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Process Identification in On-Line Optimizing Control, an
Application to a Heat Pump
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The objective of this paper is to focus on on-line state and parameter estimation in
connection with on-line model-based optimizing control of continuous processes.
A nonlinear programming approach is used to estimate unmeasured state variables
and parameters in systems modelled by nonlinear differential-algebraic equations.
The nonlinear dynamic model is discretized by orthogonal collocation on finite
elements, and the moving-horizon approach is used to reduce the dimension of the
final optimization problem.

A priori parameter information is included in the minimization criterion (Bayes
estimation), and this makes the estimation problem more robust with respect to
missing process excitations and over-parameterization. The a priori parameter
covariance matrix is treated as a tuning matrix, where the diagonal elements can be
set acording to the amount of information in the measurements.

The updated steady-state part of the process model is used to optimize the
economic performance of the process, where new optimum set-points are calculated
for the regulatory control system. The sequential quadratic programming mcthod
(SQP) is used to solve this nonlinear optimization problem, where the objective
function, the model equations, and the operational feasibility constraints are solved
simultaneously in an “infeasible path” approach.

The identification and on-line optimizing control approach are illustrated with
an example from an experimental water-to-water heat pump unit.

1. Introduction

Increased energy and raw material costs have afforded a strong incentive to
engineers to develop well-posed control schemes which give greater economic return
in process operation. By continuously maintaining the plant at its optimum operating
condition, despite changing environmental conditions and equipment behaviour, it is
possible to achieve an important performance improvement. Continuous tracking and
driving the process to its best operating conditions when such changes occur are termed
on-line optimizing control. Design and implementation of on-line optimizing control
are strongly affected by the characteristics of the disturbances mentioned above.
Steady-state optimizing control, which will be focused on in this paper, is well-justified
if the disturbances are both relatively slow (compared to the process dynamics) and have
a significant impact on the optimum economic performance of the plant.

As reviewed by Arkun and Stephanopoulos (1980), various optimizing control
methods have been proposed. Existing methods fall into two categories which differ
in modelling complexity and implementational strategies. In the direct search methods
(Edler er al. 1970, Box and Draper 1968) the on-line optimization is done directly on
the process without explicitly using any process model. The changes in the manipulated
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variables or set-points are made at intervals sufficiently far apart to allow the process
to reach steady-state. The objective function is measured and its sensitivity is used to
readjust the manipulated variables or set-points. Direct search methods are easy to
implement and are suitable for processes with few degrees of freedom and rapid
dynamics. If disturbances arrive at a rate preventing the plant from reaching a
steady-state, then these methods are not applicable.

The indirect methods use an explicit process model, and the optimum operating
conditions for the process are determined based on this mathematical model and an
appropriate performance criterion. A rigorous model will generally represent the plant
better than a simple one. However, when it comes to on-line optimization, a rigorous
model may have the disadvantage of requiring significantly longer computation time.
On the other hand, if the employed model is too simple, it may not provide an accurate
enough representation of the plant behaviour and its optimization may result in
non-optimum, or in some cases physically infeasible operating conditions being
calculated. Several optimization techniques can be used to solve the nonlinear
optimization problem (Edgar et al. 1989). However, the sequential quadratic
programming method, which is used in this paper, seems promising in terms of
computational efficiency and robustness. In this method the performance criterion, the
steady-state model equations, and the operational feasibility constraints are solved
simultaneously in an “infeasible path™ approach.

Mismatch between model and plant can be due to a number of factors such as:
uncertain parameters, unknown state variables, unmeasured disturbances, error in the
model structure, and measurement noise. Proper adaptation schemes, where the model
parameters are udpated on the basis of recent measurements, need to be incorporated
into the model-based optimization control approach to minimize the plant/model
mismatch. There exist several approaches to cope with this problem, where all are
adaptive in nature but differ in their adaptation schemes. One approach is steady-state
identification, where the paramcters and unmeasured states in a steady-state model are
estimated at steady-state conditions. Different parameter estimation techniques such as
least square, maximum likelihood, etc, can be used to update the process model. Kim
et al. (1990) compared simultaneous and sequential data reconciliation and parameter
estimation for steady-state systems using nonlinear programming techniques. MacDon-
ald et al. (1988) did the same comparison but they used the algorithm proposed by Britt
and Leucke (1973). The steady-state identification method is subjected to steady-state
operating conditions, which necessitates a criterion for determination of steady-state
(Narasimhan et al. 1986, Narasimhan and Mah 1987). Two major drawbacks of these
steady-state identification methods are that they might be slow if one waits for the plant
to settle to steady-state after each change, and if the plant is subject to persistent
disturbances which prevent it from reaching any steady-state, they will not be sufficient.

