
part of the computations may fail, and why they may fail. This will make it possible
to check out alternative algorithms. Furthermore, dynamic phase equilibrium
simulations are increasingly used in control and optimization studies. It is thus
important to develop ever more efficient simulation algorithms.

This article gives a brief survey of how to formulate models describing dynamics
of mass and energy in systems with phase equilibrium. Algorithms for solving the
resulting set of equations are discussed. The article is organized as follows. In section
2, an overview of phase equilibrium in dynamic systems is given, as well as possible
solution strategies. In section 3, a brief survey of thermodynamics is given, including
equilibrim conditions. In section 4, models necessary for thermodynamic calculations
are surveyed. In section 5, some standard algorithms for doing thermodynamic
calculations are discussed. In section 6, a few simulation results are presented, and
finally, in section 7, some conclusions are drawn.
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Figure 1. Sketch of a continuous flash tank.

2. Overview: phase equilibrium in dynamic systems
2.1. Material and energy balance

When the two phases of Fig. 1 are at equilibrium, such a system is denoted a flash
tank (Smith and Van Ness, 1987). The total volume of the system is V. Superscript F
denotes feed, superscript V denotes vapor, and superscript L denotes liquid. F is molar
flow rate, T is temperature, p is pressure, n; is the total number of moles of component
i in volume V, while n} and n} are the number of moles of component i in the vapor
phase and liquid phase, respectively. z; is the mole fraction of component i in the feed,
y; is the mole fraction of i in the vapor phase, and x; is the mole fraction of i in the liquid
phase. A denotes molar enthalpy, and U is internal energy. Q is heat added to volume
V, while W, is some work removed from the system.

In order to make the presentation less abstract, assume that the system in Fig. 1 is
a binary mixture. Then material balances for the system can be expressed as

@=FF21—FV)’1—FLM =fn (1
dt
dn
7: =FFz,— F'y, = F'x, = [y, (2)

If the mixture consisted of m components, the material balances would consist of m
equations dn;/dt = F¥z;— F'y; — F'x;, i € {1,..., m} instead of the two equations in
egs. 1-2. If a reaction takes place, rates of reaction must be included in the material
balances.

When neglecting kinetic and potential energy, the energy balance becomes

%=FFI?F—F"FIV—FLH’*+Q—W_,=fu. 3

The molar enthalpies are complicated functions of pressure, temperature, and mole
fractions; Y= H"(p", T", y1, y2) while A" = H"(p", T, x, x2).

The total internal energy is U=H"n"+ H'n'—pV, where n'=37_n!
and 27 ,nt; hence for a binary mixture U= U(p", p*, TV, T%, y1, ¥2, X1, X2).
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2.2. Eguilibrium conditions

When the system in Fig. 1 is at equilibrium, each phase is homogeneous throughout,
and

p'=p* “)
TV =Tk ®)
ff=fFie(l,.,m} 6)

where f! is the fugacity of component i in phase j € {V, L}. The fugacity is a complex
function of, e.g., pressure, temperature, and mole fraction of the different components.

In conclusion, the equilibrium conditions represent a number of nonlinear algebraic
equations that must be satisfied while solving the dynamic model given by material and
energy balances. Such problems are denoted Differential Algebraic Equations (DAE)
(Brenan et al., 1989).

2.3. Simulation strategies

There are several possible strategies for solving the DAEs in the dynamic phase
equilibrium model. To illustrate the methods, consider a binary mixture.

1. Straightforward UV flash calculation.

(a) Specify the initial values (e.g., at t=0) of n,, n, and U. Solve algebraic
equations to yield p, T, y;, x;, etc. at initial time. This is known as an UV flash
calculation, and it uvsually involves solving implicit algebraic equations
iteratively.

(b) With p, T, y;, x;, etc., known, the vector fields f,i, f,., and fy in egs. 1, 2, and
3 can be computed.

(c) Finally, the states n,, 712, and U can be computed for the next discretization point
using, e.g. Runge-Kutta methods.

2. Use of DAE solver. Discretization methods for solving DAEs have been developed
which only require the user to specify the differential and algebraic equations
(Brenan et al., 1989); these are of form F(x, dx/dt, t)=0. The discretization
methods are known as DAE solvers. Different levels of structuring of the DAEs
(Ramirez, 1989) can be used to help the DAE solvers succeed.

