MODELING, IDENTIFICATION AND CONTROL, 1997, voL. 18, No. 2, 89—100 80
doi:10.4173/mic.1997.2.1

Multi-Purpose Process Simulators*

OMMUND @GARD' and TOR IVAR EIKAAS*t
Keywords: Dynamic Simulation, Operator Training, Simulation Architecture

The first part of this paper describes a multi-purpose dynamic simulator for the
Heidrun oil production plant. The simulator integrates a commercial dynamic
simulation model with the actual process control system to enable dynamic
simulation, control system verification and operator training within the same
framework and based on the same models and configuration data. The control
system configuration can be imported directly into the simulator. This simplifies
simulator maintenance and ensure consistency between the simulator and the real
plant. The entire system runs on standard Unix work stations. The simulator has so
far been used for initial operator training, control system verification and controller
tuning.

The last part of the paper describes how the simulator architecture can be
generalized and some aspects of how new developments in product modelling will
influence the use of dynamic simulation in the future.

Introduction

The usage of dynamic simulation is rising in today’s industry. The Norwegian
offshore oil production industry uses dynamic simulation for different purposes.
Typical examples are: design and verification of control structures, controller tuning,
verification of the process design, testing of operational procedures, operator training
and for verification of process modifications during plant operation.

There has so far been a clear distinction between simulators used for engineering
purposes and simulators used for operator training. Engineering simulators are based
on detailed first principles models and accurate multi-component thermodynamic
calculations. Engineering simulators are usually maintained and used during the plant’s
whole life cycle. The OTISS simulator from the British company SAST has so far
dominated this market segment. Engineering simulators are moderately priced and run
on standard work stations.

The simulators are traditionally constructed by the simulator vendors, but currently
also engineering companies have started to configure process models, see (Kvamsdal
and Sivertsen 1995). The simulator based process verification are done by engineering
companies during plant design. Operator training is traditionally carried out in special
training centres and simulation studies of plant modifications are often accomplished
within the oil companies.

Training simulators, in contrast, are tailored to match the training requirements and
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to mimic the operators’ interaction with the control system. The models are traditionally
different from those used in engineering simulators, emphasising real time performance
and robustness. Special HW might be required to incorporate the control system and
the price is high. The use of different models in engineering and training simulators
increase the maintenance costs because two models must be updated when the plant
undergoes modifications.

The first part of this paper focuses on the HOPE (Heidrun OPerational Experience)
simulator. The second part describes how the HOPE simulator architecture can be
generalised into a plug and play architecture. Finally, we point out some future trends
and discusses how emerging IT standards may impact the use of dynamic process
simulation.

The HOPE simulator
Project objectives
The main objectives for the HOPE simulator were as follows:

1. To develop a multi purpose dynamic simulator for the Heidrun offshore oil
production plant that enabled simulation studies, operator training and control
system verification.

2. The simulator should use the same configuration files as the control system and
the Engineering simulator, in this case an AIM-1000 distributed process control
system from Simrad Norge and an OTISS simulation model from SAST.

. The development costs should be lower than for a traditional training simulator.

. The functionality should be the same as in other training simulators.

. Both instructor based and self training should be supported.

. The simulator should run on standard work stations located in a normal office
environment both on board and in the Heidrun operation centre.

N b W

The training environment did not need to imitate the control room completely. More
emphasis was put on making the simulator flexible and facilitate multiple usage. One
rationale for this was the fact that only experienced operators were recruited to the
Heidrun platform. The focus of the training is therefore moved towards accustoming
the operators to the process dynamics and the operational procedures. A copy of the
control room environment was therefore not that important, as long as the Human
Computer Interface (HCI) was identical to the one used in the control room.

The HOPE simulator includes models of the main process equipment on the
platform, i.e. the systems for wellhead operation, oil separation, gas production and
produced water treatment,

The basic training simulator functionality in the HOPE simulator is controlled from
an instructor HCI that provides functions for:

® Selection and setting of initial conditions

® Selection and setting of scenarios

® Selection and setting of disturbances while the simulator is running
® Taking snapshots of the current state and saving initial conditions
® Replay or re-run from snapshots
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Technical solutions

The key point that made the HOPE simulator feasible, was that the AIM-1000
control system was ported from the target real time HW to general work station HW
and the Unix operating system. Each Process Control Unit (PCU) and Operator Control
Unit (OCU) will therefore execute as an independent Unix process in the simulator. This
allows flexible allocation of the PCUs and OCUs on the available computers. It also
improves the quality of the configuration testing because the control system topology
and thus also the communication paths are the same in the simulator as in the real plant.
The data received from the model is fed into the control system SW just above the input
cards and the control signal values are fetched just above the output cards. All the
functionality and data flow from input to output cards are thus tested.
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Figure 1. The HOPE simulator architecture.