Dynamic identification methods do not suffer from these drawbacks. Measurements
are used during transients and not only at steady-state to estimate state variables and
parameters. This makes the convergence to the optimum operating region faster than
the steady-state identification methods. An adaptive method is developed by Bamberger
and Isermann (1978) for on-line steady-state optimization of slow dynamic processes.
They identify the parameters of a discrete dynamic second-order Hammerstein model
of the process. The Hammerstein representation is linear in terms of the unknown
parameters of the system and on-line identification techniques such as recursive least
squares, approximate maximum likelihood, and instrumental variables apply. The
steady-state part of the model is used in the steady-state optimization to calculate new
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optimum values for the manipulated variables. Jang et al. (1987) use a similar two-phase
approach to control chemical processes at their optimum operating conditions. The first
phase consists of on-line state and parameter identification of an approximate nonlinear
dynamic process model. In the second phase, the optimum operating strategy is
determined by integrating and optimizing this identified process model over a selected
time horizon into the future. They use a moving-horizon identification method as an
alternative to the recursive identification method. The moving-horizon identification
approach has much in common with off-line identification, where the measurements
are treated like a batch for a given time horizon. In on-line identification this time
horizon is moving such that it always contains the most recent measurements. Benefits
with a moving-horizon identification method compared to recursive methods are:

® The method can handle nonlinear fundamental physical models.

® State variable and parameter constraints can easily be incorporated in the
identification problem.

® The identification problem can be reconfigurated on-line with respect to both
criterion and process model.

Jang et al. (1986) compare this nonlinear state and parameter estimation to the extended
Kalman filter, and they conclude that using a nonlinear programming approach is
superior in terms of response to changes in parameters and robustness in the presence
of modelling errors and strong nonlinearities.

Kim et al. (1991) investigate a sequential approach for data reconciliation and
parameter estimation, where the numerical integration of a nonlinear dynamic process
model is nested within a nonlinear programming algorithm. Liebman et al. (1992)
present a simultaneous approach for solving the general nonlinear dynamic data
reconciliation and parameter estimation problem in an on-line environment. They use
an “infeasible path” algorithm, where the model is discretized to form algebraic
equations which are imposed as equality constraints in a nonlinear programming
formulation. The discretization is accomplished using orthogonal collocation on finite
elements. Similar identification schemes are used in nonlinear model-predictive control
(Sistu er al. 1991, Eaton et al. 1990, Biegler et al. 1991). )

Identification is needed only when there is a substantial difference between the
output of the model and that of the process. Sistu et al. (1990) use a statistical
analysis-based approach to activate the identification scheme. Without a sufficient
amount of persistent excitations of the process so that enough process modes are
excited, the parameters of a dynamic model may become unidentifiable. If the process
is not naturally persistently excited by disturbances or manipulated variables, this
problem of near or true unidentifiability results in a model which no longer reflects the
process accurately (Jang et al. 1987).

This paper follows the approach of decomposing the identification and optimization
phase of optimizing control. To achieve faster convergence to the optimum operating
region, and to cope with persistent disturbances, a nonlinear non-steady-state process
modelis identified in the identification phase. The updated steady-state part of the model
is then used in the optimization phase, where the economic performance of the process
is optimized. Both the identification and the optimization problem are solved within an
“infeasible path” nonlinear programming approach. A priori parameter information is
included in the identification criterion in the identification phase, which makes the
estimation problem more robust with respect to missing process excitations and
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over-parameterization. The proposed approach is illustrated with an example from an
experimental water-to-water heat pump unit.

2. State and parameter estimation formulation

The objective of the model identification phase is to minimize the plant/model
mismatch by using state variables and model parameters as decision variables. The
general nonlinear dynamic identification problem can be written as:

min®(6, £o. §1, . .., §x) (1)
subject to ~
dx . . ~
& ~JEO.am,9@), 61=0 @)
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where @is an estimate of the true parameters, £ is an estimate of the true states, §; = j(1,)
is an estimate of the true measurements at time t;, £o is an estimate of the true
unmeasured initial conditions of the state variables, # is an estimate of the true
manipulated variables, and ¥ is an estimate of the true disturbances.