3. Combined PT flash and UV flash calculations. In practice, most people find it hard
to interpret energy. It is easier to relate to, e.g., pressure p, temperature 7', and overall
mole fraction y; = n;/n of component i. Thus, assume that p, T, and , are specified
for the volume V at initial time.

(a) When p, T, and y, are specified for a fixed volume V, all remaining quantities
like y;, x;, n;, etc., can be computed. This computation is known as a PT flash,
and it usually involves solving implicit algebraic equations iteratively.

(b) Withp, T, y;, x;, etc., known, the vector fields f,,, f.2, and fy in egs. 1, 2, and
3 can be computed.

(c) The states iy, n3, and U can be computed for the next discretization point using,
e.g., Runge-Kutta methods.

(d) Finally, perform a UV flash calculation to compute p, T, and y, at the new point
in time.

4. Avoiding UV flash calculations by transformation of differential variables.
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(a) Assume that p, T, and y, are specified for the volume V at initial time.

(b) With p, T, and y, known at a given point in time, it is possible to compute n;,
n,, and U at the same point in time. Hence, n, =ni(p, T, x1), n2 =n2(p, T, 1),
and U=U(p, T, y1). Thus
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where J is the Jacobian from (p, T, y1) to (n,, 1o, U).
The Jacobian J may be computed using numerical differentiation (Gill et al.,
1981), or developing exact symbolic expressions for J (these may include PT
flash calculations). Symbolic expressions may be found by using, e.g., Maple
(Char et al., 1992).

(c) Use PT flash calculations to compute f,,, f,,, and fy.

(d) Finally, the states p, T, and ¥, can be computed for the next discretization point
using Runge-Kutta methods, the Gear method, etc.

5. Avoiding both PT flash and UV flash calculations; akin to a method discussed in

Bosley (1994).

(a) Assume that p, T, and y, at initial time are specified for the volume V.

(b) From off-line computations involving PT flash and UV flash calculations, fit
simple, explicit correlations of sufficient accuracy for n,=n(p, T, x1),
na =n2(P; T9 X|)9 U= U(p' T, Xl), ﬁv=HV(P, T9 xl)a and ﬁL(p’ T, Xl)-

(c) Finally, itis a simple task to develop an ODE for p, T, and y, confer eq. 7, with
explicit symbolic expressions for the Jacobian J and f,,,, f.,, and fu.

2.4. Modeling principles

The index of a DAE system F(x, %, t)=0 is unity if rank ¢ F/9x=dim x. By
differentiating the relevant algebraic equations in F(x, X, t) =0 wrt. time once and
adding the resulting expressions to F(x, x, ) = 0, the new set of DAEs is F{(x, %, 1) = 0.
This process can be repeated to yield F;(x, x, t) = 0. The index 7 of the original DAE
F(x, %, 1) =0is equal to the least number j = I such that rank 3 F,/dx = dim x. Higher
index problems are DAEs with > 1. Such higher index problems are usually more
difficult to solve than problems of index zero (ODEs) and unity, Brenan et al. (1989).

By formulating overall material and energy balances for the flash tank in
conjunction with specifying algebraic equilibrium conditions as described in the
previous sections, the resulting DAEs are of index 1 (Moe, 1995).
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3. Equilibrium conditions

The fundamental relations of thermodynamics may be developed from four
postulates and the use of standard calculus (Callen, 1985). Although most authors
instead prefer to trace the roots of these relations (Bejan, 1988; Modell and Reid, 1983),
the presentation that follows is inspired by Callen’s approach.

The entropy § is a function of U, V, and n,,..., n,,, and attains its maximum at
equilibrium. When the entropy function S(U, V, n,..., n,) is known, any
thermodynamic information can be extracted from this function; hence
S=8(U, V, n,,..., n,,) is known as a fundamental equation. As an alternative we can
extract any information from U(S, V, n,,..., n,) where U attains its minimum
at equilibrium; U=U(S, V, ny,..., n,) is also a fundamental equation. Let {n;}
denote {ni,..., nm} and {n;}\\ n; denote {n;} except n,. As examples of what can
be(_ computed from a fundamental expression, the absolute temperature is
T=aU/0S | v, 1ny = (S, V,{n:}), the pressure is p 2 — UIIV | 5y = (S, V. {n:}),
while the (electro)chemical potential of component j is Uj £ Ulan| sv. tna, = (S,
V,(n: ).