The system architecture is illustrated in the data flow diagram in Figure 1. The
re-used components are shaded. This includes nearly all of the AIM-1000 control
system SW, its internal communication protocol and the OTISS simulator. The most
extensive SW components in the HOPE simulator are thus re-used. However, some
enhancements had to be made in the basic AIM-1000 software to implement snapshots,
replay and scenario functions. These modifications, on the other hand, did not interfere
with the HOPE simulator’s ability to import AIM-1000 configuration files directly.

The Maritime Information Technology Standard (MiTS) protocol was used for all
inter-process communication in the SW developed in the HOPE project. MiTS defines
an application program interface that allows flexible network transparent inter-process
communication. MiTS is based on TCP/IP and is implemented on different Unix
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dialects, Windows and several real time operating systems. The HOPE simulator, as
well as the AIM-1000 system, are thus designed to utilize several cooperating
computers connected in a standard local area network. MiTS is described more in detail
in Rgdseth and Haaland (1993).

The following SW components in Figure 1 was developed in the HOPE project:

1. TsControl, the instructor HCI, which also synchronises the simulator to real time
and coordinates the data exchange between AIM-1000 and OTISS.

2. The command protocol from TsControl to the OTISS Daemon and AIM-1000,
and the data exchange protocol between the OTISS Daemon and AIM-1000.

3. The OTISS Daemon which implements the MiTS interface to SAST’s
proprietary internal protocol.

4. The IoDescription cross connection file defining the data transfer between
OTISS and AIM-1000 by mapping OTISS and AIM-1000 tag names.

5. Some utility programs for setting up the IoDescription.

The HOPE simulator runs on four standard HP9000/735 computers. The OTISS
simulator and the OTISS Daemon run on one computer. TsControl and the 19 PCUs
and 3 OCU s are distributed on the other three. These three computers are equipped with
special AIM-1000 keyboards and are used as operator stations during training. This
configuration runs in real time at 1 Hz, which is the same as in the actual plant. The
number of connection points and default value settings in the IoDescription file are 1150
and 1400, respectively.

AO 20FV 0163 20FY 0163 20FICAR0163_CADAS 0.0 1.000000 0.000
DO 21XV 0031 21XY 0031 21XVOO31R_CADAS 0 -1 1

AI 20LT 0151 20LT 0151 20LT151DE _OUT 0.0 1.000000 0.000
DI 21XV 0031 21ZSH 0031 21XV0031 HI 0 1.0 0.0

AI 37LT 0151 37LT 0151 NOMODEL 12.345 1.000000 0.000

Figure 2. loDescription file example.

Figure 2 shows a section from an IoDescription file containing the descriptions of
the analogue input and output (Al, AO) and digital input and output (DI, DO) signals.
The first entry is the signal type, the second the AIM tag number, the third is the
corresponding name of the AIM I/O terminal, the fourth is the OTISS tag number and
the three last are default value, scaling and bias. The IoDescription file thus allows
measurements and control signals to be re-scaled before they are exchanged. The last
line in Figure 2 sets a default value on the AIM input terminal on the tag number
37LT_ _0151 to 12.34500.

The selected technical solution allows new control system configurations to be
imported directly from the process control system’s data base to the HOPE simulator.
Only minor modifications have to be carried out in the model and in the IoDescription
file to reflect a change in the control system configuration. If for example a new
transmitter tag has been added to the control system, a corresponding transmitter
module has to be configured into the model, and an extra line has to be inserted into
the IoDescription file. This new entry in the [oDescription file links the measurement
from the transmitter in the model to the input of the new transmitter module in the
control system.

The OTISS model may also run completely disconnected from the HOPE simulator
using its own internally modelled control system. This is achieved by a set of SW
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switches that allow the user to select whether control signals are to be fetched from the
OTISS-Daemon or from the internal controllers. OTISS is used as a stand-alone process
simulator if the internal controllers are enabled. Consequently, only one model has to
be maintained for the Heidrun plant.

The development project

The HOPE development project divided into three main phases. First, software
development then simulator configuration and a third simulator verification phase. We
used standard structured technics as described in Yourdon (1989) for system analysis
and design. The programming was done in ANSI C. We used the POSIX API to access
the operating system, OSF/Motif to build the HCI and MiTS for all inter-process
communication. About 4.5 man year were spent in this phase. All the software was
developed in this phase, but the test configuration did only include a small number of
AIM-1000 and OTISS tags.