The above problem formulation represents a nonlinear programming approach to
model identification, and the identification criterion @ is not required to take any special
form. In a model based on “first principles” available a priori information is included
in the model in a natural manner. A priori parameter estimates and a priori estimates
of the initial conditions of the unmeasured state variables are frequently available. An
identification criterion which is based on this a priori information is developed in the
Appendix. The identification criterion can be written as:

N
D0, £0,F1, ..., 98 =310— 61" '[6- 6] + &El i — il 'yi— Jil (6)

where {)g is the a priori parameter covariance matrix, and €2, is the error covariance
matrix (measurement and model equation errors).

The a priori parameter information is advantageous due to several reasons. First,
initial parameter estimates are often available from off-line experiments or from
estimates in previous time horizons. Secondly, the inclusion of a priori information in
the identification criterion prevents the parameter estimation problem from becoming
ill-conditioned, i.c. the problem becomes more robust with respect to missing process
excitations and over-parameterization. Jang et al. (1987) use a least square criterion in
the identification scheme, and they experience that the parameters become
unidentifiable or nearly unidentifiable due to the lack of persistent process excitation.

The a priori parameter covariance matrix {2 can either be computed from old data,
or it may be treated as a tuning matrix (Ljungquist 1990). In the last case the parameter
covariance matrix diagonal elements are set according to the amount of information in
the measurements. If this information is significant due to natural excitations by
disturbances or forced excitations, the corresponding diagonal elements of the
covariance matrix are increased. This means that the confidence in the a priori parameter
estimates are reduced compared to the confidence in the measurement information.
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The moving-horizon approach is used to reduce the optimization problem to one
of a manageable dimension. The moving-horizon is defined from r, — NAt to the current
time ¢, where At s the interval at which observations are available. The horizon length,
NA:t, provides a means for tuning the performance of the identification scheme, but as
a general rule it should be in the same range as the largest time constant of the system,
i.e. to have enough dynamic information available for estimation.

2.1. Orthogonal collocation on finite elements

The optimization problem in the identification phase includes ordinary differential
equations, and this problem can be converted to an algebraic optimization problem by
discretizing the differential equations using orthogonal collocation on finite elements
(Cuthrell and Biegler 1987, Villadsen and Michelsen 1978). The resulting algebraic
equations can be written as equality constraints in a nonlinear programming
formulation. This formulation allows process constraints to be emebedded directly.
Lagrange interpolating polynomials are used in this paper to represent the continuous
state profiles. Let K represent the number of collocation points per finite element, then:

K
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where £k ((f) is a (K + 1)th order Lagrange polynomial at ith finite element; £, is
the polynomial coefficient at ith finite element and jth collocation point
([Ej1=( — IXK + 1) + j); Wy;(1) is a polynomial of degree K. Each finite element Ax,
is bounded by two knots, o; and o, 1, and 1;, 7 are the collocation points which are
the shifted roots of the orthogonal Legendre polynomial of order K.

The residual equations at the collocation points are forced to satisfy the model
equations exactly, and the polynomials between adjacent elements are forced to be
continuous. These equations can be written as:

K
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where W = dW/dr, Wi(t) = Ao, Wik, and ng is the total number of finite
elements. In this formulation the location of the knots can be based on the profile of
the measured data; “steep” regions are approximated using more elements, while “flat”
regions are approximated using less elements.

3. Heat pump control example

Heat pumps are used both in domestic and industrial applications, where heat is
extracted from one substance and transferred to a second substance at a higher
temperature. In domestic applications both the ambient temperature and the heat source
temperature have a significant impact on the optimum performance of heat pumps.
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expansion valve

Evaporator

Figure 1. Flow chart of the heat pump unit.

These disturbances are relatively slow compared to the heat pump dynamics, and justify
steady-state optimizing control. However, fast varying disturbances such as load
variations, on-off control, discrete final control elements, oscillations, etc, are also
present, and these will in some cases prevent the heat pumps from reaching any
steady-state.

