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Combined Deterministic and Stochastic System Identification and
Realization: DSR—a subspace approach based on observations

DAVID DI RUSCIO¥
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A numerically stable and general algorithm for identification and realization of a
complete dynamic linear state space model, including the system order, for
combined deterministic and stochastic systems from time series is presented. A
special property of this algorithm is that the innovations covariance matrix and the
Markov parameters for the stochastic sub-system are determined directly from a
projection of known data matrices, without e.g. recursions of non-linear matrix
Riccatti equations. A realization of the Kalman filter gain matrix is determined from
the estimated extended observability matrix and the Markov parameters. Monte
Carlo simulations are used to analyze the statistical properties of the algorithm as
well as comparing with existing algorithms.

1. Introduction

System identification can be defined as the problem of building mathematical
models of systems based on observed data. Traditionally a set of model structures with
some free parameters are specified and a prediction error (PE) criterion measuring the
difference of the observed outputs and the model outputs is optimized with respect to
the free parameters. In general, resulting in a non linear optimization problem in the
free parameters even when a linear time invariant model is specified. A tremendous
amount of research has been reported, resulting in the so called prediction error methods
(PEM).

In our eyes the field of subspace identification, Larimore (1983, 1990), Verhagen
(1994), Van Overschee and De Moor (1994), Di Ruscio (1994), not only resolves the
problem of system identification but also deals with the additional problem of structure
identification. In subspace identification methods a data matrix is constructed from
certain projections of the given system data. The observability matrix for the system
is extracted as the column space of this matrix and the system order is equal to the
dimension of the column space.

Descriptions of the advantages of subspace identification methods over traditional
PE methods can be found in Viberg (1996) and in Van Overschee (1995).

The method for system identification and state space model realization which is
presented in this work is believed to be a valuable tool for analyzing and modeling of
observed input and output data from a wide range of systems, in particular combined
deterministic and stochastic dynamical systems. One particular industrial application
is presented in Di Ruscio and Holmberg (1996). Only linear algebra is applied in order
to estimate a complete linear time invariant state space model.
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The remainder of the paper is organized as follows. Section 2 gives a definition of
the system and the problem considered in this work. In Section 3 the data is organized
into data matrices which satisfy an extended state space model or matrix equation.
Section 4 shows how the system order and the model matrices can be extracted from
the known data matrices. A numerically stable and efficient implementation is presented
in Section 5. Section 6 gives a comparison of the method presented in this work with
other published methods. Numerical examples and Monte Carlo simulations are
presented in Section 7 and some concluding remarks follow in Section 8.

2. Preliminary definitions
2.1. System definition

Assume that the underlying system can be described by a discrete-time, time
invariant, linear state space model (SSM) of the form

Xp+1 =Ax;+ Bu, + Cey, (1}
Yi=Dxi+ Eu, + ey (2)

where the integer k =0 is discrete-time, x € R" is the state vector with initial value x,,
y e R" is the system output, u € R’ is the system input, e € R™ is an unknown
innovations process of white noise, assumed to be covariance stationary, with zero mean
and covariance matrix E(exef ) = A. The constant matrices in the SSM are of appropriate
dimensions. A is the state transition matrix, B is the external input matrix, C is the
Kalman gain matrix, D is the output matrix and E is the direct control input to output
(feed-through) matrix. We will assume that (D, A) is an observable pair.

The innovations model, Equations (1) and (2), is discussed in e.g. Faurre (1976).

2.2. Problem definition

The problem investigated in this paper is to identify a state space model, including
the system order (n), for both the deterministic part and the stochastic part of the system,
i.e. the quadruple matrices (A, B, D, E) and the double matrices (C, A), respectively,
directly from known system input and output data vectors (or time series) defined as

uy Vv k=0,...,N—1
v V k=0,...,N—1
In continuous time systems the matrix E in Equation (2) is usually zero. This is not the

case in discrete time systems due to sampling. However, E can be forced to be zero by
including a structure constraint. This will be commented later.

] Known data vectors

2.3. Matrix definitions
Associated with the SSM, Equations (1) and (2), we make the following definitions:

® The extended observability matrix (O;) for the pair (D, A) is defined as

D
DA ‘
0.4, e Rimxn 3)
DA™
where subscript i denotes the number of block rows. The matrix O, is denoted
the extended observability matrix when the number of block rows i is greater than
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the minimal number of block rows needed in the observability matrix, in order
to check if the system is observable.

@ The reversed extended controllability matrix (C¥) for the pair (A, B) is defined
as

CI¥A'B A2 . B] e RO %)

where subscript i denotes the number of block columns.
A matrix Cj for the pair (A, C) is defined similar to Equation (4), i.e. with C
substituted for B in the above definition.

® The lower block triangular Toeplitz matrix (H?) for the quadruple matrices

(D, A, B, E)
E 0 0 U 0
DB E 0 .0
HY \DAB DB E 0| e Rmx¥ (5)

A" °B DA"°B DA" °B ... E

where subscript i denotes the number of block rows.
A lower block triangular Toeplitz matrix Hj for the quadruple matrices
(D, A, C, F)is defined as

F 0 0 .. 0
|pc F 0 .0
HEY'pAC DC F 0| e Rmxim (6)

DA'"?C DA °C DA *C ... F
where F = I for the output model formulation, Equation (2).

2.4. Notation

The projection A/B of two matrices A and B is defined as ABT(BB")tB where +
denotes the Moore-Penrose pseudo-inverse of a matrix.

3. Extended state space model

The state space model, Equations (1) and (2), can generally be written as the
following extended state space model (ESSM) (Di Ruscio (1994))

Yei =AYy + BUyr s + CEyp s+, )

where the known output and input data matrices Yy, and Uy, + ; are defined as follows

Vi VYe+1 Yer2 e YE+K-1
def| Yi+1 Yi+2 Vi3 wee YE+K
Yklf.: : H H R € Rf‘mXK (8)
ktL—1 Y+l Yh+L+1 «oo Ye+L+K-2
Uy Ui Uk+2 wer Upsg—1
Uk Uiz Ug+3 cee Ut g
def| . . . .. L+1rx K
Uhe+1=| ¢ : : : e RETr )
Upsr—1 Hgsp Ugsrp+1 -0 HprL+K-2

Upr L Uk+r+1 UgrL+2 - Hp+rp+K—1
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The unknown data matrix Egy +, of innovations noise vectors is defined as

€k €k+1 €k+2 cer EpeK-1
def €j 41 €r+2 €3 oo Erwk
Ek|L-+I.= : i : 1o € RE*DHmxK (10)
Er+p—1 €k+L Cr4L+1 --- CL+L+K=2
€rvi  €k+L+1 €k+L+2 -o- €RiL+K—1

The scalar integer parameter L defines the number of block rows in the data matrices
and the ESSM model matrices. The number of columns in ¥y, Ugjr+ 1 and Eyj 4 are
K=N-—L—=k+ 1. Each column in these matrices can be interpreted as extended
output, input and noise vectors, respectively. K can be viewed as the number of samples
in these extended time series. We also have that L< K <N. L is the only necessary
parameter which has to be specified by the user. L is equal to the number of block rows
in the extended observability matrix (O, € R”*"), which will be determined by the
algorithm. For a specified L, the maximum possible order of the system to be identified,
is n<Lm (if rank(D)=m, ie. m independent outputs), or n=Ld where
1 =d=rank(D) =m, i.e. d independent output variables.

The parameter L can be interpreted as the identification horizon. This means that
L is the horizon used to recover the present state space vector X.

The matrices in the extended stated space model, Equation (7), are related to the
underlying state space model matrices as follows

A=0,A(0T0)7'0] (11)
B=[OB—-AE, E,—AE, E,—AE: ... E,.,—AE, E]
=[0B H{1—A[H? Opmx,] (12)
C=[0,.C—AF, F,—AF, F,—AFs; ... F._,—AF, F]
=[0.C Hil—A[H} Opruxml (13)

The matrices E; and F;, i=1, . .., L, are block columns in the Toeplitz matrices Hf
and Hi defined in Equations (5) and (6), i.e.