The goal for the configuration phase therefore was to establish the full simulator.
The main activity in this phase was to set up and test all the cross connections between
the full OTISS model and the AIM-1000 configuration, and to define static default
values for AIM-1000 modules which did not have a counterpart in the OTISS model.
This task involved extensive search for, and pairing of, tag numbers in the OTISS and
AIM-1000 configurations. The script language Perl was used to automate as much as
possible of these tasks. Circa one man year was spent on this task. The result was a
simulator that ran satisfactorily around different steady state values. As much
automation as possible in this phase was crucial to avoid faults, ensure consistency,
speed up the configuration work and enable fast updates when the plant or control
system undergoes changes.

The final simulator verification phase was required to make the training simulator
fully operable, i.e. to allow the trainee to start up the platform from a shut down state
and execute normal operational procedures. This phase included a detailed walk through
of the control structures and logics required to start up and shut down the process.

This phase also served as a useful verification of both the control system and the
model. Although the control system configuration proved to be of good quality, the
needs for some modifications were reported. Shortcomings in the OTISS model were
mainly caused by mismatches in the granularity between the model and the control
system.

Results and experiences

The simulator has so far been used successfully for control system verification and
initial operator training. A copy of the simulator is also placed in the control room on
the Heidrun platform to allow on the job training.

The HOPE simulator has also been used to fine tune the control loops by a semi
automatic method. Inputs and outputs resulting from system perturbation are logged and
used off-line to calculate controller parameters. The method is described in Schei
(1994).

The most serious problems during the start up period of the HOPE simulator
originate from missing details in the OTISS model. These details are not needed for
the operational studies the model originally was designed for, but are important to
provide the control system with the necessary inputs and to create realistic operator
training. However, it has generally not been difficult to extend the model to overcome
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such problems, but the total time spent on this caused some delay in the start-up of the
initial training.

One lesson learned is therefore to ensure that the specification of the granularity in
the model matches both training requirements and the interfaces to the control system.
In addition, means must be provided for adding simple interface modules to tailoring
the model to the requirements of the control system. Such a flexibility is needed because
the configuration of the simulator will start before the control system configuration is
thoroughly tested. The simulator development project must thus be prepared to deal
with changes in the control system configuration. To ensure consistency between the
control system on the plant and that in the simulator all modifications must be done in
the model.

The HOPE simulator concept has been taken over by the AIM-1000 system vendor,
Simrad Norge, and is reused in the Norne project which is one of Statoil’s next major
field developments. Operator training for Norne will take place in the same location as
for Heidrun and the same HW will be used for both simulators. The Norne simulator
has added one major new feature to the HOPE concept, named Phantom PCU, which
is an AIM-1000 PCU connected to the simulator via MiTS. This PCU is completely
independent of the rest of the AIM-1000 configuration and is used to generate signals
required by the control system, but not available in the model. The configurable PLC
functionality available in the AIM-1000 PCUs yields a flexible tool for modelling
missing logics in the OTISS model.

Experience from the Norne project shows that current engineering databases do not
contain all the information required to configure a simulator. Important data such as
compressor and valve characteristics are typically missing. However, the current
standard on the engineering databases used to store the control system configuration
is fairly complete and allows direct import of configurations from the database to the
simulator.

Experience from use of the HOPE concept also indicates that the engineering model
should be configured by an integrated team including engineering company staff that
knows the process well. The fact that the model also will be used in the training
simulator should be accounted for in the requirements for the engineering model.
Likewise, the team doing the integration between the engineering model and the control
system should contain staff that also work directly with control system configuration.

Multi-purpose simulators

SINTEEF is currently working to extend the architecture of the HOPE simulator to
make it less dependant of the chosen model and control system vendors, and to allow
a more flexible and dynamic connection to computer based training (CBT) and other
3rd party tools (analysis, visualization, controller tuning, optimization, etc.). The goal
is thus to be able to easily connect one or more simulators to other relatively self
contained units. This work is currently in an early phase where we concentrate on user
requirements and possible technical solutions.

The main requirements to the SIMPLY" architecture are:

1. Tag based user defined data exchange.
2. Parallel execution of modules and synchronized exchange of data.

'SIMulator plug and PLaY.
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Figure 3. Data exchange synchronization.