The proposed identification and optimization approach were evaluated using an
experimental water-to-water heat pump unit at the Norwegian Institute of Technology.
The flow chart of the heat pump unit is shown in Figure 1. The heat pump unit consists
of a semi-hermetic variable-speed reciprocating compressor, a horizontal shell-and-
tube condenser including a subcooling unit, two thermostatic expansion valves, a dry
expansion shell-and-tube evaporator, and two variable-speed centrifugal water pumps.
The refrigerant is R-22. The nonlinear non-steady-state heat pump unit model which
was used for process identification and control is given in Table 1. The steady-state part
of the model is given in Table 2.

The heat pump unit regulatory control system consists of one temperature controller
(TC), two flow controllers (FC), and two degree of superheat controllers (thermostatic
expansion valves). The final control elements are the variable-speed compressor, the
variable-speed water pumps, and the two expansion valves. The controlled variables
are the condenser water outlet temperature, the water flow rates through the evaporator
and condenser, and the degree of superheat in the suction line. The main objective of
the regulatory control system is to maintain these controlled variables at their set-points.

The main objective of the heat pump unit optimizing control system is to find the
optimum set-points for the temperature controller and the two flow controllers in the
regulatory control system that minimize the total energy input (total electric power
input) to the heat pump unit. The solution to this optimization problem must satisfy the
heat pump unit load specification, and not violate the operational feasibility constraints.
Table 3 summarizes the steady-state heat pump unit optimization problem. The
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Table 1. Heat pump unit non-steady-state model

Evaporator (i =1, . . ., n.), where n. = 3:

dTwc- keAe 08 kseA : y
= Tl i b . s e . 3=
df pwevwecp,wgmr ( € Tml)+pmvwecPwV2¢ [%(Tsﬁ 1 + TSC;) T‘“ﬁ]
dT... kA . e -
o TS POSIT. — M 4+ T )] + 25 N
@ poens V= M T+ T+ Vil Ta -y~ Toy
dpe _ keAc(Unm8S1s 1 (Tye, — T&) = it — hy)
dt Vie(dpiildp J(hE — Wil — V,
Condenser (i= 1, . .., n.), where n.=2:
dT,. kA _n koeAse
F = My lT‘ls':m “ )+ ——— 3 Tsc r+ sei) T Lwe
di pwvmcmm ( Toc) pchucp.mw‘ (T + Toe) = Tov)
dec kscAsc 0B My .
— = HTwe; — W, + T )]+ —V.oo wiy— Jsc:
df ﬂscvscfp,scvg: [ i %( i— 1 sc.)] Vch“(T i—1 T i)
‘E _ keAc(Mncm, Ve 1 (Twg; — TE) + rir(hgis — b
dt Vie(dpitldp J(hiE — hi®) — V.
Subcooler:
dT koA, ksAs  cose
= - h{rj6 T::»._T‘». +"—'_Vg.;s Tssin+ sz _TM
dr pthw\_cp‘“' ( <) puVesCom [T ) N|
a7 kA . 1.
e "/2:3 Tws - T.s:.i +Tus F—V, T,-esin_Tss
dr PssV_qJ-'p.ss [ %( o =)l Ve (T )
dT. 1 kA
—: — p ' - T!i + z z F ?6 WS - 5.
a oMY gy T =T
Thermostatic expansion valves: Aheyy =0 Ty — T2 = const
o Hidhas — ho) hise — By Vofichval
Compressor: Pp=—" " p = h = ' fc’i vol
p © ﬁ: '?ﬁ_' = hdis - h.-sur. e frefvsuc
Pu . R Keeiao _ Ksc o
mps: Ppe "}:5‘6 JF'pc: =—V
Hpe Hpe

operational feasibility constraints are given in Table 4, and are based on the following
considerations:

® Protection against air leakage into the evaporator and compressor by keeping the
low refrigerant pressure above atmospheric pressure. A lower limit on the suction
pressure also prevents overheating of the hermetic motor.

® Protection against freezing of water inside the evaporator shell.

® Protection of the compressor against liquid entering from the evaporator through
the suction line. This constraint is implicitly taken care of by the two degree of
superheat controllers.

® Protection of the hermetic compressor motor and pump motors against overload.