Conceptually, it is possible to solve, e.g., T= T(S, V, {n;}) for S to yield $ = S(T,
V, {n:}), and thus express U as U= U(T, V,{n;}). This would, however, not be a
fundamental equation any more; essentially, this is due to the loss of some integration
constant in the definition of 7.

Still, it is possible to change variables and retain a fundamental equation; this can
be done via a Legendre transformation. The Legendre transformation leads to
fundamental equations H= U + pV = H(S,p, {n;}),A=U—TS=A(T, V,{n;}), and
G=H-TS=U+pV—-TS=G(p, T, {n:}) where H is enthalpy, A is Helmoltz’ free
energy, and G is Gibb’s free energy. It can be shown that equilibrium for composite
systems is found at the minimum of, e.g., U, A, or G. Thus, Hi can be expressed as
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Since p and T are more tangible quantities than S, etc., the use of Gibb’s free energy
is popular in engineering literature. However, when computing g; from equations of
state, the use of Helmholtz’ energy has some advantages.

For a system composed of 7 phases, it follows from the postulates and standard
calculus of multivariable systems that in the equilibrium state

TH=7TD = ... =7 ©®)
pP=p@=..=pm (10)
ph =P = ... =y (11)

where the superscript indicates the phase and subscript i indicates component i.
Unfortunately, computing an absolute value for the chemical potential y; s, strictly
speaking, not possible; it is only possible to compute g, relative to its value at a reference
state. There are, however, two other obstacles which disable us to calculate the absolute
value of the chemical potential. One is that the chemical potentials become negative
infinite as the system pressure approaches zero. The other one is that the chemical
potential of a component in a mixture also becomes negative infinite as the
concentration of that component approaches zero, Modell and Reid (1983).
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Toresolve these problems, it is common practice to introduce a monotonic mapping
of the chemical potential to yield the fugacity f; (following Sandler, 1989)

. F=Rﬂn?' (12)

where superscript ig indicates ideal gas. It is useful to introduce the dimensionless
fugacity coefficient @,, as
Qi ég—"ﬂuf — uE=RTIng; (13)

By denoting p:(p% T° {{?}) = pf and fi(p°, T°, {{?})=f° where superscript O
indicates a particular choice of (p, T, [{;}), from eq. 12 it follows that
U — 1= RTIn(f*/({;p)). Subtracting this expression from eq. 12 leads to

m—£=mmﬁ (14)

Thus, (following Prausnitz et al., 1986) we could alternatively have defined fugacity
from eq. 14 with the additional requirement that

fE=Lp. 15)

Inserting eq. 14 into the equilibrium condition in eq. 11 leads to a new condition
for phase equilibrium

fO=fP=...=fm (16)

Application of eq. 16 to specific phase equilibrium problems requires the use of
models of mixture behavior.

4. Thermodynamic models

In order to compute the equilibrium state in our model, we need to compute the
fugacity of all phases for a given component. The fugacity is a relatively complicated
function of, e.g., pressure, temperature, and composition. It is a standard trick in
mathematics to relate an expression to a departure from a simpler expression, e.g.,
Taylor’s theorem states that if f has a continuous first derivative, then
f(x+h)—f(x)=f"(&)h where £ € [x, x + h]. In practice, approximations to f* ({) are
then used. In thermodynamics, it is common to devise a correlation for the departure
from either an ideal gas or an ideal solution.

4.1. Residual properties: departure from ideal gas

_ Let M be the molar value of any extensive' thermodynamic property; the value for
M is M = M/n where M is the total value of the property and n the number of moles
in the mixture. Furthermore, define the partial molar value of component i as

5 0M

M; an an

p. TAmi\n;

! Extensive properties are homogeneous of degree 1, e.g., Bejan (1988). In this context, this
means that their value increases linearly with the number of moles.



Phase equilibrium in dynamic systems 143
It follows from Euler’s theorem (Modell and Reid, 1983) that

M=2ﬂjﬁ_4,‘=ﬂﬂ. (18)
i=1]
Note that this expression is only valid when M is a function of intensive variables p
and T in addition to the extensive n,;’s. As an example, from eq. 8,

Hi= G;‘ = + A;.
MLz v,
Next, define the residual property MR as

MR EpN — Mie (19)

where superscript ig denotes ideal gas. Similar expressions are defined for A and M,;.
By choosing the reference state equal to that of ideal gas, eq. 15 yields f° = {,p.
Introducing the fugacity coefficient ¢, from eq. 13, egs. 19 and 8 yield

R

RTln(p,-——-pF=—a(?

on, (20)

P Tolmi i\, oni |, V. (mj i\

From eq. 20 and a selected equation of state (see next section), it is possible to
compute ¢; (Prausnitz ef al., 1986) which enables us to calculate f; = {;p¢,.