3. Self-organizing connection setup. No centralized tag database.

4. Multiple fixed exchange frequencies.

5. A common and extendable command protocol.

6. A logical network with a common API to allow flexible interconnection of
modules and transparency of the physical network.

A tag in the SIMPLY architecture is the least uniquely named chunk of data that
can be exchanged between to SIMPLY modules. The content of a tag might thus range
from an atomic value to a complex data record. A module will typically subscribe on
tags from other modules and provide a set of tags other modules can subscribe on. Each
module thus has to have knowledge about the tags it receives from other modules.

Parallel execution of SIMPLY modules requires synchronization of the data
exchange at fixed intervals in simulated time, especially when the modules are executed
without time constraints on different computers. The simplest and most reliable solution
is probably to let a central coordination module handle this. Each module then sends
aready signal to the central coordinator when their computations have reached the next
data exchange time. The module then enters a wait state. The coordinator broadcasts
an acknowledge signal when it has received the ready signal from all modules. This
causes the computation towards the next exchange point of time to start in parallel in
the modules. This data and control flows are illustrated in Figure 3.

Self-organizing system setup is obtained by letting each module at connection time
broadcast a request for the tags it needs. The other modules which issue any of these
tags then answer and the subscriptions are established. The addition of a new module
also triggers the other modules to send a new request for the tags they eventually are
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missing and the new module establishes a subscription if it provides any of the requested
tags. Each module sends a ready to start message to the central coordinator when
subscriptions are established on all required tags. Finally, the central coordinator
broadcasts an enable compute message when all connected modules are satisfied. This
connection procedure thus halts when all SIMPLY modules have found suppliers of all
their required tags.

Different exchange frequencies make both the data exchange and the self
configuration more complex because frequency information has to be handled in the
set up procedure and tags with different exchange rates have to be sent in different
network messages. Different exchange and in particular non-multiple exchange
frequencies might also corrupt or make the numerics inside the modules more intricate.
Therefore, if multiple exchange frequencies are used, the longer exchange intervals
have to be multiple of the shortest exchange interval.

The command protocol in the SIMPLY architecture must include at least the most
common commands found in training simulators. These are: Run, Pause, Load initial
value, Store current state as initial value, Load scenario, Activate disturbance, Run in
replay mode. Commands generally have to refer to the same point in simulated time
in all affected modules. This can be achieved by letting the central coordinator work
as a command buffer. A command is thus first sent from one module to the central
coordinator where it is buffered until all modules are synchronized in time and then
broadcasted to all modules. It is thus up to each module to determine which commands
it shall react on and how it shall interpret the command arguments.

There are in principle two possible solutions to the last requirement. Either to
develop a specialized software layer on top of a standard network protocol such as TCP
or UDP, or to use one of the emerging object oriented integration mechanisms such as
CORBA or OLE. The underlying network mechanisms should in any case be hidden
from the application programmer by a well defined API. The main components in this
APl is illustrated in Figure 4. SIMPLY module consists of one NetNode object and a
set of Tag objects.

The NetNode object is responsible for receiving and sending net-messages and the
corresponding mapping of net-messages to commands and data. It also has to take care
of the synchronization with the central coordinator and to trigger the application side
when new data or a command needs to be processed. The Tag objects are the application
programmers interface between the application data and the NetNode.

This type of generic simulator architecture will allow vendor independent
integration of models and control systems, and it will provide a flexible test bed for
evaluation and verification studies of both control system and operational procedures.
Easy access and flexible integration will also open up for new applications of computer
based training. The need for specialised and expensive training centres will diminish
and there will be more room for self-training and simulator based on the job training.
The simulator will be available in the operational environment and can be used both
for scheduled training programs and for more ad hoc preparation for critical operations.

Standardisation efforts on product models

In order to get acceptance for a modular and flexible simulator architecture like
SIMPLY, it must take into consideration the ongoing standardisation efforts on product
models and information exchange.

The STEP community represents a major effort in establishing standards for product
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Figure 4. The SIMPLY module SW.

model data. These standards have traditionally focused mostly on mechanical design,
especially of ships, cars, planes, etc. However, there is now a strong activity on
establishing standards for formal description of process plants and exchange of process
engineering data.

On the dynamic modelling level, a number of high-level modelling languages like
Omola, Ascend and Model.La have been developed during the last years. Some
low-level model interface descriptions like DSblock exist for complex dynamic systems
allowing the exchange of models or model components between different modelling
and dynamic simulation environments.

