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Identification of Vibration Modes in a Spacecraft using
Nonparametric and Parametric Methods
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This article describes identification of vibration frequencies in a spacecraft. A
mathematical model of a simple spacecraft is built in MATLAG code, and after a
theoretical overview, this spacecraft model is simulated, using a torque excitation,
to generate time series measurements. These measurements are subsequently used
in the identification experiments. Parametric methods, here represented by AR,
ARX, ARMA and ARMAX, are the main concern, but nonparametric methods are
also discussed. )

1. Introduction

Future utilization of space is expected to require spacecraft consisting of large
structures. An increasing need for better pointing accuracy of antennas connected to
the space structures puts strong demands on the attitude control systems. Communi-
cation antennas already have to be pointed to within 0-03 degree RMS (Joshi 1989).
A high precision attitude control system does not only depend on the pointing accuracy
of the spacecraft body, but also on the displacement, due to the vibration modes of the
flexible structures. Damping/controlling the vibration modes with significant energy
will be necessary in high-precision attitude-control systems. Because of the light weight
of the large structures, vibration modes will tend to have low damping and low vibration
frequencies (natural frequencies) that will be closely spaced and are expected to vary
as much as 20-30%, due to splashing and consumption of rocket fuel. Some of the
vibration frequencies can also be expected to be lower than the bandwidths of some of
the control loops. Knowledge of the vibration frequencies is vital for the design of high
precision control systems, as is the need for identifying the vibration frequencies in
space.

This paper presents some identification methods that may be used to identify the
vibration frequencies in space. Measurements to be used in the identification process
are taken from a mathematical model of a spacecraft. The mathematical model consists
of a flexible Euler-Bernoulli beam connected to a rigid satellite core. The flexible beam
is forced to vibrate and a sensor located somewhere along the beam measures the
acceleration of the beam displacement.

This paper first considers nonparametric methods, which can be based on
Fourier analysis. Parametric methods are represented in this paper by the AR, ARX,
ARMA, ARMAX methods. Parametric methods were originally developed as batch
methods, but most batch methods now have recursive counterparts which also will be
looked at.
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Figure 1. Space structure model.

Section 2 presents the mathematical model of the spacecraft. Section 3 describes
identification of vibration frequencies using nonparametric methods. Section 4
describes identification of vibration parameters using parametric methods. The
properties of the nonparametric and parametric methods are demonstrated by
simulations in section 5. Conclusions are found in section 6.

2. Mathematical Model of the Spacecraft

The spacecraft consists of a flexible beam connected to a satellite body, see Figure
1. The flexible beam is modelled as an Euler-Bernoulli beam and the satellite body as
arigid body. The reason for this is that the satellite body has a very stiff construction
whereas the beam has a light construction and is highly flexible.

Mathematical Model of an Euler-Bernoulli Beam

The displacement-time function of an Euler-Bernoulli beam, connected to the large
rigid body and undergoing vibrations, is described by the differential equation (Rao S.
1990)

y(x, 1) aHy(x, 1)

EI—a—+p—g ~fxD (D

where p is mass/unit length, E is Young’s modulus, J is the moment of inertia and f(x, t)
is an external force per unit length of the beam. (1) is separable and has the solution

N
y(x. 1) = El W, ()g.(t) )

The displacement of the beam y(x, t) is a function of time and the distance x from the
fixed end (connection satellite core/flexible beam). N is the total number of vibration
modes, qx(t) is the time dependent vibration of mode n and W(x) is the mode shape
function of the n™ vibration mode. W,(x) may be found from ordinary textbooks on
mechanical engineering, for instance Rao (1990). Although a fiexible beam has an
infinite number of vibration frequencies, the number of frequencies is in this analysis
limited to four, given in Table 1.

Figure 2 shows the mode-shapes of the vibration modes of the flexible beam against
beam length.

A spacecraft normally consists of one or several flexible structures connected to a
rigid core. Flexible structures connected to the same rigid core often have common
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Figure 2. Mode shapes of the vibrations.

Table 1. Frequencies of beam vibrations

Frequencies of the beam vibration
Modes 1 2 3 4
Frequencies (Hz) 0-51 3-22 3-50 9:02

frequencies. In order to separate those vibrations which may differ in amplitude,
frequency identification is performed separately for each flexible structure, i.e. one or
more sensors are located on each flexible structure. One flexible space structure is
therefore sufficient to obtain a realistic identification case. The chosen flexible beam
may represent a flexible space structure with a small modification. The vibration
frequencies of a simple flexible beam are widely spaced, whereas a space structure
normally has two or more closely spaced frequencies. The mode shape and frequency
of mode 3 in the beam model is modified such that mode 2 and 3 become closely spaced,
see Table 1 and Figure 2.

The performance of the attitude control system (i.e. the pointing accuracy) will
depend on how many of the vibration modes, with significant energy, that are
damped/controlled. Four vibration frequencies, as used in this paper, are expected to
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Figure 3. Time-space plot of vibration mode 1.
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give a simple, but realistic model.

Figure 3 shows the time-space plot of the beam vibration due to mode 1. The
damping, which normally is in the order of 0-001, has been increased to 0-1 in order
to aid visualisation.

Mathematical Model of a Rigid Body

The flexible beam is fixed to the satellite core, which is considered to be rigid.
Assuming for the moment the flexible beam to be rigid, the equations of motion referred
to a body fixed frame of reference (x, y and z in Figure 1) consist of the moment and
translation equations shown in (3).

(JB +J’5)c‘o+mgrOXa0+mgrE><ao=Tg+Tg (3)

(mg+mg)ﬂo_mgroxm—mErEch:FB+Fg

T f T
rﬂ:[+g 0 0], r5=[§ 0 o]

Jg and Jg are the moments of inertia of the satellite body and the beam, respectively,
o is the angular velocity of the frame (x, y, z) in Figure 1 referred to inertial space. Mg
and mg are the masses of the satellite body and the beam, respectively, a, is the
acceleration of the frame (x, y, z) referred to inertial space. Ty and Tk are the external
moments acting on the satellite body and the beam, respectively. Fs and Fg are the
external forces acting on the satellite body and the beam, respectively.

where

Complete Mathematical State Space Model

So far the beam has been assumed to be rigid, but this is not quite accurate and the
vibrations in the flexible beam modify both the moment and force equation. The
deflection of the vibrations of the flexible beam modifies the translation equation in (3)
with the term (De Lafontaine 1990)

4
Fx,1)= Z] Pr(X)Gn(t) ()

where p, is called the momentum coefficient and indicates to what extent mode n
participates in the translation of the body. The force due to the vibrations of the beam
may be substituted into the translation equation of the rigid body to yield the complete
translation equation of the spacecraft, viz.
4
(mp+me)ao—mproX & —mereX &+ 2, puin=Fs+ Fe o)
n=1