Next, since RTIng; = G, application of eq. 18 allows us to compute GR (p, T, { n; }).
Since G* is a fundamental equation in p and T, any other residual property can be
computed from this expression, e.g., H, U, and S®. In order to complete the
calculations, we need to find G, H'®, U, and S’. Expressions for these quantities are
developed in Smith and Van Ness (1987). Basically, they are computed from an
expression for the ideal gas heat capacity c,£ (T, together with the gas phase heat of
formation at given temperature and pressure, see Reid et al. (1988).

4.2. Equations of state

The limitations in accuracy of the computed fugacity coefficients from residual
thermodynamics lie entirely in the ability of the applied equation of state to describe
intermolecular forces for the actual system (Prausnitz et al., 1986). Since the departure
functions in the case of residual thermodynamics are related to ideal gas, it is obvious
that relatively complicated equations of state are needed in order to describe liquids.
It is not necessary to use the same equation of state for each phase in equilibrium
calculations. The choice of equation of state depends on several factors, e.g., the
temperature and pressure of the actual system, what accuracy is needed, what phase the
system is in, whether it is necessary with a model that can represent both phases, etc.

In the theory of corresponding states, all substances fit into the same equation of
state

F(i:’r’ Tr; pr)= 0’

where (V,, T,, p,)=(VIV., TIT,, plp.), V is the molar volume, and (V,, T., Pe)
specifies the critical point. The critical parameters vary from substance to substance,
see, €.g.. Reid et al. (1988). A number of (semi) empirical equations of state are based
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Family of EOS Applicability Comment
Ideal gas law Low pressure Vapor at low
mixtures of gas pressure
Cubic EOS Moderately high Gas (and
pressure mixtures liquid) phase
More complex EOSs High pressure mixtures Gas and liquid phase
Virial EOS Modest deviation from Gas phase
ideal gas law Series in V™! or p, # terms

determine accuracy
Table 1. Merits of Equations of State (EOS).

upon the theory of corresponding states, e.g., those of van der Waal, Redlich-Kwong,
Peng-Robinson, Benedict-Webb-Rubin, Lee-Kesler, efc.

The virial equation of state can be developed from statistical mechanics, and thus
has a theoretical foundation. In short, it describes deviation from the ideal gas law as
a power series in either V! or p.

Some common equations of state are reviewed in Table 1. Sandler (1994) discusses
a number of equations of state.

We have already mentioned the ideal gas law

apV_
LT RT

where z is known as the compressibility factor. Cubic equations of state constitute one
family of equations, where “cubic” indicates that they can be written as a cubic
polynomial in either V or z. Consider a pure fluid with critical temperature T';, critical
pressure P.; and acentric factor w; (instead of using V.). The pure fluid
Soave-Redlich-Kwong (SRK) equation is (Gmehling and Kolbe, 1988)

_ RT a;
Py b V(V+b)

where p is the pressure, T is the temperature, V is the molar volume of the pure fluid,
and R is the gas constant. b, and a; are functions of the critical parameters. In addition,
a; is a function of temperature.

When considering a mixture of m components, each with a mole fraction of {; (x;:
for a liquid, y; for a vapor), it is common practice to postulate a pseudo fluid (one-fluid
theory) satisfying, e.g., the SRK equation with parameters ay and by

__RT __ am
V- by ‘?(‘7'1' bM)'
Parameters a,, and by, are mixture parameters, and they are expressed as combinations
of the pure fluid a;’s and b;’s. A common mixing rule is

= i i@au‘:n bu= i.‘:"b*

i=1j=1

=1,

where a;; is given as ai = (1 — k;j) Va;a;. Here, kj; is a binary interaction parameter
which is small for many mixtures, and k;; = 0. In the one component case, ay = a; and
b,u = b,’.
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4.3. Residual properties from the SRK

When an equation of state has been chosen, an expression for the fugacity coefficient
can be computed from eq. 20. This leads to expressions for f; and G®. From the
expression for G® and ideal gas properties, it is possible to compute G, H, U, and S.