The POSC/CAESAR project is a collaboration of Petrotechnical Open Software
Corporation (POSC) and the CAESAR Offshore Project to develop standards to meet
requirements for efficient electronic exchange and sharing of oil and gas facility life
cycle information. There are currently seven specifications that POSC supports. The
most important in this context are Base Computer Standards (BCS), Data Access and
Exchange (DAE) and Inter-Application Communication (IAC).

Process Data e Xchange Institute (pdXi) is another important step towards a standard
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for process information exchange. The purpose of pdXi is to develop and maintain open
approaches to exchange and manage process data between computer applications,
databases, and organizations within the process engineering discipline and with other
disciplines. Animportant result from pdXi is a set of data models encapsulating relevant
conceptual design information from operating companies, software vendors and
engineering contractors. The major components in the pdXi model are Planning Level,
Process Simulation, Physical Properties, Materials and Process Equipment Models. An
application has been submitted by the ISO/STEP organisation to provide an application
protocol (ISO 10303/AP231) Process Engineering Data: Process Design and Process
Specification of Major Equipment) for conceptual process engineering. See Baldwin
and de Almeida (1995) for more details.

Within the European ESPRIT program the KACTUS project (Esprit Project 8145)
has focused on knowledge modelling and reuse of knowledge from a more generic
perspective. Here, the oil production process has been described primarily from a
functional and operational point of view with emphasis on establishing formal
description of operational procedures and control system requirements and structures.
Some of the results from the KACTUS project are presented in (gérd et al. (1995).

These emerging standards will in the future enable different types of applications
to share data from a common engineering database because the structure and
interpretation of the data are documented and made available through the APIs. The
ability to connect dynamic simulators directly to an engineering database and product
models will simplify the task model building and updating. The plant topology and all
physical parameters are made directly available from the engineering database and the
simulator model will be updated with values which are consistent with the current stage
in the engineering project.

This together with a formalized representation of operational procedures and control
structures will cause the use of dynamic simulation and model based analysis to be more
firmly integrated into the engineering project. This will apply for both plant and control
system design as well as for the design of operational strategies and procedures.

Impacts on simulator usage
The engineering process

A flexible simulator architecture together with close integration between engineer-
ing databases and simulation will enable fast and efficient analysis and verification of
design decisions in a tight closed loop fashion. The turnaround time between analysis,
design decisions and verification will thus be curtailed. A consequence of this might
be that the traditional waterfall project model and the document producing organisation
of large engineering projects will be turned more towards a spiral development model
consisting of successive steps of requirement analysis, design and verification as
illustrated in Figure 5. The design process will be more directed towards database
completion than towards document production and the verification will rely on
simulation based testing of the design decisions stored in the database.

The final output of the engineering process might thus be to give the oil company
and the equipment vendors access to a standardized and verified database. This in
contrast to the current situation where the engineering projects result in large piles of
paper based documentation which has proved to be very hard to maintain and take into
efficient use in the production phase.
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Figure 5. The use of simulation in a spiral project model.

Operator training and training simulators

This type of generic simulator architecture will allow vendor independent
integration of models and control systems, and it will provide a flexible test bed for
evaluation and verification studies of both control system and operational procedures.
Easy access and flexible integration will also open up for new applications of computer
based training. The need for the traditional, specialised and expensive training centres
will diminish and there will be more room for self-training and simulator based on the
job training. The simulator can be made available in the operational environment and
used for both scheduled training programs and more ad hoc preparation for critical
operations.

A flexible simulator architecture and close integration with engineering databases
will allow more comprehensive use of CBT for process operators. The simulator
training can be enhanced with visualisation tools connected to the same product model
to show the physical location and appearance of, for example, the failed component
causing the disturbances in the simulation. Virtual reality capabilities may extend this
potential further into maintenance planning and preparation.

An open simulator architecture might also open new market segments for creative
software companies to develop CBT tools independently of the traditional model and
simulator vendors. There is currently a need for improved self training facilities and
especially technics for evaluation of the operators’ actions and problem-solving during
a training scenario.
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A close connection to product models and control system configurations will ease
simulator maintenance and ensure consistency between simulator and plant.

Process maintenance and operation

Easy access to a flexible simulator with well defined APIs and connection
mechanisms will increase the ability to improve process and control system design, to
identify bottlenecks and test and verify optimization strategies. The HOPE simulator
has, for instance, been extended with a general API that allows simple access for other
applications both to the command protocol and to process data within the simulator.
Further extension of the API will allow a flexible and dynamic connection for other 3rd
party tools for analysis, controller tuning, optimization, etc.
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