The deflection due to the vibrations also influences the moment equation of the
spacecraft with the term

4
T,(x, 1) = 21 hn(x}‘.in(’) ©6)

where h, is called the angular moment coefficient and indicates to what extent mode
n participates in the rotation of the body. Substituting (6) into the rigid body moment
equation gives
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4
J(,_U"'mgr()xau"'mgrgxao_'_EhnénzTB-FTE (7)

n=1

General Equations of Motion
(6) and (7) may be put into a more general form of equation of motion:

Mx+Dx+Kx=U (8)

where M is the mass matrix and may be written in the form of (9), D is the damping
matrix and may be written in the form of (10), K is the stiffness matrix and may be
written in the form of (11). U is the external forces and moments. The state vector x
is defined as:

x=[0:0,0,xy291429594 0:0,0.%yZ g1 G2 G3Gal"

Jxs, Jys, J.s represent the moments of inertia of the rigid body. J.e, Jye, J.& represent
the moments of inertia of the beam. Mg and mg are the masses of the rigid body and
the beam, respectively. H and p are the angular moment and momentum coefficients,
respectively. Z,~Z., are the damping coefficients and £, — €, are the mode frequencies.

Jp+ie 0 0 0 0 0 0 0 0 0]
0 Jatls 0 0 0 mgg+m£; 00 00
0 0 latle 0 —mibd mE; 0 by ha b b
0 0 0 My + Mg 0 0 0000
M= 0 0 _msg+fﬂ£% 0 Mg+ Mg 0 Py Py Piy Pav
0 m;; :-m._; 0 0 0 mg+mg 0 0 0 0
0 0 hyy 0 Py 0 mg 0 0 0
0 0 ha, 0 Py 0 0 m 0 0
0 0 hh 0 pg}- 0 0 0 Mme 0
0 0 hay 0 pay 0 00 0 mg
&)
(000000 © 0 0 0 ]
000000 0 0 0 0
000000 0 0 0 0
000000 0 0 0 0
000000 0 0 0 0
D=| 000000 0 0 0 0 (10)
0000002ZQms 0 0 0
000000 0 221921'?15 0 0
000000 0 0 22.Qum; 0
000000 0 0 0 2Z.Qumel




236 A. Skullestad

oooo000 ¢ 0 0 0
000000 O 0 0 0
000000 O 0 0 0
000000 O 0 0 0
000000 O 0o 0 0
K={ 000000 O 0 0 0 (1)
000000 Qimeg 0 0 0
000000 0 Qimg 0 O

000000 0 0 Qme O
L 000000 0 0 0 Qimel

It is also possible to bring the system into a standard state space form by premultiplying
with the inverse of the mass matrix on both sides, viz.

x=Ax+ Bu
y=Cx+ Du

A=[—M0'K —MI' ‘D] B=[%]

(12) represents the complete mathematical model of the spacecraft assuming four
vibration frequencies and is simulated using different types of excitations, as described
in section 5. An accelerometer is connected to the end of the beam and represents the
measurements used in the frequency identification.

(12)

and

3. Identification of Vibration Frequencies using Nonparametric Methods

Nonparametric methods are based on Fourier analysis and identify the frequency
contents in a signal, i.e. estimate the power spectral density (PSD) of a signal. Spectral
estimation may be divided into two main groups:

* direct methods

* indirect methods

Each main group can be further subdivided into different methods. In this paper we will
only look at the following direct methods: the Periodogram and the Welch method.

Direct methods are based on the definition
1 M
= lim — J2Nfk|2
Pyy(H=lim Elpm] X y(kye 2] a3)
M-«

where y(k) is the measurement and Pyy(f) is the PSD.
Using the Wiener-Khintchine theorem, an alternative formula for the PSD is given
by

Py(N= 2 ryll)e M —12<f<112 (14
k )
where 1,,(k) is the autocorrelation.

Periodogram
The periodogram spectral estimator relies on the definition of the spectral density
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given by (13). By neglecting the expectation operator E and using only the available
data [y(0), y(1) . .. y(N — 1)], the periodogram spectral estimator may be defined as
(Kay 1988)

I. N—1 .
Pper(f)= | X y(k)e 722 (15)
N
An alternative formula for the estimated periodogram based on (14) is
N—1
b= 2 Bylk)e PV (16)
k= —(N-1)

where 7,,(k) is the estimated autocorrelation.

Before deciding to use a PSD estimator, it is natural to ask: “What properties does
this method have? Does it give accurate estimates, etc?” One important property is that
the estimator should be consistent. In the general PSD case this means that

P(H=Py(f) as N=

i.e. the estimated PSD becomes the true PSD as the number of measurements N tends
to infinity. Consistency requires that the bias — 0 as N — o and thus the expectation
or mean of the estimated PSD becomes the true PSD. In addition a “reliable” estimator
requires a low mean-square error (MSE). If the bias —0, the MSE of the
estimator — the variance. Hence, a PSD estimator is described by its expectation and
variance.

The expectation of the periodogram is given in (17).

. N—1 k _
E[Ppt‘r(f)] = . _}(}v_ . [l - %]r}‘}'(k)e ~fonfk
N-1
= Y walkn,k)e a7)
k N-D)
= Wa(f)*P),(f)

"Wi(f) is called a spectral window and is the Fourier transformation of the lag window
wg(k). From (17) it may be seen that if wy(k)—1, then E[P,.(N)]— P, (f).
Furthermore, wg(k) > 1 as N— oo,

Thus the periodogram is biased in general for finite data records, but its expectations
tend to the true value as N— . It can be shown that the variance is given by (Kay
1988)

sin2[1fN ,
Nsin2 l'Lf] ] (18)

(18) shows that the variance is of the order P2, i.e. it is constant and independent of
N. Since the periodogram is in general biased and the variance does not decrease as
N — o, the periodogram is not a consistent estimator. However, the periodogram has
some desirable properties and some unwanted properties, summarised below.

Var[B,. (N = PL(NN + [

* Noisy measurements often show large fluctuations.
* Due to large sidelobes, weak signal components may be masked by strong signal
components.

# in (17) denotes the convolution.
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* Good resolutions for signal components with nearly equal amplitude.
* The resolution is = '/n, and no other nonparametric method can equal this.