H{=[E\ E; ... Ei] (14)
Hi=IF\ F» ... Fil (15)

The importance of the ESSM, Equation (7), is that the state vector preliminary is
eliminated from the problem. Hence, the number of unknown is reduced. The ESSM
also give us the relationship between the data matrices and the, at this stage, unknown,
model matrices.

This paper is concerned with the problem of reconstructing the system order and
system matrices in the state space model, (1) and (2), from the known data matrices
Yir and Ui+ which satisfy Equation (7). We refer to Di Ruscio (1994) and (1995)
for a proof of the above results, which are the basis for the method presented in this
work.

Note that the matrices Hf and Hi satisfy the matrix equation

Yie =01 Xk +[H{ OrmxUsr+1+[HL OLmxm]Exr+1 (16)
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and
Xi=Ixt Xee1 Xes2 ... xi+x—1] € R™K (17

is a matrix of state vectors. Equation (16) is frequently used in other subspace
identification methods, e.g. in Van Overschee and De Moor (1994) and Verhagen
(1994).

4. System identification and realization
4.1. Identification and realization of system dynamics

The basic step in the algorithm is to identify the system order and the extended
observability matrix from known data. In order to do so we will in this section derive
an autonomous matrix equation from which the system dynamics can be identified. We
will show how the system order n, the extended observability matrix O, are identified.
A realization for the system matrices A and D and the ESSM transition matrix A are
then computed.

The term BUjy 1 can be removed from Equation (7) by post-multiplying with a
projection matrix Uy, + 1 such that U+, Ufy + = 0. The projection matrix can e.g. be
defined as follows

Uiitr=Ixxx — Ul + iU s\ Ul 1) " "Uige+ (18)

Hence, Ui, + 1 is the orthogonal projection onto the null-space of Uy +,. A numerically
well posed way of computing the projection matrix is by use of the singular value
decomposition (SVD). The projection matrix is given by the left singular vectors of
Uk +1 which is orthogonal to the null-space. However, in order to solve the complete
system identification and realization problem, then it is more convenient to use the QR
decomposition for computing the projection, as will be shown in Section 5. Note that
a projection matrix onto the null-space of Uy . exists if the number of columns K in
the data-matrices satisfy K> L + 1.
Post-multiplying Equation (7) with the projection matrix Ufj,+, gives

Y;r+||'1 - Yk i 1|.{,U{|L+ t(UHL + IU{|L+ ]) IU!:II. +1
=AY — Yo Ul » WUz + 1 Uljes 1) 'O+ 1)
+ C(Eqzs1— Exp i \ Ul \(Ung s \ Ul s 1) Wie +1) (19)

Note that per definition the last noise term in equation (19) is zero as the number of
samples approaches infinity, i.e.

1
lim C — Evi i \Ufpe1=0 (20)
k»e= K

Hence, we have the following result
Yoo Ul o1 =AYy Ul oy + CEgp 4 (21)

The noise term CEy. + 1 can be removed from Equation (21) by post-multiplying with
;,W,T where W; is defined as a matrix of “instrumental” variables which is uncorrelated
with Ejj.+1, i.e. we are seeking for a matrix with the following property
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Past horizon Future horizon Prediction
for instruments for identification horizon
J L M
< > <4 » |« —»
| [ ] Lp
I [ | 1 1
J—1k k+L—1 k+L+M—1

Figure 1. [lustration of horizons involved in the DSR algorithm. Usually k= J. That is, the
end of the past is the beginning of the future.

Mean of pole estimates

Figure 2. The mean value of the pole estimates for a Monte Carlo simulation with varying past

horizon parameter J and identification parameter L. The number of samples in each simulation

was N = 15000 and the number of simulations for each pair L, J was 100. The input was a sum

of 5 sinusoid signals (u"). The maximum estimate was 0-9003 for L=3and J=4. The minimum

estimate was 0-8990 for L= 5 and J = 2. The closest estimate to the actual pole (a = 0-9) was
0-89997 for L=3 and J=5.

|
x]“)n EEHLHW;T:O (22)

An additional property is that W; should be sufficiently correlated with the informative
part in the ESSM in order not to destroy information about e.g. the system order.

An intuitive good choice is to use past data as instruments to remove future noise.
This choice ensures that the instruments is sufficiently correlated with the informative
part of the signals and sufficiently uncorrelated with future noise.

Define J as the number of time instants in the past horizon which is used for defining
the instrumental variable matrix. Define L as the number of time instants in the horizon
for identifying the state at time instant k, that is x, as well as the extended observability
matrix of the system. Define M as a prediction horizon. However, we will restrict ourself
to the case M = 1 in this work. These horizons are illustrated schematically in Figure 1.

Some alternative instruments, W;, for removing the noise and which satisfy
Equation (22) are as follows. Define

Wi e R V i=123 (23)

where the row dimension ni is the number of instrumental variables and
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wi=[1] w=vo, w=u vizo 24)
Uiy

The choice of instruments is unimportant in the deterministic case, i.e. when the process

as well as the observation noise are identically zero which also means that ¢; = 0 for

all discrete time instants. However, the “optimal” choice of instruments is important

in the combined deterministic and stochastic case.

Assume that Uy; with I > 0 is chosen as the instrumental variable matrix. This means
that not only past inputs but also future inputs are used to remove future noise (first time
instant in the future horizon satisfy J=k). Our experiences from Monte Carlo
simulations indicates that this is not an “optimal” choice. Note also that the future inputs
already is used in the projection matrix Ug)... ;. Hence, it makes sense to use only past
inputs as instruments, i.e. the choice Up,. It can also be shown (Verhagen, 1994) that
by using only past inputs only the deterministic part of the model can be recovered.

Past outputs are assumed to be uncorrelated with future noise. This gives a first
constraint on the discrete time instant k, i.e. k=J. We have

.1
A!Lﬂ;lﬁ EE”L+|YE|;=0 Yik=J (25)

This statement can be proved from Equations (16) and (20). By incorporating past
outputs as instruments we are also able to recover the stochastic part of the model. Note
that the states which are excited from the known inputs are not necessarily the same
as those which are exited from the unknown process noise variables. It is necessary that
all states are exited from both known and unknown inputs and that they are observable
from the output, in order to identify them.

Hence, the following past inputs and past outputs instrumental variable matrix is
recommended to remove future noise from the model

w.=[;‘:‘;] € RImEIXK Yy (26)
A consistent equation for A is then given by the following autonomous matrix equation
Zvow=AZy YVk=J (27)

where
Ziv i E Yo Ul W e ReLXni (28)
ZuE YUl W e Rmxn (29)

Equation (27) is consistent because W;, given by Equations (23) and (24), satisfy
Equation (22). See also Equation (25).

We can now prove that the column space of the matrix Zy; coincide with the column
space of the extended observability matrix O, when the identification (future) horizon
parameter L is chosen great enough in order to observe all states and the past horizon
parameter J are chosen sufficiently. Using Equations (16) and (29) with the past inputs
and past outputs instrumental variable matrix gives

1 1
Zy= E’ Yie Uil_[‘,ﬁ 1WT= O;_X;;U;ﬂ]“ . E W{ e RmL*Jmtr) 30)
Assume that both the row and column dimensions of Z;y, are greater or equal to the
number of states, i.e. Lm =n and J(m + r) = n, and that L is chosen such that the system
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is observable. The dimension of the column space of the left hand side matrix must be
equal to the system order, i.e. rank(X,) = n. Hence,

1 1
rank(ka_) = l'aﬂ.k(— Yk|LU#[L + |W‘r) = rank(OLXg Ukl[[, 15 W‘{) =n (3].)
K K

The row constraints has a theoretical lower limit. From system theory we know that
it is sufficiently with a number of L= n — rank(D) + 1 observations of the output in
order to observe the states of a linear system, Kalman, Falb and Arbib (1969, p. 37).
However., the theoretical lower limit is the ceiling function L =[n/m |, defined as the
integer ratio n/m rounded towards plus infinity.