® Protection against lubricant and refrigeration breakdown at the discharge side of
the compressor.
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Table 2. Heat pump unit steady-state model
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Table 3. Steady-state heat pump unit optimization problem

Given the disturbances Tie. and T in, and the load specification Ey,
Minimize J = Py + Py + Py

with respect 1o the freed variable vector [Tieon Vie Viel”
subject to the equations in Table 2 with updated parameters and

E]lp =V, pnucp.sl:{(TSC.Du = Twin) = Frefl[Tocou] Tsin] )
and the inequality (operational feasibility) constraints
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® Speed reduction is limited (25 Hz) to prevent compressor lubrication, oil return,
and motor overheating problems. The upper limit of compressor speed (75 Hz)
is set according to degradation of compressor valves and bearings performance.

® High pressure protection of the condenser and compressor crankcase and
housing.

3.1. On-line identification

The uncertain parameters of the steady-state heat pump unit model form the basis
for the selection of parameters for on-line estimation. An important part of the
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Table 4.  Operational feasibility constraints in the heat pump unit optimization

Evaporator
Variable name Constraint
Evaporator water outlet temperature Above 2-0°C
Evaporator pressure Above 1-1 bar
Pump motor electric power input Below 2-2 kW
Compressor
Variable name Constraint
Compressor motor electric power input Below 20-5 kW
Compressor motor frequency (25-75) Hz

Compressor discharge temperature

Below 105-0°C

Condenser
Variable name Constraint
Condenser pressure Below 23-0 bar
Pump motor electric power input Below 2:2 kW

269

identification problem is to decide which of these parameters that are candidates for
on-line adjustment. Table 5 shows the impact these parameters have on the optimum
operation of the heat pump unit. Each of the parameters were individually perturbed
and the model re-optimized for each perturbation. The inlet water temperature to the
evaporator and condenser, the water flow rates through the heat exchangers, and
the load specification were held constant, i.e. Ty;n= 10-0°C, Tyin=41-1°C,
Ve=18X10"*m’, Vi=14%10>m¥s, and E;,=80kW. The thermal
efficiency 5. and the isentropic efficiency 7;.. of the compressor unit have the largest
effect on the objective function. The thermal efficiency, the pump parameters, and the
heat-transfer related parameters in the evaporator and condenser have the largest effect
on the set-points. Several parameters have a significant effect on the operational
feasibility constraints. However, this only becomes important in cases where these
constraints are active or near active,

Two sets of parameters were estimated separately in the identification phase. The
first set consisted of the degree of superheat in the suction line (73, — T:*), and the pump
model parameters(x «/# p. and k /7. ). These parameters were calculated from the mean
values of the measurements in the most recent time horizon inserted in the respective
model equations. The second set of parameters consisted of the heat-transfer related
parameters in the evaporator (kA and k.A.), the evaporator shell volume (V,.), the
water side heat-transfer related parameter in the condenser (k..A..), the condenser water
volume (V..). and the isentropic, thermal, and volumetric efficiency in the compressor
unit.

The measurement vector y is divided into two parts:

y=[i..] (12)

y’:[Tac.oul Pe Pfc Tais Teon Pe Ts];r (13)
y”:[TSCJn V\{' Ppe Tsuc Vsc T.-:-c,in Ppc]T (]-4)

Only the first part of the measurement vector (y*) was reconciled, i.e. included in the

where:
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Figure 2. Evaporator and condenser outlet water temperature estimates to a step increase in
compressor motor frequency.

identification criterion given in equation (6). The corresponding covariance matrix is
given by:

Q,, =diag{0-15 0152 022 032 02¢ 005 03 (15)

The second part of the measurement vector (y”) was used as input variables to the
identification scheme.

The identification algorithm was tested under different experimental conditions, and
this case study shows the results from a step change in the compressor motor frequency.
The time horizon was set to 57-6 s and the sampling time Af was 7-2 s (N = 8). Seven
interior collocation points (K = 7) and 1 finite element (14 = 1) were used for each time
horizon. The time horizon movement was equal to N samples, i.e. no overlap between
two subsequent time horizons. The initial conditions for the measured and unmeasured
state variables were taken from measured values and previous time horizon estimates
respectively.

Table 6 shows the parameters which were estimated on-line together with their a
priori information. The parameters were assumed to be constant over each time horizon
and the a priori parameter information was not updated from one time horizon to the
next. Lower and upper bounds on the states and parameters were set according to

W - P. estimated 207 e P- estimated
—— P, measured a4 — Pp.measured
18
210 =
= 16 _E 20.5
= =
£ “-j qﬁc-v&’j & P
P = 19,0
12
18.5-]
10 T T T T T T T 180 T T T T T ™ T T i
L] 25 50 s woo12s a0 IS 200 228 L] 25 50 B0 125 150 15 00 225
Tme (s) Tirme (s)

Figure3. Power input to the compressor unit and condenser pressure estimates 1o a step increase
in compressor motor frequency.
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Figure 4. Measured degree of superheat in the suction line.

physical insight, and these bounds were easily implemented in the nonlinear
programming approach.