Welch Spectral Estimator

Welch divides the available data into K independent data sets (segments) of length
L, and uses a lag window for each data set. The data sets overlap. The lag window
reduces the sidelobe level. By overlapping the data sets, usually by 50%—-70%, some
extra variance reduction is achieved. Welch’s spectral estimator may be written (Kay
1988)

| K—1 N
Py(h=% 2 PP (19)
m=0
where
1 L1 .
(AT 8 2 — j2Ifk|2
PP =gl 2 wikyyme |

K is the number of segments, L is the length of each segment, w(k) is the lag window
of length L, U is averaging of the lag window, y.(K) is the measurements and N is the
total number of data. The expectation may be shown to be (Bge, 1991)

ELPW) = TP WGP 20)

The variance is roughly inversely proportional to the number of segments

Var[Pw(f)] = ;Pﬁ. (21)

Welch’s spectral estimator is a consistent estimator with the following properties:

# Probably the most commonly used nonparametric method today.

# Welch'’s spectral estimator is a consistent estimator.

* QOverlapping data sets reduce the variance by less than 1/K, if no overlapping is
used the variance is reduced by 1/K.

# Reduced resolution due to the windowing.

4. Identification of Vibration Frequencies using Parametric Methods

Parametric methods identify unknown parameters in a chosen mathematical model.
Among the best known models are the AR (autoregressive), ARX (autoregressive with
external input), ARMA (autoregressive moving average) and ARMAX (autoregressive
moving average with external input). The procedure with parametric methods is as
follows:

a. Choose a mathematical model for the process to be identified.
b. Choose an identification method that suits the chosen method.

Different identification methods are normally available for each model; the simplest and
fastest methods are the analytical methods, i.e. parameter estimation without using a
numerical search procedure. Analytical methods may be suboptimal, however,
depending on the SNR (signal-to-noise ratio), they often give accurate parameter
estimates and they are fast. Numerical search methods may also be used to estimate the
unknown parameters. Ljung (1987) claims that on the average a Gauss-Newton
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numerical search method performs best among the numerical methods. Numerical
search methods are slow but they may give more accurate parameter estimates than
analytical methods, especially for medium high and low SNR measurements. Definition
of medium high and low SNR measurements will be given in section 5.

AR (AutoRegressive) Methods

AR methods are a class of methods used to determine the unknown parameters in
an AR model. Before describing AR methods, the AR model will be given.
An AR model is simply a difference equation of the following form

yky+taytk— D +aytk—2)+...a,ytk—p)=-e(k) (22)
or in the more compact form
A(g y(k)=e(k) (23)
where
Alg D=1+aqg "+aq '+...a,q "

and y(k)is the output at time k, whereas e(k) is the disturbance or residual and is assumed
to be a zero-mean stochastic process with a rational spectral density.

The parameters in the AR model may be identified using different methods such
as linear regression, least squares estimates or prediction error methods.

Linear regression
The linear regression method for the AR model may be expressed as:

y(k) = ¢"(k)D + e(k) 24)
where
k)= (—yk— 1), —yk=2),...—y(k—p)’
0=(ay, a, ... a,)’

and where p is the number of unknown parameters. Ignoring the noise term e(k), which
normally is unknown, and performing a small modification of (24) we obtain

y(k) = @ (25)
and
@O = (pk)", ptk + 1Y, . .. pN))

(25) may be written in component form as

y(k) ~ylk—1) —yk-=2). . —ylk—p) a

yk+1) =yk) —yk=1) .. —yk+1-p)||a:
: = . : +* : . (26)

y(N) —y(N—l) —y(N -2) - —y(ﬁ—p) a,

(26) forms a set of linear equations and the parameter vector 6 can be determined by
taking the inverse of @, see (25) or (26). Otften (26) consists of more equations than
unknown parameters and can be solved as a set of overdetermined equations.
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Least Squares Estimate

Least squares estimate normally introduces the equation error and form the
quadratic loss function shown in (27).
A
= — 27
LOY=y 2 5 &'K) 27)
where the equation error is: e(k) = y(k) — ¢"0.
The parameter vector which minimizes (27) is given by
0= (@"®) 'O7Y (28)
where
Y=L y@)...y(WY"

If @ is a NXp matrix of rank p then the expression (®'®) '®” in (28) is the
pseudoinverse of ©.
(28) requires an inversion and a model form that may be easier to solve is (29).

0=1y é{ PN T i k) 29)
(29) may be viewed as a correlation function and may be easier to implement than

(28)1;‘[31131 text books give (29) in another form
R,0=r, (30)

known as the normal equation, where

l N
R, =5 2 $()d" (k)
k=1
l N
M) =5 2. ¢kyy(k)
k=1

Prediction Error Methods

Prediction error methods can be considered to be a generalization of the least squares
methods. The parameter estimates are determined by minimizing a suitable loss
function. Many estimation methods make use of the prediction error to estimate the
unknown parameters, and the quadratic loss function (27), shown for the LS case, is
often used with different modifications. However, a more complex loss function may
also be used (Soderstrom et al. 1989).

Autocorrelation Method

The autocorrelation method can be intepreted as a prediction error method where
the AR parameters are estimated by minimizing the loss function (Kay 1988)
l [=d
LO=5 2 letf (31)
k= o
where N is the number of measurements. The prediction errors are calculated from

e(k) = y(k) — y(k)
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P

Yk =2, aytk—1)

=1
The loss function (31) is minimized by differentiating with respect to the parameter
vector and the solution may be expressed in matrix form (Kay 1988)

F@)  F(—1) .. F(—(—-1)|]a Fry(1)
A,(1) tr(0) .. A(—(p—2)|]|a 7,(2)
. . .. . . 1= ] (32)
F»'(P -1 PYY(P 2= = fyy(o) aAp ?yy(P)
where the covariance elements are estimated from

PNk
— Dy(+k or k=0,1...
F}:y(k)={N 2 yapatn  f p
A(—k) for k=—(p-1),-(p-2)... 1
Only y(1) # 0 is used in calculating #,,(k).
It is also possible to estimate the AR parameters directly from the data matrix as
described in (26) and in that case (26) takes the form

0 . . 0
—y(0) 0 - 0 - _
—y(1) -y .. 0 a, ¥(0)

. . Y . é> y(1)
—-yp) —yp-D .. - y(0) . |= ¥(2) (33)

—y(!;J—l) —y(f.\f—Z) —y(N;p—l)
0 —yWN-=1 .. —yWN-p) |Lapl LyW+p—1)]
0 0 .. —yiN—1)
or, more compactly
Ya=y (34)

Therrien (1992) makes use of the data matrix Y and formulates an equation known as
the Yule-Walker equation, viz.

S
¥'y)a= [O] (35)
S is the estimate of the sum of the squared errors and is normally calculated
simultaneously with the d parameters. The Y- and é-matrices in (34) and (35) are equal
except for the first row in the Y-matrix of (35) which is removed, whereas
GA= [1, ﬁ:, n’jz, - GAP]T.

Summary of the autocorrelation method
* This method is also called a windowed method because it replaces the unknown
initial values by zeros.
#* The windowing reduces the resolution.
* This method is not recommended for short data records.
* Poles close to the unit circle decrease accuracy of the parameter estimates.
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Covariance Method
The covariance estimator may be found by minimizing the loss function (Kay 1988)

N~1
L(0) = N"]—_p 2 ler (36)
=P

where g(k) is defined in (31).