From the column dimension we must ensure that the past horizon J for defining the
instrumental variable matrix must satisfy J(m + r) =n. Hence, the theoretical lower
limit is J =[n/(m + r)

The maximum system order which can be specified by the user for a specified choice
of the parameter L is n = Lm. In this case the observability matrix can be estimated as
the column space of Zy; only if the past horizon parameter J is chosen such that
J(m + r)=Lm. A reasonable choice is therefore J= L.

Monte Carlo simulation experiments show a relatively constant statistical behavior
of the estimates as a function of the past horizon parameter J. Hence, we simply
recommend to put J = L.

We have the following algorithm for analysis and modeling of system dynamics.

Algorithm 4.1 (System order, n, and the pair (D, A))

Given the matrices Z . . and Zyy. with k= J which satisfy the autonomous matrix
equation

Zivn=AZy (32)
where
A=0,A0[0.) 'O (33)
and O, is the extended observability matrix for the pair (A, D).

1. The system order n
Determine the Singular Value Decomposition (SVD)

Zy=USV" (34)
where U e R™ ™, § € R™ " and V € R™*™ are given by:
S, 0
v=w, va s=[35 ] v=wi v (35)

where S, € R"*" and n is the number of non-zero singular values of Zy;, which is equal
to the system order. n is determined by inspection of the non-zero diagonal elements
of S or $S7. The term U, S,V represents the error by estimating the system order as the
n first principal singular values.

2. The extended observability matrix O for the pair (D, A)

The (extended) observability matrix can be taken directly as the first left part in U,
i.e. U;. We have
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Or=U(l:Lm, 1:n) = U, (36)

3. The system matrix A
The system matrix A can be determined as

S, !

A= O{zk+ llLv [0

] = UTZH ||LV18.-1_| (37)

4. The system output matrix D

The matrix D can be taken as the m X n upper sub-matrix in the observability matrix
OL, i.e'

D=U(l:mn, L:n) (38)

5. The extended system matrix A
We have

Aﬁ = OLA(OEOL) B ]OI= Zk+ lll.VISn lU{ (39)
A

We have chosen O, = U, in Step 2 for simplicity, because we have O] O = I, x  in this
case. This gives an output normal realization when L— . The algorithm can also be
formulated with the choice O, = U, S} which gives a balanced realization when L — oo
010, is equal to the observability grammian as L tends to infinity because, in this case,
DA"~! tends to zero. A third choice is O, = U,S, which gives an input normal
realization. These definitions are due to Moore (1981). These choices only represent
different scalings of the column space and give similar state space model matrices. The
scaling does not affect the statistical properties of the algorithm.

4.2. Realization of the deterministic sub-system

At this stage the system matrices A and D as well as the extended observability
matrix O, are known, see Section 4.1. In order to obtain a complete realization for the
deterministic part of the system we need to compute the system matrices B and E.

There are many alternatives for extracting the B and E matrices. See e.g. Section
5.2 for an alternative to the method presented below.

A consistent estimate of the B matrix can be computed from

-1 1 ~
B X Ue+1Uljz+1 =E(Ym i — AYy Ul + 4 (40)
where A is determined from Algorithm 4.1, because
Lo~
xl'l_t.ll CKEk|1.+|UﬁL+|=0 Vk=0 (41)

For known data and system matrices A and D, Equation (40) can be written as an over
determined set of linear equations in the unknown system matrices B and E.

We will, in the rest of this section, discuss the simpler solution when Uy .y UfjL+ 1
is non-singular. The matrix B can be computed directly from Equation (40) in this case.
We refer to Section 5.2 for the case when Uy, 1 Ul 1 is singular. The system matrices
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B and E can be extracted from B. E is given directly as the lower right m X r sub-matrix
of B. We have

E=Bm(L— 1)+ L:mL,rL+1: r(I+ 1)) (42)

B is given as a function of the block columns in B and the matrices A and O;. A and
O, are known from Algorithm 4.1. Define

Bi=B(:mL,r(i—1)+1:ri) 1=<i=<L+1 (43)
as block column number i of B. We have
L+1 _
OLB= 2 A 'B, (44)
i=1
and
L+1 B
B= > A"(010,) 'OlB, (45)
i=1

One strategy for recursively extracting the B, E, H{ and OB matrices is as follows.

Algorithm 4.2 Determination of Hf, O1B, E and B from known B, Oy and A.
A=0.A(070.) 0]

EL=§L+1
E=E;m(L—1)+1:mL, 1: m)
fori=1,...,L
Ei i=Bi i\ +AEr i1
ifi<L
Ei (l:r(L—i—1),l:r)=zeros(r(L—i—1),r)
end
end
OLB=E0
B=(0[01)"'0[O.B
A
The lower block triangular Toeplitz matrix Hf is given by the block columns E, . . ., E,

according to Equations (14) and (5).

4.3. Realization of the stochastic sub-system

This section is mainly concerned with the problem of identifying the stochastic part
of the system. However, for natural reasons most of the results in Sections 4.1 and 4.2
are extended and resolved in parallel.

The ESSM, Equation (7), gives a relation between the future data matrices and the
SSM matrices. The following extension of the ESSM can be proved

Yk|L ] = OL+ IAROEYBH

U
+ [0, CE H‘Eul[ ok ]
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Uois ]

—[0L+1 A" OTHT Opmxgir+1-n) [
UJ[&+L+| I

E
+[01+:Ci Hl+|][ ok ]

kL+1

E
~[0L+\A*OJHS  Oppmxsr s 1-nr) [ o ] (46)
Epvre1-y

Assume k = J for the sake of simplicity. Then we have

YJlL k1= Ou IAJO}Y{)I'J

+101+1Cf — O\ A’OJHS  Hi 1) [U"” ]
UJILH

Eq)y ]

JIL+ 1

+[01L+,C— O+ A’O3H; Hi+|][ 47)
This last equation shows us nicely the connection between the past and future data
matrices and the unknown model matrices. As we will see, it also gives us some
important results. We have the following projection

UJ|Lr 1 -
YJ].L+I Uol:
Yois
_ _ o -
UJIL+I B
Eor | Uopy
=100 G~ 0L A0 Hil|  FIV o @8)
JIL+1
Ejp+1| Uy
B BT

The projection of future inputs, past inputs and outputs onto the null-space of future
noise is equal to E,;; 4. We have separated the deterministic part of the system from
the data by the projection in Equation (48). Hence we have the following theorem
concerning the stochastic part of the system.

Theorem 4.1 (Realization of the Toeplitz matrix H; . )

The lower triangular Toeplitz matrix Hj., with Markov parameters for the
stochastic sub-system is given by the projection of past inputs, past outputs, and future
inputs onto the null-space of the future outputs, i.c.

et Upria [f
Zi = Y+ Uou

Yo,

UJ|LH - . UJIL*—I '
=Pii1Eop+1| Ugy + Hi 1 Eqp 1| Uoly

¢ olJ Y0|J' (49)

where

Pii1=004+,Cj— Oy A'OYHS (50)
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and when N — oo, then

e UJ'IL+I l Uou ,
Ziiw+1= Yo+1| Uols =Pi.+ IE0|L+1[ ] + Hi+1Ej0+1 (51)
You Yo

which is a linear problem in Hj +,.

To see that this is a linear problem in the unknown matrix Hj ., one only has to write
up the equations one obtains by using the structure of Hj .1, Equation ( 15), and a
partition of the last term on the right hand side into sub-matrices.

This result with proof is to our knowledge new. However, the same solution
resulting from a QR decomposition was presented in Di Ruscio (1995b).

From Theorem 4.1 and Equation (47) we immediately state the following important
result. The extended observability matrix can be recovered from the column space of
the matrix on the left hand side of the following matrix Equation (52).