Table 6 shows the estimated parameter values in 4 subsequent time horizons when
the compressor motor frequency was stepped from 35 to 50 Hz at time 105 s. The water
flow rates through the evaporator and condenser were V,.=3-00 X 10~ *>m?/s and
Vie =145 X 10~ * m¥s respectively. Figure 2 and Figure 3 compare the predicted and
measured values of the evaporator and condenser outlet water temperatures, the
compressor unit power input, and the condenser pressure. The condenser pressure, the
condenser outlet water temperature and the power input to the compressor unit
increased, while the evaporator outlet water temperature decreased when the
compressor motor frequency was stepped from 35 to 50 Hz. The reconciled data
estimates in Figures 2 and 3 are in good agreement with the measured values, and verify
the predictive capabilities of the heat pump unit model. The evaporator shell volume
(Vi) and the condenser water volume (V,.) were only identifiable when the evaporator
and condenser were sufficiently excited. In the first and second time horizon only minor
dynamic information was present, but the inclusion of the a priori parameter information
in the identification criterion prevented the optimization problem from becoming
ill-conditioned. In the third time horizon considerable transients were present, and this
resulted in a slight over-estimation of the compressor unit isentropic and volumetric
efficiency in this time horizon.

Some minor smearing effects were present, where modelling errors and to some
extent measurement errors affected some of the state and parameter estimates. The
degree of superheat controllers were unstable and oscillated as shown in Figure 4. The
controller models were not included in the non-steady-state heat pump unit model and
represented together with the assumed steady-state compressor unit model the dominant
modelling errors. To reduce the smearing effects, the identification scheme must be
further decentralized, where only those measurements which contain “information”
about a parameter are used in the different identification criteria (Krishnan ef al. 1992).

Optimization problems based on orthogonal collocation on finite elements are often
sparse and lead to large-scale problems with few degrees of freedom. This case study
contained 121 independent variables and 113 equality constraints. The SQP algorithm
developed by Schittkowski (1985) was used to solve the optimization problem, and no
attempt was made to utilize the sparsity of the problem. To increase the computational
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Figure 5. Contour and constraint diagram for the steady-state optimization problem.

efficiency and robustness of such large, sparse nonlinear programming problems,
special purpose algorithms are needed. See Liebman er al. (1992) and Vasantharajan
et al. (1988) for a discussion. The decentralization of the identification scheme
discussed above will also reduce the dimension of the optimization problem, where
smaller problems are solved sequentially.

Figure 5 shows the constraint and objective function contour diagram of the
steady-state optimization problem (Table 3) with updated model parameters from the
fourth time horizon. The evaporator and condenser water inlet temperatures were 9-5°C
and 42-0°C, and the heat pump unit load specification (Erp) was 8-0 kW. The axis of
the diagram are the water volume flow rates in the evaporator and condenser. Figure
5 shows that the feasible region of operation was constrained by the capacity limit of
the pumps (g2 and go), the water freezing limit in the evaporator (g3), and the discharge
temperature high limit (g4). The calculated optimum power input to the heat pump unit
were 18-5 kW at V.. = 1-91 X 10~ % m*sand V.. = 1-31 X 10~ * m%s, and no operational
feasibility constraints were active at the optimum.

4. Conclusions

On-line steady-state optimizing control offers the prospect of improved economic
performance for a wide range of processes. This paper has followed the approach of
decomposing the identification and optimization phase, and has presented an algorithm
for solving the general nonlinear dynamic identification problem. The robustness and
the computational efficiency of the algorithm were increased by the inclusion of a priori
parameter information in the identification criterion, and by the utilization of a
simultaneous optimization and model solution strategy. Future research efforts will
focus on increasing the efficiency of the current algorithm, and to define tuning and
updating criteria for the a priori parameter information.
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Appendix
A stochastic approach to state and parameter estimation