Note that the only difference between the covariance method and the autocorrelation
method is the range of summation. In the covariance method all data points needed to
estimate the parameter vector have been observed, and no zeroing of data is required.
The solution to (36) may be written

(1, 1) 7,(1, 2). . Fw(lsp)) a 7, (1, 0)
F.1'::(2v 1) ?,-,-(2, 2) .. Fw(z:p)) ds F”.(Z, 0)

37)
P, 1) £,(p,2) . . B,(p.p) a, A,(p, 0)
where
1 N
Pl k)= Ep Y=y —k)

It is also possible to estimate the AR parameters directly from a data matrix given by
(38).

—yp—1) —y(p-2) .. —y(0)
—y(p) —y@E-1 .. —y(1)

1 y(p)
2 Yyt
.= : (38)

2 R

—y(N-2) —yN-3) .. —y(v—1-p)] La,) Lyav—1)

From (38) it is easy to see that the covariance method makes use of measured data only.
It is also possible to form a Yule-Walker equation like that in (35).

Summary of the covariance method

* The estimated poles, using the covariance method, are not guaranteed to lie within
the unit circle.

* For data consisting of pure sinusoids, the covariance method may be used to
extract the frequencies perfectly.

Modified Covariance Method or Forward-Backward Method

This method provides twice as much data upon which the identification can be based
and thereby reduces the variance. The modified covariance method identifies the AR
parameters by minimizing the average of the forward and backward loss function (Kay
1988)

LO) =5 U(0) + L) @9
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where Nel
1 - p
HO)=5— > b+ alyk— D
Pi=p =1

1 N—1-p P .
LO=g— 2 b®+23 aOyk+Dp
P k=0 =1
As for the covariance method, summations are over the prediction errors that involve
measured data samples only. The solution for the modified covariance method is given
by (37), but the definition of 7,,(j, k) now takes the form
N—1-p

s e LN g
Pl B =5y (Z Y=y =Rt 3y +)yn + )

The AR parameters may also be calculated directly from a data matrix. This data matrix
1s composed of both the forward and the backward data matrix and has the form

[ -1 —yp-2) —y(©0) | [y ]
—y() —ylp—1) —y(1) . y(pt1)

» . ' ag .

. . . . a, )
—}'(N—2)* —y(N—3) R —yYWN—-1—p) yWN—1)
“YWN-p)  —yW-ptly .. —yWN-—1y =[yW=p—1y

—y(N—p—1) —yWN-p) —y(N—2") ; yIN—=p—2)

. . . L p. .

L Sy Q) ey Loy

(40)

where y( )" for complex data is the complex conjugate and y( )" for real data = y( ). It
is also possible to form Yule-Walker-like equations from the forward-backward data
matrix as shown in (41), (Therrien 1992)

Yy +¥7)a= [g’“”] 41)

0

The backward correlation matrix ¥7¥” is the reversal of the forward correlation matrix
Yy,

Summation of the modified covariance method

x The modified covariance method is also called the forward-backward method.

* Due to the calculation of both a forward and backward estimator, which involve
more data, the modified covariance method gives accurate estimates.

* The modified covariance method does not guarantee the estimated poles to lie
inside the unit circle, but they usually do.

* The modified covariance method is suitable for sinusoidal components in white
noise.

# The method can be recommended for short data records.

ARX (AutoRegressive with eXogeneous input) Methods
AR methods identify parameters in a time series model, i.e. a difference equation
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without deterministic inputs. It is possible to modify that model to include deterministic
inputs, which leads to an ARX model. Methods to identify parameters in an ARX model
are called ARX methods. Since an ARX model is an AR model with deterministic input,
(22) modifies to

yk) + ayytk— D) +...a,ytk —p)=buk— 1)+ bou(k—2)
+ .. .baulk —m)+e(k)
or, more compactly
A(g™"y(k) = B(q Yu(k) + e(k) (43)
where
A(g HV=1+ag " +aqg *+...a,g"
B(g )=big '+byq *+...bug "

The unknown parameters in the A(q~") and B(q~ ') polynomials may be found by
utilizing many of the same identification methods as described for the AR model, but
with some modifications. The A(q ') and B(q ") polynomials can be determined from
the linear regression method described for AR models, but with the following
modifications:

pl)=(—yk—1)...yk—p)uk—1)...utk—m)"

, 44
0=(ar, az,...ap, by, ba,...by)" @
Componentwise (26) will modify to
é |
é
—yk=1) —yk=2) . -—yk-p) wk-1)uk-2). ulk-m) - y(k)
—yk)y —ytk=1) . —yk+1-p) utk) uk-1).uk+l-m)|| 4, yk+1)
. i i . F b - . b| = ’
—yN-1) -yN-2). -—yWN-p) uN-1)uN=-2). u(N—m) b, y(V)
by

(45)

It is also possible to apply either a modified autocorrelation or covariance method or
other methods which can be solved both for the é and the b parameters.

Instrumental Variable (IV) Methods

The least square method is consistent as long as the disturbance is white. It is,
however, possible to make a consistent LS estimator even if the disturbance is not white.
This leads to the IV method which may be written as

N N

~ 1 |
== 2"t ' > z(ky(k)] (46)
Nic=l Nk— i

The z(k) matrix is called the instrument and should be uncorrelated with the disturbance.
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IV methods are usually applied in connection with ARX models with non-white
disturbances.

ARMA (AutoRegressive Moving Average) and ARMAX (AutoRegressive Moving
Average with eXogeneous input) Methods

These methods identify parameters in ARMA and ARMAX models. These models
handle processes which cannot be modelled as pure AR or ARX. Since nearly all data
are corrupted by some amount of measurement noise, the nonlinear search methods used
for ARMA and ARMAX are often the appropriate ones. Unfortunately, no fast and
effective method for estimating parameters from these nonlinear methods exist, and as
an alternative, many suboptimal but easily implementable algorithms have been
proposed. Most suboptimal methods make separate estimates of the AR and MA
parameters. Typically, the AR parameters are estimated first and then used to estimate
the MA parameters. The difference equation of an ARMAX model may be written as

yk) taytk— 1) +...a,y(k—p)=buk— 1)+ byyk —2)
+. . bau(k—m) + e(k) 47
teetk— 1) +....cytk—q)
(47) can be written more compactly as
A(g "yk)=B(g Yuk)+ C(qg "e(k) (48)
where
A(g7')=1+ai1q " tag > +...a,qg7"
B(g W=big "+byg *+...b,g "
Clg N=14+cig "+cag2+...coq7?

An ARMA model is the special case of (47) or (48) where the deterministic input u(k)
is zero.