Theorem 4.2 (Realization of the extended observability matrix O 1)
Given the following matrix equation

def UJ|L+I
Zjpir= | Uoy PDUsL+r =

Yol;
Yois
UI’J]J
0.+1[A’0} C§—A’O'HY Cj—A’0LHY) Ui+ Uvce1  (52)
E'J|LI 1 U{llj
Yoir

then the column space of the matrix Z,i. 1 coincide with the column space of the
extended observability matrix Oy ;| and the system order n of the SSM is given as the
dimension of the column space.

The proof of Theorem 4.2 and Equation (52) is simple. From Theorem 4.1, Equation
(49) we have

Yops1— Yipsr/¥=Pi\Eop— PiiEop/Y + Hi o 1EjLs (53)
where
UJILr 1
z"é‘”[uou } (54)
Y0|.i

and for the sake of simplicity the other matrices are defined according to Equations (49)
and (50). Substituting Equation (53) into Equation (47) in order to remove the stochastic
term Hi+1Ey+1 gives

Yo+ /Y = Op 1 A’O5 Yoy + PLoy Ugy + Piy Eo/Y + HE + 1 Upp 11 (35)

Hence, it is necessary with an extra projection Ujjz+; on the right hand side in order
to remove the deterministic term H{ . ;Uj.+, and in order to recover the extended
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observability matrix. The matrix on the right hand side of Equation (52) is proportional
with the extended observability matrix O, , ,. Hence, the column space of the matrix
Zjj+ coincide with Oy +1. The dimension of the column space of the matrix Z,y, ; , is
the order » of the SSM. QED

From Theorem 4.2 we immediately have the following corollary concerning the
system dynamics.

Corollary 4.1 (Identification of system dynamics)

From Z; ., defined in Theorem 4.2, Equation (52) we have the following
relationship

ZJ+ = A'Z_md (56)
where
A¥0,A(070,) 0]

and where Z; ;.. is the L last (m X K) block rows in Z;y; , y and Z; is the L first (m X K)
block rows in Z 4, i.e.

wr Upr 41 et Ui 41
Zisw= e | Uy PUsvrs, Zp= Yred| Uoly DUTL 41
Yous Yoir

Moreover, the column space of Z;; coincide with the column space of the extended
observability matrix O,, and the dimension of the column space is equal to the order
n of the SSM. A realization of n, 0., A, D and A is determined by using Equation (56)
in combination with Algorithm 4.1.

The matrix on the left hand side of Equation (52) can be shown to be equivalent
to

Zeer =YW,
We S Ui« WIW, Ui WD ™ "Wy Uiz (57)
Comparing Equation (57) with Equation (30) shows that these matrices are related. We
have shown that the column space of both equations coincide with the column
space of the’extended observability matrix. The difference can be viewed as a different
column weighting matrix W, on the right hand side of Equation (57). Equation (30)
can be viewed as a special case factorization of equation (57) with k=J and
W, = UjiL+W1/K. We will later in Section 6 show that this last Equation (57) is
extremely important and useful in order to partly compare other subspace identification
methods.
From Theorem 4.1 we have the following result concerning the stochastic part of
the system.

Theorem 4.3 (Realization of A and C)
Assume that the number of system input and output observations, N — . Define

d&ef UJ'[L+ 1
Zip 1 = Y| Uo (58)
Yoir
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then we have _ )
Zisw=AZj + CEjea (59)
and
Z5 e qZ5) = CEjp o (Z51)"
where

C¥10.C Hi]l—A[HiL Opmxnl

The covariance matrix of the innovations A is estimated directly from the column space
of the left hand side matrix Equation (58), e.g.

Z5 e ) (Z5) = FE s n(Ziy = FEz gy (60)
and
A=FF" (61)
when T
Eyiop- Ey, L1 =1
A

The importance of Theorem 4.3 is that it shows that the innovations covariance matrix
can be estimated directly from the column space of the data matrix, Equation (58). The
Kalman filter gain matrix C can be extracted when A and D is known.

Finally, we have the following Theorem 4.4 for the realization of the deterministic
part of the system.

Theorem 4.4 (Realization of B)

Given
VAR IdéfY.fl.[.+ |flig;|:r+ 1:| (62)
Yo,

then we have

Z4 w=AZ5 + BUjp (63)
and

Z5+ ||f.(Z§|L)¢ =B Ui + I(ZﬂL) ' (64)

where

B¥10,B H{1-A[H! Opux,

Theorem 4.4 is proved from Equation (55). Notice that the SSM matrix E' can be
estimated directly from Equation (64). This is so because of the structure of the ESSM
matrix B.

All the projections in this section, Equations (49), (52) and (62), can be effectively
computed from a QR decomposition, either directly from the projections defined in this
section, or as will be shown in Section (5).

We will conclude this section by point out the relationship between the data matrices
and the projection matrices. The data matrix with future system outputs and the
projection matrices, (49) and (62) are related as

YJ’IL+ 1= Zf}'u,ﬂ + Z}lLﬂ
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Z? represents the outputs from the deterministic part of the system. Z° represents the
outputs from the stochastic part of the system. ¥j,+, is the data matrix with future
outputs from the combined deterministic and stochastic system.

5. Implementation with QR decomposition

We will here use the QR decomposition in order to compute the column space of
the projection matrices derived in Section 4. The QR decomposition is also used in the
subspace identification methods by Verhagen (1994) and Van Overschee and De Moor
(1994).

Define the following QR decomposition

1

—¥=RO=
Vi ke
Uk +1 RyO O O O
1 | Wi . Ry R» 0 0 (0}3
W- Yur | R3s1 Rz Raz 0 0Os (65)
Yeor R4y Ry Ris R QO
where
R e RUEHD+ni+t2mi) X (r(L+1)+ni+2mL) (66)
Q € R{r(f.l 1+ ni+2mLy* K (67)

Note that this decomposition perhaps more precisely could have been defined as a lower
Left, Q-orthogonal (LQ) decomposition. See Golub and Van Loan (1983) for the
computation.

The QR decomposition can be viewed as a data compresmon step. The data matrix
¥ which usually have a large number of columns is compressed to a usually much
smaller lower triangular matrix R which contain all relevant information of the system
for which the data was generated. As we will show, the orthogonal Q matrix is not
needed in the algorithm.

Note that the first (L — 1)m rows in ¥ . 1z are common with the last (L — 1)m rows
in ¥yj.. This means that ¥; , ;, can be substituted with Yy in the QR decomposition,
Equation (65). This is utilized in the efficient implementation of the DSR algorithm.
However, for the sake of simplicity we will present the results according to Equation
(65).

By definition, the instrumental variable matrix W;, is uncorrelated with Ey; + . We
can therefore remove the noise matrix Ey, +, from Equation (7) by post-multiplying
with ;W!. We have from (65) that

o1 .1 R
Jim - Ey WE=(lim - Exp+1[Q1 Qz])[ 2'] (68)
Post-multiplying Equation (7) with [Q{Q7], using (68) and substituting for the
corresponding R;; sub-matrices from (65) gives
[Rss Ral=A[R3, Rxul+BIRy 0] (69)

which gives one matrix equation for A and one for both A and B. We will in the next
Sections 5.1 and 5.2 show how the order » and the system quadruple (4, B, D, E) are
computed from (69).
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The stochastic part of the system, defined by the matrices C and A, is computed from
Ris— ARy = CEqr+10% (70)
Ras= CEyu110F an

This will be shown in Section 5.3.

Note that the QR decomposition compresses the possible large data matrices into
a number of (smaller) matrices which contain the information of the system. It is also
interesting that the matrices (information) which define the deterministic part
(A, B, D, E) and the stochastic part (A, C) are separated by the QR decomposition. The
user must specify the parameter k = J in Equation 65. See Figure 1 for a definition of
the horizons involved. We recommend putting k = J. The matrix W, with/ = 0, Equation
(24), is recommended for W; in 65.

5.1. Realization of A and D
We have from Equation (69) that

Ri=ARs, (72)

and we choose
Zyi=Ra (73)
Zyr =Ry =USVT (74)

in Algorithm (4.1) in order to determine A, D and the extended observability matrix
O.. The system order is determined by inspection of the dominant singular values of
S or SS”.