Gmehling and Kolbe (1988) list expressions for In¢;, G®, A®, and §® when the SRK
equation of state is used. From these expressions and similar expressions for the ideal
gas (Smith and Van Ness, 1987), expressions for f;, G, H, U, and S can thus easily be
found.

When computing fugacity coefficients, it is necessary to find the molar volume of
the vapor and liquid through solving the equation of state that is used. Gundersen (1982)
discusses some problems that may occur when computing these molar volumes from
cubic equations of state.

4.4. Excess properties: departure from ideal solution

In a previous section, the fugacity of a state has been computed based upon
correlations for the departure of that state from the ideal gas state
(RTng; = puft = p; — pi). Obviously, if the state of the system is a condensed phase
(e.g., liquid phase), uR is “large” and it is hard to find good correlations for this
departure.

It thus makes sense to operate with the departure from some ideal liquid mixture
state instead of the departure from the ideal gas state. When the reference state in eq.14
is an ideal solution (is), the departure property is denoted an excess property ME

MESM— M,

A mixture of components is denoted an ideal solution when the fugacity f* of the
mixture at given (p, T, {{,}) satisfies

fEEUS @1
where f; is the fugacity of pure component i at a given p and 7. Thus, f* = {,f:(p, T).
The excess chemical potential is thus
EL is __ .f! _ .fl _
i =p;— pu’ = RTIn" = RTn -— = RTIny;, 22)
W= 7 s, Y (
where the activity coefficient y; has been introduced. Thus
oG*

RTII’I‘}’,- = ﬂ,F = En_
i

ain

on;
p. T (n; 1 \ny !

(23)

T, V.(nﬂ\l’i;

The parallel between the activity coefficient in eq. 22 and the fugacity coefficient in
eq. 13 is apparent, as is the parallel between egs. 23 and 20.

Since u*is identical to the partial molar excess Gibb’s energy, 1 = G, the activity
coefficient is found from

_ GEéa(nGE)

RTIn Vi an.

(24)

Py T-'";'}\\"l

In the next section, we will consider some activity coefficient models which makes
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it possible to find expressions for yi. When we thus have an expression for y;, the
fugacity is given as fi=yfi>. | |
Fromeq. 21, = {ifi where f; = fi(p, T). The standard way of calculating the pure
component quantity f; is to write it as (Sandler, 1989)
Fi=fip=, DOp, D=FY (I, T)0: = §}*pi"0;
where 6; is the Poynting pressure correction, and pi* is the saturation pressure at T for
pure component i. ¢! can be computed with the methods of residual thermodynamics,
and the Poynting correction 0; is given from
/g
RTInG;= f’,dp.
Py
In practice, semi empirical correlations for molar excess Gibb’s energy, GF, are
designed. When GEis thus given, the fundamental expressionis G* = nGE. Hence, from
the expression for G, any excess property can be found, e.g., H¥, U¥, and SE. To
complete the calculation of extensive properties, we need expressions for ideal solution
H*, U*, and S*. These are developed in Smith and Van Ness (1987).

4.5. Activity coefficient models

Traditionally the excess molar Gibb’s energy has been expressed as empirical power
series, e.g., the Margules equations which are power series in mole fractions.

Modern theoretical developments in the molecular thermodynamics of liquid
solution behavior are, however, based on the concept of local compositions. Within a
liquid solution, local compositions are different from the overall mixture composition,
and are presumed to account for the short-range order and nonrandom molecular
orientation that results from differences in molecular size and intermolecular forces.
The semi empirical equations Wilson, NRTL and UNIQUAC are all based on this
concept. As an example, the Wilson equation for molar Gibb’s energy of a binary
mixture is

GE
RT= —xlln(xl + Alz.xz) —len(xz + Amxl)
with
Vs ( Az — 111)
Ay = — —

12 ICXP RT
W ( e /'lzz)

Az[ ‘? €X] RT

Here, 1, is the energy of interaction between molecules of component i and j, and V;
is the molar volume of pure liquid component i at temperature T.

A further significant development based on the UNIQUAC equation, is the
UNIFAC method in which activity coefficients are calculated from contributions of the
various groups making up the molecules of a solution. The last decade has seen a nearly
explosive development in the application of UNIFAC and other group contribution
activity coefficient models, Sandler (1994).