Instead of estimating ARMA and ARMAX parameters by suboptimal analytical
methods, it is common to estimate all parameters directly from a numerical search
routine. Numerical search methods may give better results than the previously described
methods (Ljung 1987), but, unfortunately, the computation is much higher. Numerical
iterative search methods are often used in connection with prediction error formulations.
Soderstrom et al. (1989) show that the results of a certain prediction error method (PEM)
become equal to the results of the maximum likelihood (ML) method when the
disturbances are Gaussian distributed.

Ljung (1987) shows that the solution of a numerical search routine which minimizes
the quadratic loss function given in (27) may be written as

05 = 0 — k(R LD (49)
where
oo _ denotes the i" iteration
Ly(65) is the gradient of Ly(6)
Ry modifies the search direction

uo is the step size
R and Li(0%) together determine the search direction whereas ) denotes the
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numerical step length. The gradient of the performance criterion, (27), may be
calculated from

. 1 X
LiO)= -5 2 Pek) (50)
k=1
Soderstrom et al. (1989) show that the gradient matrix ‘¥ can be calculated from
d
Yk)=-etk)= —(pk—1)...ysk—p)—ugdk—1)... —ugdk—m)
do 1)

—gfk—1)... —edk—q))
where ye(k), ugk) and edk) are y(k), u(k) and e(k), respectively, filtered by 1/C(q M,
ie.,
1

)= i)
uyk) = ﬁum
e/(k) = C(; o)

If the Gauss-Newton method is used, (Ljung (1987) recommends Gauss-Newton), the
following form for Ry may be used:

N
Ry= > WOPT() 52)
N &

Recursive Identification Methods

Previous sections have dealt with different batch methods, also called off-line
methods. These methods require that all data is recorded in a batch and, hence, cannot
be used in real-time applications. Real-time (on-line) methods can be used in real time
applications and may also be used to track time-varying parameters. Many recursive
identification methods can be derived as approximations to batch methods. The results

are, however, often a reduction in accuracy (Landau 1990). Recursive methods handle
both AR, ARX, ARMA and ARMAX models.

Recursive Least Squares with Forgetting Factor
The loss function is modified as (Ljung 1987)

k
L(O)= Y 2 &¥k) (53)
& l

where 1 is the forgetting factor, usually taken to be between (-95 and 0-99.

With increasing k the information in the previous data is forgotten. The smaller 4
is the quicker the information will be forgotten. Performing the minimization of (53),
(Ljung 1987). we obtain

0=0(k— 1)+ K(k)e(k) (54)

K= P= Do)

(55)

i+ @"(k)P(k— Do(k)
sk) = y(k) — " (k)0 (k — 1) (56)
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The forgetting factor makes the RLS algorithm capable of tracking time-varying

parameters. Another popular recursive identification method is the pseudolinear
regression.

Pk—1)
P(k)=

(57)

Recursive Pseudolinear Regression

This method is also called the extended least squares or the approximate ML method
and the formulae are given by Sodersttom et al. (1989), viz.

0=0k— 1) + K(k)ek) (58)

e(k) = y(k) — o (k)0(k — 1) (59)
— pa— 1y PE— D" ()P —1)

PO = P D) = TPt — Do) (©0)

Kiy= P& Do) ©1)

L+ ¢"()Pk— Do(k)

5. Simulation Results

The spacecraft model described in section 2 is simulated. The spacecraft is
composed of a flexible beam connected to a rigid satellite core. The flexible beam is
modelled as a4-mode Euler-Bernoulli beam and the vibration frequencies of the flexible
beam are given in Table 1. The goaliis to identify these frequencies directly or to identify
parameters so that the frequencies can be determined. The process is limited to contain
measurement noise only and the measurement noise is assumed to be white, i.e.
Gaussian distributed white noise. Nonparametric methods estimate the power spectrum
and, thus, estimate the vibration frequencies directly. Parametric methods identify the
structure parameters from which the frequencies may be calculated. The sample interval
was fixed to 0-04 sec. during the simulations. All simulations are performed using
MATLAB.

Excitation of the Structure Vibrations

Disturbances or attitude corrections may force the flexible parts of the spacecraft
to vibrate. Although different types of excitations may be considered, for the
simulations reported here, the excitation was to be limited to a unit step torque. The
torque works around the z-axis (cf. Figure 1). An impulse torque and a unit step torque
give very similar vibration patterns (Skullestad 1995). It is important that the excitation
signal excites all vibration modes to be identified, as those vibration modes which are
not sufficiently excited (persistently excited) cannot be identified.

Measurements

The vibration modes/parameters may be identified using measurements from
different sensors. An accelerometer, a sirain-gauge, or a remote attitude measurement
sensor are all very possible sensors. In this paper an accelerometer will be used as the
measurement sensor. Different levels of white measurement noise are added to the
accelerometer signal. The level of the measurement noise will be denoted by the
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Figure 4a,b,c,d. Measured acceleration without noise.

standard deviation. The spacecraft is excited by a unit torque around the z-axis. If all
measurements are considered to be noise-free, Figure 4 shows the total acceleration at
the end of the beam due to all vibration modes, and in addition the acceleration due to
the individual vibration modes 1, 2 and 4. The acceleration due to vibration mode 3 is
similar to vibration mode 2 and is not shown.

The noise and error-free accelerometer output is numerically equal to the second
derivative (with respect to time) of the displacement of the beam at the accelerometer
location mulitiplied with a scaling factor Kacc, viz,

2 4 2
() = ma puix, £y Ko S °qa(1)

ar e ar
Gaussian white noise is added to the measurement shown in figure 4a and the resulting
noise corrupted measurement signal is then considered to be the basic input for the
identification methods that have previously been described.

W.(x) (62)

5.1. Frequency Identification using Nonparametric Methods

Nonparametric methods estimate the power spectral density (PSD) directly. The
three most important external parameters which mainly determine the accuracy of
the identified frequencies/parameters are the level of the measurement noise (the
signal-to-noise ratio (SNR) of the measurements), the excitation (all vibrations of
interest should be sufficiently excited (persistently excited)) and the length of the data
record. Table 2 shows the SNR of each individual mode acceleration using different
levels of measurement noise. 100 pg measurement noise is referred to as a low SNR,
10 pg as a medium high SNR, and 1 ug as a high SNR.

Figures 5a, b show periodograms using measurement noise of 10 ug and record
lengths of 64 samples and 256 samples, respectively. Vertical lines in all PSD plots
show the true frequencies.
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Figure 5a. Periodogram using 64 samples. Figure 5b. Periodogram using 256 samples.

Figure 5a,b. Periodogram using measurement noise of 10ug and record lengths of 64 samples
and 256 samples, respectively.