Note that the first (L — 1)m rows in R, is equal to the last (L — 1)m rows in Rx.
This is utilized in the efficient implementation of the DSR algorithm, in order to reduce
the computational work.

Note also that if A is computed as the projection of R, onto R 4, then A takes a special
canonical form. This is due to the common rows.

The A matrix may also be determined as follows

0,=0(1: (L—Dm, 1:n) 75)
O,=0(m+1:Lm, 1:n) (76)
A= 070y '070, 77

However, we must put L = : L+ 1 in this case if the extended observability matrix is
estimated as the left singular vectors in (74). This will increase the computational work.
This last method is the so called shift invariance method for computing the transition
matrix A from the extended observability matrix, Kung (1978). The shift invariance
method is used in the subspace algorithms (N4SID) by Van Overschee and De Moor
(1994) and (MOESP) by Verhagen (1994). The parameter which defines the number
of block rows in the N4SID and MOESP algorithms is denoted I. This parameter is
related to the DSR parameter L as I = L + 1. This is one of the differences between the
DSR algorithm and the N4SID and MOESP algorithms.

This means that N4SID and MOESP computes a number Im = (L + 1)m of singular
values. However, the system order can only be chosen according to Lm of these singular
values, i.e. the maximum system order which can be chosen for a specified parameter
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I=L+ 1is n= Lm. For comparison, the DSR algorithm computes only a number Lm
singular values and the maximum system order which can be chosen for a specified
parameter L is n = Lm. Hence, the DSR algorithm seems to be more consistent with
respect to choosing the system order as the number of non-zero singular values.

The shift invariance method can be included in the DSR algorithm, but to a higher
computational expense. This strategy can be described as follows., The extended
observability matrix can be estimated from the column space of the matrix formed from
R3; and R4,. Compute the SVD

Rn] _[Un UlZ] [Sn 0] [V{] _ [UIISHV{]

a2 Uy UxpllO 01LVE UnS. VT

We then have that A and D are determined from the shift invariance method, e.g. from
the left singular vectors as follows

OL=Uy (78)
OLA=Us (79)
A=UhLUn 'ULU» (80)
D=Uy(l:m, 1: n) (81)

5.2. Realization of B and E
We have from Equation (69) that

BR\ =Ry — ARy, (82)

B can be determined directly from (82) if the input u is persistently exiting of order
L+ 1. Ry, is non singular in this case. We have

B=(Ras— AR3)RT(R1RT) ™! (83)

The B and E matrices are then extracted from B as pointed out in Section 4.2

At this stage, the system order is identified (Algorithm 4.1). It is possible to
determine B and E if the input is only persistently exiting of order p +1 where
Lyin=p =L, directly without recomputing the algorithm with /. = L, or L=p. The
minimal observability index, for a given system order, is Ly, = n — rank(D) + 1 when
n=rank(D) and L, =1 when n <rank(D).

Define
Op,=0.(1:mp, 1: n) (84)
A,=0,A(0}0;)" 'O} (85)
R =Ru(l:r(p+1), 1:r(p+ 1)) (86)
R5 =Ru(l:mp, 1: r(p+ 1)) (87)
Ry=Ra(l:mp, l:r(p+ 1)) (88)
We then have
B,RS = R4 — AR5 (89)

This result is a consequence of Equation (7) with L substituted with p. Note that the
minimal observability index, for a given system order, is p = n — rank(D) + 1 when
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n=rank(D) The B and E matrices are then extracted from B, as shown in Section 4.2
and Algorithm 4.2 with L substituted with p.

5.3. Realization of C and A
Corollary 5.1 (Realization of C and A)

Given the lower left triangular matrix R, determined by the QR decomposition in
Equation (65). An estimate of the square root of the innovations covariance matrix is
given by the m X m lower right sub-matrix of R, i.e.

F=Rym(L—1+1:mL,m(L—1)+ 1: mL) (90)
and the estimate of the innovations covariance matrix is
A=FF" 91
Furthermore, when J > 1, then an estimate of the Kalman filter gain matrix C can be
computed from
O;CF=R;(1: mL, 1: m) (92)
If F is non-singular, then we have
C=(070.) 'O[Ryx(1: mL, 1: m)F ! (93)
An estimate of the lower left block triangular Toeplitz matrix H} for the stochastic
subsystem (D, A, CF, F') is given by
Hi=Rus(l:mL,m+ 1: m(L+ 1)) (94)

The estimate of the lower left block triangular Toeplitz matrix for the stochastic
subsystem (D, A, C. I), according to Equation (15), can be formed from the block
columns F\, . .., F; which can be computed from

[F\F FF .. FFl=Ra(limL,m+1:m(L+1)) (95)
A

The stochastic subsystem is identified separately from the deterministic subsystem. The
necessary separation into deterministic and stochastic subsystems are implicitly done
by the QR decomposition.

The first (L — 1)m rows in Y, .y, are common with the (L — 1)m last rows in Y.
Q4 is uncorrelated with Uy 41, Wi, Yy and with the (L — 1)m first rows in Y. 2. The
first (L — 1)m rows in Y4 1. Q% and Eyyp + Q7 are therefore zero. We then have from
(65) and the structure of C, given by (13) and (15), that

00 .. 0
Voo 0F=CEy i 0f=Ru=" 0 9 (96)
00 .. F

where Ry € RY"*Im Hence, the square root of the innovations noise process
covariance matrix is estimated directly as the m X m lower left matrix, denoted F, in
the lower triangular matrix R from the QR decomposition, Equation (65). Note that F
also is lower left triangular and can be compared to a Cholesky factorization of A. This
result is believed to be of some importance. The result (91) is then clarified.
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The matrices Q;, i =1, 2, 3, 4, are orthogonal matrices and we have

F O ..0
1 0 F 0
g B Qi=| i eR®TUmxIm 7
0 0 .. F
0 0 ... 0

Another strategy is then to compute OCF from Equations (70) and (97), and an
algorithm similar to Algorithm 4.2 This is formulated in the following Corollary 5.2.

Corollary 5.2 (Realization of C)

Given the sub-matrices R4 arid R33 from the QR decomposition in Equation (67)
and the ESSM transition matrix A. Define according to Equation (70)

CFE Ry — AR (98)

The matrix O, CF can then be computed from CF, e.g. by a procedure similar to
Algorithm 4.2.

A

This strategy is found from Monte Carlo simulations to be the best one when the past
horizon parameter is J = 1, but no significant difference when J>1.

5.4. Special remarks

One advantage of the QR implementation of the algorithm is that potential
ill-conditioning of the covariance matrices are concentrated in a certain triangular
matrix. This ill-conditioning usually results from ill-conditioned noise processes
(process noise and measurements noise) and due to rounding-off errors. Note that the
triangular matrix R is the square root of the covariance matrix (H = }(f’}"” where Y is
defined in (65)) and that the triangular matrix is computed without never computing
the covariance matrix. The method can therefore be defined as numerically stable.

The QR decomposition is not unique. The R matrix is post-multiplied by a diagonal
permutation matrix E such that R: = RE have positive diagonal elements. The diagonal
elements of E are equal to the sign of the corresponding diagonal elements of R which
was the result from the QR decomposition. Note also that Q: = EQ and EE = I. This
gives a more unique coordinate system for the estimated (A, B, D, E) quadruple. This
scaling is also one of the reasons for the simple solutions for the C and A matrices in
Section 5.3. The scaling ensures that the diagonal blocks of (97) gets the same sign.

Note that common rows in the data matrices ¥, and Y, ;. can be removed prior
to obtaining the QR decomposition in equation (67). It is also clear from the above that
the orthogonal Q matrix (QQ” = I) is not needed in the algorithm. This will reduce the
computational effort considerably. In fact, the QR factorization works on a data matrix
of size only r(ZL+ 1) +m(2L+ 1) X K and not of size r(2L+ 1) +3mL X K as
indicated in (65).