The identification scheme developed below applies to state and parameter
estimation in nonlinear ordinary vector differential-algebraic equations. By assuming
an exact structural model, in which the true values (though unknown) of the state
variable £, the measurements §, the parameters @, and the unmeasured initial conditions
of the state variables £, apply exactly, we get:

dx -

— =TE@.a0),50), 6] (16)

£0=£(10) (17)
F(@) =zI[R(t), 4(1), $(r), 6] (18)

The probability distribution function (pdf) of the measurement €rTors,
£y, =y(t;) — ¥(t:), is given by p;(g,,). By assuming that the measurement errors in
different samples are statistically independent the joint pdf for N samples is given by:

N
P&y, ... £,) = _1_'_[1p.-(e,..) (19)

The assumption of an exact structural model is rarely true. This is due to neglecting
effects in the model formulation which result in errors in the model equations. The dual
nature of the model equation errors and measurement errors is ignored, and this implies
that information about the model equation errors must be included in p;(g,,). The
likelihood function of N samples becomes:

LGy, ....9n)= _l__[lP:U’-'—fi) (20)

where y; = y(t;) is the measurement vector at time t;, and ¥i=J(t;) is constrained by
the model equations.

The parameter vector is augmented to include the initial conditions of the
unmeasured state variables, i.e. € = [0 £, and the prior distribution of & is given by
po(3). Bard (1974) use Bayes’ theorem to find the posterior pdf:

P51 P =L, ... . Fn)po(D) 1)

where ¢ is a constant. In general the probability density functions are unknown, and
normal distribution functions are assumed. By assuming that errors in each sample are
independent and distributed with the same known covariance matrix Q,, the pdf
becomes:

pi(&y) = (2m) "2|€hy, |~ Pexp[ — 1 (i — 5Ty, ' (i — $)] (22)

where m =dim y;, and Q, = diag{o}, ... 2, }. By assuming that the augmented
parameter vector is independent and distributed with known mean ¢}, and known
covariance matrix £y, the prior pdf becomes:

po() = (21) "2|Qs| Vexp[ — 3(H— 3V Q5" (D — N (23)
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where p=dim#, and Q,=diag{c}, ... 5 }. Maximizing the posterior pdf is
equivalent to maximize its logarithm. The objective function to be minimized with all
constants omitted becomes:

D0, %0, 91, ... Fx) = 3[0— 612 '[6— 0]+ %o — xol" Qs [0 — X0}

N
+4> = 5:1°Q,, Iy — il (24)

i=1
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Nomenclature

Area, m’

Constant-pressure specific heat, kJ/(kg °C)
Energy, kW

Frequency, Hz

Process model vector
Inequality constraint vector
Specific enthalpy, kJ/kg
Equality constraints
Ohjective function

Number of collocation points
Constant

Likelihood function

Number of samples/observations
Number of finite elements
Mass flow rate, kg/s

Pdf or pressure, bar
Electrical power input, kW
Time variable, s
Temperature, °C
Temperature, K

Volume, m?

Volume flow rate, m*/s
Specific volume, m¥/kg
Disturbance vector
Manipulated variable vector
State variable vector
Measurement vector
Measurement model

=2

ZoTRSNSTIRSNS A

N xR TLTGNT TR IS

Greek Letters

Ul Efficiency

p  Density, kg/m’

AT Temperature difference, °C

At Time between samples/observations, s
Constant

Parameter vector

Augmented parameter vector
Covariance matrix

Identification criterion

Lagrange interpolating polynomial

SeoEA
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T Collocation point
o Finite element boundary
o  Standard deviation
€ Errors
Subscripts
c Condenser
dis Discharge
e Evaporator
el Finite element
exp Expansion
fc  Frequency converter and compressor
hp Heat pump
ic  Inlet condenser
ie Inlet evaporator
in Inlet
is Inlet subcooler
ise  Isentropic
Ic Liquid condenser
le Liquid evaporator
lig Liquid
oc  Outlet condenser
oe  Outlet evaporator
os  Outlet subcooler
out OQutlet
pc  Pump condenser
pe Pump evaporator
r Refrigerant
ref Reference
S Subcooled
sc  Secondary condenser
se  Secondary evaporator
suc  Suction
ss  Secondary subcooler
sw  Swept
ve  Vapour condenser
ve  Vapour evaporator
vol Volumetric
wc  Wall condenser
we  Wall evaporator
ws  Wall subcooler
0 Initial time or prior
Superscripts
sat  Saturation
Estimate

b

Posterior