Table 2. SNR of the individual accelerations for each individual vibration mode

SNR dB)
Noise mode 1 mode 2 mode 3 mode 4
100 ug -2 —11 —-12 —19
10 ug 17 8 7 0
1 ug 37 28 26 20

Figures 6a, b show periodograms using measurement noise of 1 ug and record
lengths of 64 samples and 256 samples, respectively. Figures 7a, b show Welch SPD
plots using measurement noise of 10 ug and record lengths of 64 and 256 samples,
respectively. The Welch PSD estimate uses a Hanning window on each segment with
a segment length of 32 and 128 samples, respectively.

Figures 8a, b show Welch SPD plots using measurement noise of 1 g and record
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Figure 6a. Periodogram using 64 samples. Figure 6b. Periodogram using 256 samples.

Figure 6a,b. Periodogram using measurement noise of 1 ug and record lengths of 64 and 256
samples, respectively.
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Figure 7a. Welch using 64 samples. Figure 7b. Welch using 256 samples.

Figure 7a,b. Welch PSD plots using measurement noise of 10 pg and record lengths of 64 and
256 samples, respectively.

lengths of 64 and 256 samples, respectively. The Welch PSD estimate uses a Hanning
window on each segment with segment lengths of 32 and 128 samples, respectively.

Comments to PSD results

Figure 5a shows a periodogram using a record length of 64 samples and a
measurement noise of 10 pg. It is not possible to separate the two narrow frequencies
of modes 2 and 3, whereas the frequency estimate of mode 1 has a small frequency bias,
and mode 4 is accurately estimated. Decreasing the record length worsens the frequency
estimates. Increasing the record length 10 256 samples, as shown in Figure 5b, improves
the frequency estimates and all frequencies are accurately estimated. A record length
of 128 samples improves the estimates compared to the 64 samples case, but fails to
separate the two narrow frequencies of modes 2 and 3. Reducing the measurement noise
to 1pg, as shown in Figure 6a and b, does not significantly improve the
frequency estimates compared to a measurement noise of 10 ug, but the fluctuations,
shown in figure 5b, are reduced due to less measurement noise. Neither does a
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Figure 8a. Welch using 64 samples. Figure 8b. Welch using 256 samples.

Figure 8a,b. Welch SPD plots using measurement noise of 1 ug with record lengths of 64 and
256 samples, respectively.
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Figure 9a. AR(12) model. Figure 9b. AR(16) model.

Figure 9a,b. PSD plots calculated from parameter estimates using a forward-backward AR
method. The measurement noise is 1 pg and the record length is 30 samples.

further noise reduction make it possible to resolve mode 2 and 3 using a record length
of 64 samples, corresponding to an observation time of 2-56 seconds.

The Welch PSD plots shown in Figures 7 and 8 give, compared to the periodogram,
less accurate frequency estimates. Even a record length of 256 samples gives
unsatisfactory separation of the two narrow frequencies of modes 2 and 3, whereas a
record length of 512 samples gives satisfactory separation. The Welch plots show less
noise than the periodogram, due to the windowing.

Increasing the measurement noise to 100 ug gives too low SNR of the
measurements to allow satisfactory frequency estimates using FFT methods, at least for
a record length of up to 512 samples. Larger record lengths than 512 samples are
assumed to require too long observation time and are not considered.

Conclusion of the Nonparametric Methods

Nonparametric methods such as the periodogram and the Welch spectral estimator
are easy to use in estimating vibration frequencies in a space structure. However, all
identification methods require the excitation signal to be persistently exciting, and the
measurement noise to be of a suitable level. In our case 100 ug measurement noise
makes it impossible to separate the two narrowly spaced frequencies at 3-22 Hz and
3-50 Hz, at least for record lengths up to 512 samples. Record lengths above 512
samples are not considered due to an observation time which is expected to be too long
to be of practical interest. Reducing the measurement noise down to 10 Hg gives
accurate frequency estimates for all frequencies with a record length of 256 samples.

Thus, a drawback of these methods is their need for long observation time. The
above simulations show that a minimum observation time of 10-24 sec. (256 samples)
is required to separate the two narrow frequencies of modes 2 and 3, which are spaced
0-27 Hz apart. The simple periodogram perforts best in the above simulations, but the
periodogram is sensitive to noise and that may result in large noise fluctuations. Thus,
filtering the data through a window as shown in the Welch method may be necessary
in some cases. Windowing the data reduces the resolution, and consequently the
periodogram has the best resolution of all FFT methods.
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5.2. Parameter Identification using Parametric Methods

These methods identify parameters which subsequently may be used to calculate
vibration frequencies. Parametric methods give estimated parameters as output, but
PSD plot will sometimes be used to give a quick overview of the frequency estimates.

AR Methods

Identification of parameters in AR models may be performed using some of the
methods described in section 4. Our space structure is modelled with four vibration
frequencies and an AR model should at least contain eight parameters to identify all
frequencies. Kay (1988) shows that the parameter accuracy may be improved by
overparameterizing the model, i.e. specifying more parameters than the number of true
parameters. How many redundant parameters it is advisable to use depends mainly on
the measurement noise, the strength of the excitation signal, and the record length.
Simulations (Skullestad 1995) show that more redundant parameters than twice the
number of true parameters seldom give a significant increase in the parameter accuracy.
Viberg (1993) recommends a record length of:

Number of measurements/3 < Number of AR parameters
< Number of measurements/2

Thus, the record length may for AR identification be reduced significantly compared
to the nonparametric methods. Simulations show that the record lengths may lie
between 20 samples and 64 samples depending on the number of specified redundant
parameters. Specifying 16 unknown parameters, i.e. eight redundant parameters, may
require a longer data record length, due to more parameters o be determined, than
specifying eight parameters. Even if accurate parameter estimates may be obtained with
short data record lengths, a longer record length may sometimes improve the accuracy
in noisy measurements, and may also move redundant poles away from the unit circle
and thus, help separating true and false frequencies.

Table 3 tabulates estimated frequencies and their respective pole locations for an
AR(8), AR(10), AR(12) and AR(16) model. The forward-backward method is used to
estimate the parameters and the measurement noise is 1 ug. The record length is 30
samples.

Table 3. Location of estimated poles in z-domain (moduli and frequencies). [] shows
redundant parameters. The record length is 30 samples

AR(8) AR(10) AR(12) AR(16)

Modul. Freq. Hz Modul. Freq. Hz Modul. Freq. Hz Modul. Freq. Hz

0964 0-57 0996 0-56 0-999 054 1-012 0-52

2 real poles 0954 325 0969 317 0-996 323

0992 343 0-962 360 0-087 3.54 0-998 3.50

0998 9-04 0999 9-04 1-002 903 1-002 9.02

[0-722 11-96] [0-702 8-96] [0-988 6-19]

[2 real poles] [0-969 9.47]

[4 real poles]

The moduli show how close to the unit circle the poles of the AR model were
estimated. Figures 9a, b show PSD plots calculated from the parameter estimates of the
AR(12) and AR(16) model shown in Table 3.
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Figure 10a. AR(12) model. Figure 10b. AR(16) model.