Another strategy for determining R is to first compute H = ;(WT where ¥ is defined
in (65) and then the SVD, H = USV”, followed by a QR decomposition of US! in order
to obtain the lower triangular matrix, R. This strategy reduced the number of flops and
the accuracy of the R matrix when MATLAB was used for the computations. However,
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no significant difference in the estimated models were observed. This strategy can be
numerically ill-conditioned due to possible rounding errors when forming the product
of rows in ¥ with columns in 7 in order to compute the correlation matrix ¥¥”. This
strategy is therefore not recommended.

Equation (82) is defined by the triangular factors for Equation (40) with k=J.

E'Ukli. Ul 1= Yer pUdle =AY Ui +1 (99)
It is also possible to extract the triangular factors for
BUop + \Ufjp+1 = YUl v 1 — AYo U+ 1 (100)

directly from the QR decomposition (65) when k = J = L. The first block row in Uy +1
is equal to the last block row in Ugy.+ 1. Hence, the matrices in Equation (100) can be
defined from the lower triangular R matrix, equation (65). It is therefore natural to
choose

BIR, R%1=[Rua R%)1—A[Rs RYI (101)

for defining B and an equation for computing the B and E systern matnoes Equauon
(101) consists of the triangular factors for both Um s 1UfL+1 and U0|L U8+ 1.
Equation (101) have effect for systems where the input signal is poor wnh frequencies,
but gives no additional effect compared to (82) for e.g. white noise inputs.

Note that the stochastic part of the model is determined from QR and SV
Decompositions only. The Markov parameters and the square root of the innovations
covariance matrix are determined from a QR decomposition only. The Kalman filter
gain matrix is determined from the Markov parameters and the extended observability
matrix. No matrix Lyapunov or non-linear matrix Riccati equations has to be solved.

The method have in this work been illustrated for systems which is not strictly
proper (only proper), i.e. the case when E # 0 in the underlying model (2). The method
can also be implemented to handle proper systems, i.e. systems where E is known to
be zero. This can be done by deleting the last block row in U+ and the last block
column in B, see Equation (7).

6. Comparison with existing algorithms

A comparison with the DSR algorithm and three different subspace algorithms will
be given, i.e. N4SID, Van Overschee and De Moor (1994) and CVA, Larimore (1983),
(1990), PO-MOESP, Verhagen (1994).

The first and common step in subspace identification algorithms is to estimate the
extended observability matrix from the column space of a known data matrix. We will
therefore concentrate our discussion about the similarities and differences in the way
those methods estimate the extended observability matrix. We will only briefly discuss
how the system matrices are estimated by the different methods.

It is shown in Van Overschee and De Moor (1996) that the different methods are
related through certain row and column weighting with the N4SID data matrix as the
key matrix.

We will below present a different approach, with the matrix Z;.+, defined in
Section 4.3, Theorem 4.2 and Equation (57), as the key matrix.

Multiplying Equation (57) from left with an extra row weighting matrix W, and
using the SVD as discussed in Algorithm 4.1 gives

WrZJ|L+ £ = Wf'YJ'lL t swr' = U}Snvi + U)SZV%- (102)
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where g is an integer parameter and
WeE Ui o WIW Ui WD ™" WaUii 1
The extended observability matrix can be estimated as, e.g.
OLis=W, U, (103)
The matrix W, is symmetric and can be written as
W. LU A WIW Ui W)~ WU WD) WU, y

A hd i

w2 (W27 (104)
From the above factorization of the matrix W, we have at least four matrices (W-,
i=1,...,4) which all have essentially the same column space as W, i.e.

W= Uji+ IWI(W Uigie /W1 ™ "Wy Uiz 44
WE = U.ﬁr.+ |WT(W1U?|L+ wa) !

W2 = Ujjp e (WI(W\ U3+ WT) 'K

Wi = Ui+ I,L—
Wf = U}|L +1

The matrix W? is only sufficient for purely deterministic systems and is shown for the
sake of completeness.

These column weighting matrices are used in the DSR algorithm which are
presented in this work. The past horizon parameter J is usuvally chosen as J= L. The
parameter g = 0in Equation (102) and the row weighting matrix is the Lm X Lm identity
matrix, denoted W, = I,,. Algorithm 4.1 is used in order to identify the extended
observability matrix O, from the column space of the matrix Z; .

We will now illustrate the similarity and difference with two published algorithms,
CVA by Larimore (1990) and PO-MOESP by Verhagen (1994).

6.1. PO-MOESP

The PO-MOESP algorithm in Verhagen (1994) estimates the extended observabil-
ity matrix O+ ; from Equations (102) and (103) with the following matrices

We = UL+ e\ WIWULZ 1 WD) ' WiUL+ 041
Wf = ![Lr 1)m PO—MOESP (105)
g =1

From Theorem 4.2 and the factorization in Equation (104) we conclude that the two
algorithms PO-MOESP and DSR estimate the extended observability matrix from a
known data matrix which essentially have the same column space. The only difference
is that PO-MOESP estimate the extended observability matrix Oy ; 1, of larger size than
DSR, in order to use the shift invariance method for extracting the system matrix A as
explained in Section 5.1.

Using the triangular factors from the QR decomposition in Section 5 then we have

R2RL(R2RY) 'RuQ)2= (UiS,. Vi + U,S.VE) 0, (106)

where the orthogonal matrix @, is not needed because the column space can be
estimated as the matrix U,.
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A major difference is that the PO-MOESP algorithm does not estimate the stochastic
part of the model. DSR estimate the Kalman gain and innovations covariance matrix
directly from the data as shown in Sections 4.3 and 5.3.

6.2. Canonical Variate Analysis

The CVA algorithm in Larimore (1990) estimates the extended observability matrix
O+, from Equations (102) and (103) with the following matrices

W.=Ut+ i WIWUz, I|L+IWIT)I t
We =i+ 1ULv s WYiee+1) ! (CVA
g =1

As we can see, the column weighting matrix W, used by the CVA algorithm fit into the
factorization in Equation (104). A difference is that the CVA algorithm uses a row
weighting matrix W,.

The only difference is that the DSR algorithm takes the SVD of a matrix of size
only Lm X J(r + m) where usually J = L, in order to indentify O,. The other methods
takes the SVD of a matrix of size (L + 1)m X J(r + m), in order to identify O, ,. The
reason is to separate out the sub-matrices O and O, A from O, ;. See also Section 5.1
for a discussion.

From Theorem 4.2 and the factorization in Equation (104) we conclude that the two
algorithms, CVA, and DSR essentially have the same column space.

An interpretation of the CVA algorithm is that the system order is estimated as the
number of principal angles between the matrix Yp 4 yz+ 1 Uz ye+1 and Wi+
different from 7/2. The principal angles can be effectively computed using the SVD,
see e.g., Van Overschee (1995), p. 29 and Golub and Van Loan (1989). p. 428.

By using the triangular factors as shown in Section 5 we get the following method
for computing the principal angles

(R:2R% + R:aR%:) — IR2RL(RRRE) 1= US, VI + U8, V3 (108)

(107)

The system order is here identified as the number of singular values equal to one.

The next step in the CVA algorithm is to define a memory which defines a valid
sequence of system states. The system matrices can then be estimated from a least
squares problem.

6.3. N4SID
The N4SID algorithm is different. The following weighting matrices are used
W. = WU+ W)™ 'W,
W, =1+ iym N4SID (109)
g =1

The column weighting matrix used in the N4SID algorithm do generally not have the
same column space as W, or any of the column weighting matrices which results from
Equation (104) and Theorem 4.2. This is possibly the reason why N4SID gives bad
results for deterministic input signals.

In Viberg (1995) it is pointed out that the difference in the PO-MOESP and N4SID
algorithms is only the extra projection Uf + 1.+ 1. However, it is also claimed that the
resulting subspace estimates should therefore have very similar properties. From
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Theorem 4.2 and the above discussion we conclude that this conclusion in Viberg
(1995) is wrong. This is illustrated in example 2, Section 7.2.