Prausnitz et al. (1986) and Sandler (1994) give details of various activity coefficient
models. Table 2 gives a brief account of some activity coefficient model families.
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Activity coefficient model family Applicability

Regular solution theory Mixtures of nonpolar components
(Scatchard-Hildebrand, van Laar etc.) with similar intermolecular forces.

Athermal solution theory Mixtures of components with similar
(Flory and Huggins) intermolecular forces, i.e. solutions

with only polar components or
only nonpolar components.

Wilson’s equation Mixtures of polar and nonpolar components.
Cannot describe liquid-liquid equilibrium.,
Two-fluid theory Mixtures of both polar and
(UNIQUAC, NRTL, UNIFAC) nonpolar components,
Chemical theories Works best for solutions of polar

compenents and ionic systems.
Table 2. Merits of Activity Coefficient Models.

4.6. Vapor-liquid equilibrium. An ideal system: Raoult’s law

At phase equilibrium between vapor phase and liquid phase, it is required that
S’ =f. There is no requirement that the same equation of state is used when computing
SV or fE. In practice, it is even relatively common to use residual thermodynamics for
the vapor phase and excess thermodynamics for the liquid phase.

For a general vapor-liquid equilibrium calculation using residual and excess
thermodynamics,

fiv =ﬁL
I

pyip! = ylxift

K, )j:_?i_f_';ai_m p 0, }’;’“(P,T.{x.-})¢;"(P?“‘,T)pf‘“(T)9f(p.T)‘

Xi o' p poY(p,T,{y:})

i e

(25)

Here, K is known as the K-value for component i.
Likewise, when residual thermodynamics is used for both phases, this yields the
following K-value.

— ﬁ — ?Lf_(p,Ty {xi l)
When assuming that the vapor phase behaves like an ideal gas and the liquid phase
behaves like an ideal solution, ¥ = £ =y,p and f = fi* = x;p*. Thus,

pe
yi= ’%x:' =Kix. 27

(26)

This vapor-liquid equilibrium condition with K;= p{*/p is known as Raoult’s law.
Raoult’s law may be a good approximation for equilibrium calculations at low pressure.

5. Algorithms for equilibrium calculations

As indicated in Section 2, we need to be able to compute the vector field (the right
hand side) of egs. 1, 2, and 3. In addition, we want to compute p, T, and y, from n,,
n2, and U. In order to do this, we first need to solve a PT flash. The PT flash requires
us to compute the fugacity f; in each phase.
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When doing PT flash calculations, it is assumed that the contents of volume Vis
in a two-phase state. Before performing the PT flash calculations, it should be checked
whether this actually is true. Two phases are present if the pressure p lies between
pressures known as the bubble pressure pruy and the dew pressure pecw.

5.1. PT flash
As part of the PT flash calculation, we need to express x; and y; by {y;}. This is
done as follows. From Section 2 we have that n,=nf+n} and n=n"+n"
Furthermore, the mole fractions x; and y; sum up to unity. At equilibrium, we have found
that y; = K;x;. Thus,
ni=nk+n! e yin =xn"+yn'=xi(n—n") +yn".

By introducing the molar vapor fraction v =n"/n, this leads to

. Xi _ )
T+ wK—1) and y;, = Kx;. (28)

Next, introduce F,,(v) 3 ¥ — 27 1x; = 0. By inserting the expressions for x;
and y;, this yields

Xi

_w xlKi—1)
Fs0= 2 -1 "
It can be shown that F,,(v) is strictly decreasing in v, hence F,,(v) =0 has a single
real root. The root v can be found by a Newton-Raphson search, by converting F,(v)
into a polynomial and using a polynomial solver, etc. In the case of a binary mixture,
the solution of F,,(v)=0is

__n X2

VTIoK 1-K) @9
When Raoult’s law is valid, K; = p§/p is independent of the compositions { y;} and
{x;}. In the binary case, the expressions for v, x;, and y; thus become particularly simple.
For real mixtures with given/fixed p and T, K; will be a function of the liquid
composition {x;}. Furthermore, since the real solution of F,(v) =0 also depends on
K; it follows that v varies with {x;}. Thus, eq. 28 can in general not be solved explicitly

with regards to x; since

_ Ki
T v K — 1)y

It is thus necessary to introduce an iterative strategy in order to find x;. Let x/ denote
iterative solution j of x;, and let {x/} denote {x,..., x},}. The simplest possible
algorithm for solving such an implicit equation is the method of successive substitution
(successive approximation) (Rice and Do, 1995; Hanna and Sandall, 1995), where we
let