Figure 10a,b. PSD plots calculated from parameter estimates using an autocorrelation AR
method. The measurement noise is 1 ug and the record length is 30 samples.

Figures 10a, b show PSD plots calculated from parameter estimates using an
autocorrelation AR method.

Figures 11a, b show PSD plots calculated from parameter estimates using a
covariance AR method.

Comments to AR Methods

Table 3 shows that the AR(8) model identifies mode 1 to 0-57 Hz, mode 3 to 3-43 Hz
and mode 4 to 9-04 Hz. Mode 2 is not found, but instead two real frequencies are
estimated. The AR(10) model improves the parameter accuracy, but the two redundant
poles form a false frequency at 11-96 Hz. However, the poles of the false frequency are
located far from the unit circle, modulus = 0-722, and are €asy to separate from the true
frequencies which have moduli>0-95. The AR(12) model gives more accurate
frequency estimates than the AR(10) model and the AR(16) model is slightly more
accurate than the AR(12) model. No improvements are made for model orders above
16. The AR(12) model has 4 redundant poles, two are estimated to be real and two are
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Figure 11a. AR(12) model. Figure 11b. AR(16) model.

Figure 11a,b. PSD plots calculated from parameter estimates using a covariance AR method.
The measurement noise is 1 pg and the record length is 30 samples.
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Figure 12a. AR(12) model. Figure 12b. AR(16) model.

Figure 12ab. PSD plots calculated from parameter estimates using a forward-backward AR
method. The measurement noise is 10 ug and the record length is 30 samples.

complex, but located far from the unit circle, figure 9a. The AR(16) model estimates
four false poles close to the unit circle, easily seen in figure 9b, as frequency peaks at
6-19 Hz and 9-47 Hz. Increasing the number of redundant parameters increases the
chances of estimating false frequencies close to the unit circle. If redundant complex
poles are located close to the unit circle, it may be difficult to separate false and true
vibration frequencies unless one knows the number of frequencies or their approximate
location.

It is possible to reduce the number of samples down to approximately 20 samples
for the AR(8), AR(10) and AR(12) models without losing too much accuracy. The
AR(16) model requires more than 30 samples to determine the 16 unknown parameters
accurately. Increasing the number of samples may slightly improve the parameter
estimates for low SNR measurements, but not significantly. Normally, an AR(8) model
has too few parameters to resolve the narrow spaced frequencies of mode 2 and 3, but
in some low-noise measurement situations eight parameters may be sufficient.

Results from the autocorrelation method shown in figure 10a and b are less accurate
than the results from the forward-backward method. The experiments show that the
autocorrelation method is not suitable for estimating poles close to the unit circle, which
is the situation when vibration frequencies in low-damped space structures are
estimated.

Results from the covariance method shown in figures 1la and b reveal
approximately the same parameter accuracy as the forward-backward method or
slightly worse. Thus, the covariance method may also be used to estimate poles close
to the unit circle.

From the above simulations the forward-backward method seems to give the best
parameter accuracy. All simulations so far have made use of a measurement noise of
1 pg, because AR methods are most suitable for high SNR measurements and in some
cases medium high SNR measurements. A measurement noise of 10 g, referred to as
a medium high SNR measurement signal, identifies mode 1 and 4, but is not able to
separate the two narrow frequencies mode 2 and 3. The acceleration due to mode 4,
Table 1, has the lowest amplitude, but is often accurately identified. This is due to the
fact that AR methods pay great attention to the high frequencies in a measurement while
low frequencies may be more difficult to identify accurately (Ljung 1987).
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Figure 13. Different number of C parameters. Figure 14. ARMA(12,6).

The results shown in Figures 12a, b refer to the same experiment as those in Figures
9a, b except for the fact that the measurement noise has now been increased to 10 ug.

ARX Methods

ARX models give approximately the same parameter accuracy as AR models and
are not shown (Skullestad 1995).

IV Methods

Simulations documented in this paper are limited to Gaussian distributed white
noise and in that case IV methods do not give better results than AR and ARX methods
(Skullestad 1995).

ARMA and ARMAX Methods

So far chapter 5 has described identification of vibration frequencies using AR,
ARX and IV models and associated methods. These models/methods work well for
short data records and mainly high SNR measurements but, unfortunately, they become
less accurate for low SNR measurements and frequently also for medium high SNR
measurements. In most AR and ARX identification models the noise is more or less
ignored, this also applies to the models used in this paper. In contrast to these methods,
ARMA and ARMAX models all have the feature of allowing a model of the noise. If
the chosen noise model contributes to a more accurate mathematical model of the
process than no noise model at all, then one may expect more accurate parameter
estimates from ARMA and ARMAX models,

Parameter estimates from ARMA and ARMAX models may be identified using
analytical methods or numerical search methods. This paper is limited to ARMA and
ARMAX methods using a Gauss-Newton numerical search method.

An ARMA model requires a specification of both the A- and C-polynomials, i.e.
the number of both A- and C-parameters have to be specified (ARMA(A,C)).
Experiments show that the parameter accuracy is relatively insensitive to the
complexity of the noise model as long as the number of C-parameters is =2. The
presumably correct model of the form ARMA(8,7) or ARMA(8,8) gives approximately
the same frequency as an ARMA(8,6) model. The results from ARMA models using
6 C-parameters are therefore chosen for further study.
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Figure 15. AR(16) model using RLS with Figure 16. ARMA(16,6) and RPLR.
forgetting factor.

Figure 13 shows PSD plots using an A-polynom of degree 12 and different degrees
of the C-polynom. The record length is 128 samples and the measurement noiseis 1 ug.

Additionally, an ARMA model gives increasing parameter accuracy when the
number of parameters in the A-polynom is increased, see Table 4. Table 4 tabulates
estimated frequencies and their respective pole locations for ARMAC(8.6),
ARMA(10,6), ARMA(12,6) and ARMA(16,6) models. The measurement noise is 1 ug
and the record length is 128 samples. Table 4 should be compared with Table 3. To
produce accurate parameter estimates an ARMA model requires a longer record length
than an AR model, and a record length of 128 samples may be a good choice. A record
length of 64 samples gives slightly less accurate estimates, but may be used.