From the above discussion we have the following relationship between the column
weighting matrix W, in Equation (104) and the matrix W, in (109) used by N4sid.

W= WU (110)

In Theorem 4.2, Equations (52) and (55), it is proved that the extra projection Up 4 ).+,
is necessary in order to remove the deterministic term H¢  ;Uy 1 1)+ and establish the
data matrix Z; 4, + which have the same column space as the extended observability
matrix. See also Example 2, Section 7.2, for an illustration.

The N4SID method computes the SVD of the data matrix defined in Equation (102)
with the above matrices W, and W,, Equation (109). If the triangular factors as shown
in Section 5 are used then we have

Ql] (111)

Q-

The orthogonal matrices (, and Q> are not used. The system order is identified as the
number of non-zero singular values and the extended observability matrix Qg+, is
estimated from the column space. The rest of the N4SID algorithm can briefly be
described as follows. From the extended observability matrix O, . | and the system data,
then a valid sequence of system states are estimated and a least squares problemis solved
in order to construct the system matrices A, B, D, E. The covariance matrices for the
process and measurements noise are then identified from a residual and a Riccati
equation is solved in order to construct the Kalman filter gain matrix C and the
innovations covariance matrix A.

The DSR method does not use state sequences and the Kalman gain matrix € and
the innovations covariance matrix A are constructed directly from the data, without
recursions of non-linear matrix Riccati equations.

RuR%L(R2RL) '[RaR2] [gl] = (U, 8.V + U,8,VY) [
2

6.4. The main differences and similarities

. Both algorithms, N4SID and CVA, estimates in the first instance a sequence of
states. When the states are known, the state space model matrices can be determined
by simple linear regression. Both methods must solve a matrix Riccati equation in order
to identify the Kalman filter gain and the innovations covariance matrices.

The DSR algorithm is based on first writing up an extended state space model
(ESSM) where the unknown states are eliminated from the problem. The ESSM shows
us the relationship between the known data matrices and the SSM matrices. Hence, the
DSR algorithm does not have any problems with unknown states; unknown initial
values, etc. The state space model matrices are then extracted from the ESSM. DSR
estimates the Kalman gain and innovations covariance matrices directly from the data,
without recursions of non-linear matrix equations, e.g. the Riccati equation.

The PO-MOESP algorithm does not estimate the stochastic part of the model. We
have shown that the CVA, PO-MOESP and DSR algorithms gives consistent estimates
of the extended observability matrix. The algorithms fit into the same Theorem 4.2. We
have shown that the N4SID algorithm in general does not give consistent estimates of
the extended observability matrix. However, it will give consistent results if an extra
projection of future inputs is included. From the above discussion we have the following
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relationship between the column weighting matrix W, in Equation (104) and the
matrices used by PO-MOESP, CVA and N4SID. See (105), (107) and (109).

W, = WEOMOESP — WVA(WEVAY = WUy 44

This is the most important similarities and differences between the method
presented in this work and the existing methods which are published.

7. Numerical examples

7.1. Example 1: Monte Carlo Simulation

A single input single output (SISO) system with one state is chosen to compare the
algorithm presented in this paper, which is entitled DSR (Deterministic and Stochastic
system identification and Realization), with two other algorithms, CVA (which stands
for Canonical Variate Analysis, Larimore (1983), (1990)) and the prediction error
method implemented in the MATLAB function ARMAX (i.e.,, in the system
identification toolbox, Ljung (1991)).

Xpe1 = 09x; + 0-5u; + 0-6e; (112)
yi= 1-0x,— 1-0uy + e, (113)

Three types of input signals were used. One input equal to a sum of four sinusoid signals,
u', one input equal to a white noise signal with unit covariance, «?, and one equal to

a sine, u.

u' u= 0-2(sin(2k5) + sin(::)) + sin(g) + sin(k))

u?> White noise, unit covariance

u?  uyp=sin(k)

For each input the time series (y, ux) was generated by simulating the model with 100
different white noise sequences e, also with unit variance.

The DSR algorithm parameter L was changed from 1 to 5 and the CV A parameter
I from 2 to 6. For each L and I, the mean and standard deviation of the parameters of
the 100 different estimated models are presented in Tables 1 to 6. The results obtained
by the ARMAX algorithm are also shown in the tables. See Ljung (1991) for the
description of the parameters nn = [1, 2, 1, 0] which is used as arguments to ARMAX.

The true deterministic system quadruple is denoted (a, b, d, €): = (0-9,0-5,1,— 1)
and the deterministic steady state gain and deterministic zero are denoted H“(1) = 4-0
and p4(1) = 1-4, respectively. The parameters in the stochastic part of the model are
(c, A): =(0-6, 1). The stochastic steady state gain and stochastic zero are denoted
H*(1)="7-0and p,(1) = 0-3, respectively. The signal to noise ratio is approximately 0-4,
hence, the identification problem is not simple.

The CVA algorithm sometimes estimated systems with negative (b, d) parameters,
1.e. sometimes an estimated quadruple (a, b, d, e) and sometimes (a, — b, — d, €). This
happened with the algorithm parameter /=3 and with a random input signal. It is
believed that this can be avoided by using a scaling similar to that presented in Section
54.

The results are very good for both the DSR and the CVA algorithms, see Tables
(1) and (2). There are small differences in the estimated models for both methods when
N is large, see Tables (1) and (2). This indicates that the asymptotic statistical
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distribution of the parameter estimates is the same. The example indicate that both the
DSR and CVA algorithms are insensitive to variation in the number of block rows.

The DSR algorithm is found to be approximately better than the CVA when the
number of samples are small (for this example and with N = 200 and N = 500 samples)
see Tables 3 to 6.

It is also interesting to observe that the results from DSR are as good as the results
from the ARMAX function, even for a simple SISO system. This indicates that DSR
gives asymptotically statistical optimal results for this example, both for purely
deterministic inputs (u' and #*) and stochastic input sequences (#2). Note that the
prediction error method (ARMAX function) is based on iterative optimization but that
the DSR algorithm only is based on SVD and QR decompositions. Prediction error
methods are rather complicated for MIMO systems while the DSR algorithm is very
simple.

Figures 2 to 8 are included in order to illustrate the asymptotic mean and variance
properties of the DSR algorithm for varying horizon parameters L and J. The figures
illustrate that the algorithm is numerically robust and that the estimates are consistent
and fairly insensitive for the parameters I, and J.

7.2. Example 2

We will in this example investigate the problem with colored input signals and the
N4SID algorithm.

Consider the same SISO one state example as in Example 1, Equations (112) and
(113). The two input signals were chosen. One equal to a pure sinusoid signal, input
type u”, and one equal to a white noise sequence with unit variance, input type % The
inputs are the same as defined in Example 1. The number of samples was fixed to
N=500. The standard deviation of the innovation was varied from A®S=0 to
A%* = 0-01 in order to investigate the sensitivity for noise. The number of block rows
in the data matrices was chosen as L =2.

The extended observability matrix O3 was estimated from the column space of the
matrix Z+jz+1, Equation (102). The dimension of the column space is estimated as
the number of “non zero” singular values, see Figure 9. We have also introduced the
normalized singular value (s, — s2)/s; as shown in Figure 10. This means that when
(51 — s2)/s; =1 then the number of states is n= 1.

The conclusions from Figures 9 and 10 are that the DSR algorithm gives reasonable
estimates for both the system order and the actual pole (the CVA and PO-MOESP gives
essentially the same results for this example) and that the N4SID algorithm does not
work at all for this system with a pure deterministic sinusoid input signal (i, = sin (k)).
However, note that when the input was changed to a white noise sequence (input type
u?) then the two algorithms gave essentially the same singular values as well as pole
estimates.