Xi

xl=— . X .
1+v((x/ ' HE{x D -1
This is the algorithm proposed in, e.g., Smith and Van Ness (1987). More advanced

methods for finding the roots of multivariable, nonlinear equations are discussedin, e.g.,
Lindfield and Penny (1995) and Dennis and Schnabel (1983).
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5.2. Bubble point pressure and dew point pressure

A convenient way of checking if a system is in a two-phase state is to calculate the
bubble- and dew point pressures, and see whether the pressure of the system lies
between these values. The bubble point pressure is the pressure where the first bubble
is formed, while the pressure where the first droplet condenses out is termed the dew
point pressure.

Consider the computation of the bubble point pressure pyu;. When the mixture is
a subcooled liquid, x; = y; at the given temperature 7. Before the first bubble is formed,
¥i = 0. When the pressure p decreases, the boiling point is approached. At the moment
when the first vapor bubble is formed, 7, y, = 1. This pressure is defined to be P bubl-

When Raoult’s law is valid and with x; = Xis

yi=Kxi=xipi*Ip = yip™/p.
At the bubble pressure pyy, 7, y; = 1. Thus

1= ZIXEPEWIPMM S Pomi = 2, fip £
i= i=1

For nonideal mixtures, K; varies with the composition {x; }. The problem can then
be posed as: find pu such that ¥ (peai. T, { 1) = (Do, T, { x:}) with 27y, = 1.
When excess thermodynamics is used to describe f, this problem can easily be changed
into a form suitable for the method of successive substitution (Smith and Van Ness,
1987). Since f{* is proportional to p, the proportional pressure dependence gets
eliminated when using residual thermodynamics for both phases, and ¥ =fFleads to
yi@¥ (Poe, T, { ¥i}) = 2@ (pvwn, T, { 3; ). The bubble point algorithm then gets more
complicated (Smith and Van Ness, 1987).

The considerations and algorithms for computing the dew point pressure parallel
those for computing the bubble point pressure.

5.3. UV flash

In the introduction, the UV flash problem is defined as calculating, e.g., p, T, and
{ x:} when {n;}and U are known. Thus, we have the algebraic equations {n;} =f(p,
T, {x:D and U= U(p.T, {1:}). These equations usually have to be solved by iterations
similar to those involved in the PT flash algorithm; in fact they involve PT flash
calculations. The difficulty is to find good methods to update the estimated values of
P, T,{yi}. General methods for solving such problems are discussed in, e.g., Lindfield
and Penny (1995), and Dennis and Schnabel (1983).

6. Simulation example

A one-stage C; splitter has been considered, i.e., a flash tank with a mixture of
propane and propylene.

First, a dynamic model was developed with equilibrium conditions based upon the
Soave-Redlich-Kwong (SRK) equation of state. The resulting set of DAEs were
implemented in the process simulator SPEEDUP (1993), which is an equation based
simulator designed to solve DAEs. Sparse sets of equations are divided into blocks
(block decomposition) which are then solved successively. The decomposition can not
be manipulated by the user. The solution diverged, despite the correctness of the model.
This was due to the block decomposition process. SPEEDUP’s decomposition
algorithm produced only two blocks of model equations, one of which contained only
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Figure 2. Time evolutions of pressure in bars (left) and temperature in centigrades (right).

one linear equation and one unknown, while the other block was made up of some thirty
nonlinear equations in thirty unknowns.

Among many other routines, SPEEDUP has a routine for dynamic simulation of
flash drums. Access to a data bank for physical properties of chemical species and
FORTRAN procedures, where the thermodynamic calculations are executed, make
SPEEDUP a suitable process simulator. A successful simulation for separation of
propylene and propane was performed using the SPEEDUP routine FLASH. Figs. 2 and
3 show the time evolution of pressure, temperature, and liquid mole fractions in the
propylene-propane system as calculated by SPEEDUP’s flash routine.