Table 4. Location of estimated poles in z-domain (moduli and frequencies). [1 shows
redundant parameters. The record length is 128 samples

ARMA(B,6) ARMA(10,6) ARMA(12,6) ARMA(16,6)
Modul.  Freq. Hz Modul. Freq. Hz ~ Modul. Freq. Hz ~ Modul. Freq. Hz
0-997 0-51 0-999 051 0-999 051 0-999 0-51
0-667 11-26 0-998 321 0997 3.22 0-998 3.22
1-005 3.37 0-996 3-50 0998 3-51 0-999 3-50
0-998 9.02 0-997 9.02 0-995 9.02 0997 9.02

[2 real poles] [1-008 7-06] [0-929 5-81]
[2 real poles] [0-900 7-85]
[0-877  1081]
[2 real poles]
Comments to ARMA models

Table 4 shows that the ARMA method gives more accurate parameter estimates than
the AR method shown in Table 3. Especially the low order ARMA(10,6) model gives
more accurate parameter estimates than the comparable AR(10) model. An ARMA
model of the form ARMA(8,7) or ARMA(8,8) is not able to separate modes 2 and 3
and overparameterizing of the A-polynom is required in order to separate these modes.
The ARMA(12,6) model estimates one complex redundant pole pair outside the unit
circle, which may make it very difficult to differentiate the resulting frequency at
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7-06 Hz from true frequencies. A PSD plot of the ARMAC(12,6) model is shown in figure
14.

Figure 14 does not indicate a true frequency at 3-22 Hz, i.e. mode 2 seems to be
lost, but the explanation is that the C polynom forms a complex zero at the same location
as the complex pole of mode 2 and, thus, cancels the frequency of mode 2.

Table 4 makes use of a measurement noise of 1 pg. Increasing the measurement
noise to 10 ug gives less accurate estimates. Modes 1 and 4 are still accurately estimated,
but the narrow frequencies of modes 2 and 3 are never properly separated.

Numerical search methods make use of initial conditions, and if no information
about the parameters are given these values are taken as zero. Thus, if we from physical
knowledge or from experiments have better knowledge of the parameters than assuming
them to be zero, these values may be taken as initial values. Simulations have shown
that the estimation time is shorter with reasonable a priori information (initial
conditions), but this does not always give better parameter estimates. High SNR
measurements give accurate parameter estimates independent of initial conditions.
Medium high SNR measurements may give parameter improvements if a priori values
are used. Low SNR measurements, in most cases, give only marginal improvements,
if any at all. Simulations with our spacecraft model usi ng a measurement noise of 1 ug
give accurate parameter estimates which turn out to be independent of the initial
conditions. 10 ug measurement noise is a more difficult identification task and only
small parameter improvements are achieved with very accurate initial conditions; the
SNR is too low even for this numerical search method.

ARMAX Model

An ARMAX model requires parameterizing of the B-polynom and a process delay
in addition to the ARMA model. Simulations have shown (Skullestad 1995) that there
is no benefit in using an ARMAX model instead of an ARMA model. These two models
give approximately the same parameter accuracy, but the ARMAX model is slower due
to a higher number of parameters and, hence, often needs a longer record length.

Recursive Methods

The AR, ARX, ARMA and ARMAX models can all be handled by recursive
algorithms. MATLAB’s System Identification Toolbox contains different methods for
estimating parameters from the above models. This paper will look at a recursive least
square method with forgetting factor (RLS) and a recursive pseudolinear regression
method (RPLR). The recursive ARX (RARX) routine contained in this toolbox handles
AR and ARX models, whereas the RPLR routine handles ARMA and ARMAX models
as well as AR and ARX models.

Figure 15 shows the estimated frequencies versus the number of samples (number
of iterations) for an AR(16) model using an RLS method with forgetting factor. The
forgetting factor is 0-98. The initial covariance matrix is 1000000'L. Measurement noise
is 10ug.

Table 5 shows true frequencies estimated from an AR(12) and AR(16) model using
an RPL method with forgetting factor 0-98, and the initial covariance matrix is
1000000°L The estimated frequencies are collected after 64 iterations and 256 iterations
respectively,

Table 6 shows true frequencies estimated from an ARMA(12,6) and ARMA(16,6)



258 A. Skullestad

Table5. Estimated true frequencies from AR models collected after 64 and 256 iterations using
an RLS method with forgetting factor = 0-98. Measurement noise is 1 sig

RLS method with forgetting factor

64 iterations 256 iterations
Frequency (Hz) AR(12) AR(16) AR(12) AR(16)
Mode 1 0-55 0-55 0-51 051
Mode 2 3.36 294 3.32 3.20
Mode 3 4-08 3.37 3.63 3.50
Mode 4 9-00 900 9.02 9.02

Table 6. Estimated true frequencies from ARMA models collected after 64 and 256 iterations
using an RPLR method. Measurement noise is 1 pg

RPLR method
64 iterations 256 iterations
Frequency (Hz) ARMA(12,6) ARMA(16,6) ARMA(12,6) ARMA (16,6)
Mode 1 0-55 0-55 0-51 051
Mode 2 3-36 294 3.32 3-20
Mode 3 4-08 3-37 3-63 3-50
Mode 4 9.00 9-00 9-02 9-02

model using an RPLR method, with an initial covariance matrix of 1000000'T. The
estimated frequencies are collected after 64 iterations and 256 iterations respectively.

Comments to Recursive Methods

Recursive methods are less effective than batch methods, but the parameter
accuracy increases with an increasing number of iterations and after 256 iterations both
the AR and ARMA models, using an RPL and RPLR method respectively, become quite
accurate. The redundant poles seem to locate themselves at a distance away from the
unit circle. Figure 16 shows a PSD plot of the ARMA(16,6) model after 256 iterations.
This figure shows that the false frequencies do not have sharp peaks, i.e. the estimated
poles are relatively far from the unit circle.

Conclusion of the Parametric Methods

Low-damped space structures have poles close to the unit circle in the z-domain
and it is important to choose methods suitable for that pole location. The
forward-backward and covariance methods can be recommended using AR models. AR
methods require very short record lengths and the computation cost is low. The accuracy
is good for high SNR measurements, but unfortunately the parameter accuracy
decreases with decreasing SNR.

ARX methods give approximately the same parameter accuracy as AR methods.
The record length may be increased due to more parameters and hence also the
computation cost is higher.

IV methods do not give improvements compared to ARX methods due to the
assumption of white measurement noise.

The parameters of the ARMA model are estimated using a Gauss-Newton numerical
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search method. The ARMA method gives slightly better parameter estimates than the
AR and ARX methods, but the computation cost is, due to the numerical search routine,
much higher.

ARMAX methods give approximately the same accuracy as ARMA methods.
Recursive methods give less accurate parameter estimates than the respective batch

methods, but by allowing enough iterations it may be possible to achieve acceptable
accuracy.

6. Conclusion

Analytical parametric methods are faster than nonparametric methods and may give
better vibration frequency estimates for high SNR measurements. Medium high SNR
measurements may require a numerical search algorithm to give the best vibration
frequency estimates. All parametric methods, during the work reported here, have
problems in accurately identifying vibration frequencies using low SNR measurements.
Nonparametric methods may give better results than parametric methods for low SNR
measurements, but at the cost of very long observation times.
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