7.3. Example 3
A two input two output system with the following model matrices is considered.

1-5 1 0-1 00
A= -07 0 0-1 B=|0 1 (114)
o 0 0-85 1 0
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Normalized standard deviation of pole estimates

Figure 3. The standard deviation multiplied (normalized) with N'? of the pole estimates for

a Monte Carlo simulation with varying past horizon parameter J and varying identification

parameter L. The number of samples in each simulation was N = 15000 and the number of

simulations for each pair L, J was 100. The input was a sum of 5 sinusoid signals (u"). The

maximum standard deviation of the pole estimates was 0-6265/N'* at L=5 and J=3. The
minimum standard deviation was 0-4005/N"* at L=2 and J=13.

Mean of C estimates

064~ --
0,631
062 --
0.61

0.6+
0.59
0584

057"

Figurc4. The mean value of the Kalman filter gain estimates for a Monte Carlo simulation with
varying past horizon parameter J and identification parameter L. The estimates is computed by
the algorithm in Corollary 5.1. The number of samples in each simulation was N = 15000 and
the number of simulations for each pair L, J was 100. The input was a sinusoid signal (u*). The
actual value is C = 0-6. The mean of the estimates at the flat region described by 3 =J <6 and
1 < L =<5 was 0-6000. This indicates that the estimates are consistent for past horizon parameters
J> 2 independently of the choice of L, but clearly biased for J = 1. The estimates for J = 2 should
be further investigated.
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Normalized standard deviation of C estimates

Figure 5. The standard deviation multiplied (normalized) with N'? of the Kalman filter gain
estimates for a Monte Carlo simulation with varying past horizon parameter J and varying
identification parameter L. The estimates is computed by the algorithm in Corollary 5.1. The
number of samples in each simulation was N = 15000 and the number of simulations for each
pair L, J was 100. The input was a sinusoid signal (#*). The following parameters is found from
the region with consistent estimates. The maximum standard deviation of the pole estimates was
1-2135/N"* at L = 4 and J = 5. The minimum standard deviation was 0-9344/N"2 at I, = 2 and
J=35. The mean of all standard deviations was 1-0315/N"2,

Mean of F estimates

Figure 6. The mean value of the square root of the innovations variance estimates F for a Monte

Carlo simulation with varying past horizon parameter J and identification parameter L. The

estimates is computed by the algorithm in Corollary 5.1. The number of samples in each

simulation was N = 15000 and the number of simulations for each pair L, J was 100. The input

was a sinusoid signal (u*). The actual parameter value is F = 1. The mean of all the estimates

in the figure is 0-9996 with a standard deviation of 7-4 X 10~ %. This indicates that the estimates
are consistent.
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Normalized standard deviation of F estimales

Figure7. The standard deviation multiplied (normalized) with N 1”2 of the innovations variance

estimates F for a Monte Carlo simulation with varying past horizon parameter J and varying

identification parameter L. The estimates is computed by the algorithm in Corollary 5.1. The

number of samples in each simulation was N = 15000 and the number of simulations for each

pair L, J was 100. The input was a sinusoid signal (u 1). The minimum standard deviation was
0-6016/N"? at L=4 and J=6.

Mean of C estimates

Figure8. The mean value of the Kalman filter gain estimates for a Monte Carlo simulation with

varying past horizon parameter J and identification parameter L. The estimates is computed by

the algorithm in Corollary 5.2. The number of samples in each simulation was N = 15000 and

the number of simulations for each pair L, J was 100. The input was a sinusoid signal (”). The

actual value is C = 0-6. The bias for J = 1 as shown in Figure 4 when the estimates was computed
as in Corollary 5.2 is approximately eliminated.
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DSR: singular values as a function of varying noise

ﬂﬂﬂﬂim

L]

(=]

0 000t 0002 0003 0004 0005 0.006 0.007 0008 0005 001
N4SID: singular values as a function of varying noiss

e e} Ry N .

0 0001 0002 0003 0004 0005 0006 0.007 0.008 0009 0.1

Figure 9. The singular values for model order selection as a function of varying innovations
noise level. The input to the system was a pure sinusoid signal (input type «°). The other
parameters is as described in Example 2. The singular values from the DSR algorithm is shown
in the upper figure and for the N4SID algorithm in the lower. The actual system order is 7= 1.
As we can see, the system order is fairly well detected by the DSR algorithm and that the N4SID
algorithm does not work at all for this system with a sinusoid input signal.

-

DSR and N4SID: normalized singular values

B8

£
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&
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0 0001 0002 0.003 0004 0005 0006 0.007 0008 0000 0.01
standard deviation of the innovation

Figure 10.  This figure shows the normalized singular values (s; — s,)/s; and the pole estimates
as a function of varying innovations noise level for the system in Example 2. The input to the
system was a pure sinusoid signal (input type «*). The other parameters is as described in
Example 2. The normalized singular values from both the DSR and N4SID algorithms are shown
in the upper figure. The pole estimates is shown in the lower figure. The actual system order is
n=1 and the actal pole is 0-9. As we can sce, the system order and the pole is fairly well
estimated by the DSR algorithm and that the N4SID algorithm does not work at all for this system

with a sinusoid input signal.
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3 o —06 o o

b=lg 1 1 ] E'[O 0] (15)
[ 0 o1 A:[l 0}

Cc= 01 0 0 1 (116)
. 0 02

The systems have a deterministic zero at — 3, i.¢. the system is non-minimum phase.
The eigenvalues of A are 0-85, 0-75 = 0-3708i.
The deterministic and stochastic gain matrices are given by

16 15 25 47
dg1y — S1y —
H() [2-6667 —2-5] Q) [—(}25 l-1833]

The algorithm gives exact results when A = 0. Hence, this result is not presented. The
time series yx, 1 was generated by simulating the model with one particular random
noise process ¢, with covariance A. The input was u = [u’u']". The DSR parameter was
fixed to L = 6. The following estimates are obtained by DSR.

15-6575 14-6168] H‘(l)*[ 23625 4-5583
25576 —2-4188 —02436 1-1275
;5=[ 1-0531 —00244]
— 00244 09859

A%(1) =[

In order to analyze the accuracy of the innovations covariance matrix eximates from
Theorem 4.3 a Monte Carlo simulation with 100 experiments and varying number of
observations was performed. In Van Overschee (1995) a robust expansion of the N4SID
algorithm is presented. This version of N4SID is denoted ROBUST. The extra
projection Uy + yjz+1 onto the original N4SID projection is included in the ROBUST
algorithm. See Section 6.

The results from DSR, PEM and ROBUST are shown in Figure 12. This result
indicated convergence problems for the PEM algorithm.

The estimates from the Monte Carlo simulation shown in Figure 4.

L 1 2 3 4 5 6

1 06329 0-6038 0-5997 0-5999 0-6005 0-6018

2 06333 06033 0-5995 0-6007 0-6000 0-5997
&L,))=3 06346 06016 06002 0-5991 0-6008 0-6004 (117)

4 06346 06037 0-6014 0-6004 0-5998 0-5990

5 06345 06035 0-5997 0-5986 0-5992 0-5995

8. Concluding remarks

A method for subspace identification and realization of state space models on
innovations formed directly from given input output data is presented. The method
determines both the deterministic part and the stochastic part of the model. The
algorithm gives exact results in the deterministic case and consistent results when the
system 1s influenced by noise.
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System Singular Values Condition numbers
10° . 107
10° % 10" - ‘KI*“"‘?"'
lo“ 10.....
107} . 10° |
_ ‘!!!!n'
i ‘——.__.L'.._, o
%% 5 10 15 oy 15
Systermn order
,  System Singular Values
10° p 10° =
10_‘1; |n|f|||!|!u_!!1
ol o
o 5 10 15 4] 5 10 15
System order System order

Figure 11.  Singular values and conditions numbers for system order estimation. The noise free
case with A = 0, upper. The case with A = I, lower.
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Figure 12. Results from a Monte Carlo simulation in order to investigate the accuracy of the
innovation estimates. The model in Example 3 is simulated 100 times with varying number of

samples. The DSR estimates is computed from Theorem 4.3. The PEM algorithm converged only
for number of samples N < 3000.
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