Finally, a flash tank with propylene and propane was modeled using Raoult’s
equilibrium condition, and implemented in Matlab (Mathworks, 1992). Physical
properties of these components are found in, e.g., Reid er al. (1988). The molar liquid
volume was computed as the sum of the (constant) pure component molar liquid
volumes, but weighted with the composition of the liquid mixture. The volume of the
tank was V = 1 m, the feed composition was z, = 0.7 (subscript 1 indicates propylene),
the feed rate was FF =250 kmol/h, and the molar feed enthalpy A" = — 20-4 kJ/mol.
The flow of vapor out of the tank was F" = 85 kmol/h, and the added heat was Q = 5.46
kW. The initial values were p=9-16 bar, 7=292 K, and y, = 0-7. The process is
perturbed by changing the liquid flow F* at initial time from F*= 165 kmol/h to 149
kmol/h. These numbers differ from those used in the SPEEDUP simulations.

Fig. 4 displays the time evolution of this system.

The simulation results indicate that the temperature rapidly approaches the new
steady state, while the composition changes slowly. The slow drift of the pressure is
due to the slow changes in composition. As Fig. 4 indicates, p approaches ppuy and

SPEEDUF Time-series Plots (DG_TE_9) - (oa_Te_s

® BRI DI 03 N 0I 08 BT S 85 1 L3 03 13 LA b6 L8 LT 18 L8 3 & BT A% 63 04 45 08 AF A8 68 § L0 A8 13 14 18 A LT iR R 3
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Figure 3. Time evolutions of liquid mole fractions of propane (left) and propylene (right).
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Figure4.  Time evolution of pressure p (solid, marked p), bubble point pressure (solid, marked
p_bubl), and dew point pressure (dotted, marked p_dew) in bars (upper left plot);
temperature T'in °C (upper right plot); liquid mole fraction of propylene x, (lower left plot);
and vapor mole fraction of propylene y, (lower right plot).

eventually the tank is filled with liquid. When the tank gets filled up, the number of states
in the system is reduced by one, and n; + n, becomes a constant.

7. Conclusions

This article gives an overview of modeling and simulation of dynamic systems with
phase equilibrium. In general such systems are described by Differential-Algebraic
Equations (DAEs). Several different strategies for solving the model equations are
discussed. These strategies typically include PT flash and UV flash calculations,
together with a check on whether the system is in a two-phase region or not. These
computations are based upon thermodynamic models. To make the article more useful
for those with less thermodynamic background, a brief survey of such models is given.

First, SPEEDUP was used to try to solve the DAEs with SRK based equilibrium
conditions. The problem turned out to be too difficult for SPEEDUP to solve, and the
equations never converged to a solution. The reason why SPEEDUP failed was the poor
block decomposition of the DAEs. Next, the model was implemented in SPEEDUP
using the built in FLASH tank module and the SRK based equilibrium conditions. This
time, SPEEDUP solved the problem. These results illustrate the advantage of exploiting
knowledge of the structure of the DAEs.

Finally, the dynamic model of a Cs flash tank with Raoult’s law equilibrium
conditions was implemented in Matlab to be able to more closely compare solution
strategies. Propane and propylene have very close boiling points and are thus difficult
to separate. It turned out to be rather difficult to tune initial values, etc. to make the model
start in the two-phase region. Only minor changes were necessary in order to drive the
system into a single phase state. This was caused by bubble- and dew point pressures
that were sensitive to changes in the system. Also, due to the implemented model for
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the molar liquid volume, the system equations became stiff when the tank was (almost)
filled up with liquid.

The DAEs were solved using p, T, and y; as states; simulation results are reported
in the Simulation example section. The UV flash calculation was eliminated by
numerically computing the Jacobian J between coordinates (p, T, y1) and (n,, n2, U).
Unless the model equations were properly scaled, the Jacobian became poorly
conditioned.

The DAEs were also simulated using an optimization code to solve the UV flash
problem. Both the leastsq routine of the Matlab Optimization Toolbox, MathWorks
(1990), and routine e04jaf of the NAG Foundation Toolbox, MathWorks (1995), were
used in the UV flash calculations. It turned out to be important to scale the model
equations to speed up convergence. Preliminary experience indicates that itis important
to use industrial quality optimization code. It is also our experience that the simulation
takes more time when rigorous UV flash calculations are used.

In practical process simulations, the thermodynamic calculations are often
responsible for more than 90% of the simulation time. It is thus necessary to use efficient
numerical algorithms for solving the equilibrium conditions. The simulation examples
reported in this article also illustrate the necessity of using high quality numerical
algorithms. Numerical algorithms for solving thermodynamic problems are discussed
in, e.g., Smith and Missen (1982).
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