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Identification of dynamically positioned ships
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Todays model-based dynamic positioning (DP) systems require that the ship and
thruster dynamics are known with some accuracy in order to use linear quadratic
optical control theory. However, it is difficult to identify the mathematical model
of a dynamically positioned (DP) ship since the ship is not persistently excited
under DP. In addition the ship parameter estimation problem is nonlinear and
multivariable with only position and thruster state measurements available for
parameter estimation. The process and measurement noise must also be modeled
in order to avoid parameter drift due to environmental disturbances and sensor
failure. This article discusses an off-line parallel extended Kalman filter (EKF)
algorithm utilizing two measurement series in parallel to estimate the parameters
in the DP ship model. Full-scale experiments with a supply vessel are used to
demonstrate the convergence and robustness of the proposed parameter estimator.

1. Introduction

Modern dynamic positioning (DP) systems are based on model-based feedback
control. The state estimator and control law are designed by applying a low-frequency
(LF) mathematical model of the ship motions caused by currents, wind and 2nd-order
wave loads, and high-frequency (HF) model of the Ist-order ship motions caused by
Ist-order wave disturbances; see Fossen (1994).

Model-based control systems utilizing stochastic optimal control theory and
Kalman filtering techniques was first employed with the DP problem by Balchen ez al.
(1976). Later extensions and modifications of this work have been reported by Balchen
et al. (1980a, 1980b), Grimble et al. (1980a, 1980b), Fung and Grimble (1983) and
Selid er al. (1983).

In order to achieve good performance of the control system it is necessary to have
a sufficient detailed mathematical model of the ship. ABB Industri AS in Oslo has
marketed a new self-tuning model-based DP system based on the results presented in
this article whereas the control system design is discussed in Sgrensen et al. (1995).
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2. Ship and thruster models

This section describes the mathematical model of the thrusters and the LF motion
of the ship.

2.1. Thruster model

Most DP ships use thrusters and main propellers to maintain their position and
heading. The thrust force of a pitch-controlled thruster can be approximated by

F(n,p) = Km)|p = pol(p — po) H

where the force coefficient K(n) is assumed to be constant for constant propeller
revolution n, P is the “traveled distance per revolution’, D is the propeller diameter and

p=PID )

is the pitch ratio. po is pitch ratio off-set defined such that p = po yields zero thrust,
that is

F(n,po) =0 (3)

Thrust forces and moment. The thrust forces and moment vector 7 € R? (surge, sway
and yaw) for the supply vessel in Fig. 1 can be written
©=TKu (G

where u € R" is a control variable defined as

=[|p1 — Piol(P1 — P10}, | P2 = P2ol( P2 — P20)s .. . | Pr = Prol(Pr — Pr)I® )

where py (i = 1 ... r) are the pitch ratio off-sets for thruster no. i and r is the maximum
number of thrusters.

Thrust force coefficient matrix. The thrust force coefficient matrix K is a diagonal matrix
of thrust force coefficients defined as

K = diag {Ki(m), Ka(n2), ..., KAn,)} (6)

where n; (i = 1 ... ) is the propeller revolution of propeller number i. The thrust forces
Ki(n)u; are distributed to the surge, sway and yaw modes by a 3 Xr thruster
configuration matrix T.

Thruster configuration matrix. Consider the ship in Fig. 1 which is equipped with two
main propellers, three tunnel thrusters and one azimuth thruster which can be rotated
to an arbitrary angle o. The control variables are assigned according to

u; = porl main propeller ug = aft tunnel thruster II
u, = starboard main propeller us = bow tunnel thruster
u3 = aft tunnel thruster T g = bow azimuth thruster




Identification of dynamically positioned ships 155

Figure 1.  Picture showing the supply vessel which was used during the sea trials in the North
Sea (L =76-2m).

main propeller {kiN)

tunnel thruster (kiN)
T T T T 200 . T T

-1 -0.5 0 0.5 1
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Figure 2. Experimentally measured thrust (asterisks) and thruster model approx. Eqn. (1)
versus p = P/D. Left plot: F(122,p) =370 p|p| and F(160,p) =655 p|p|. Right plot:
F(236,p) = 137 p| p|. Propeller revolution is in rpm.

The following thruster configuration matrix is obtained

1 | 0 0 0 cosa
Tr'=| 0 0 1 1 1  sino (7

£| —l'g —13 —ly Is Igsina

where I; (i = 1 ... 6) are the moment arms in yaw. It is also seen that I, = I, (symmetrical
location of main propellers). The thrust demands are defined such that positive thrust
force/moment results in positive motion according to the vessel parallel axis system
defined such that positive x-direction is forwards, positive y-direction is starboard and
positive z-direction is downwards. The origin is located in the centre of buoyancy.
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2.2. LF ship dynarnics
The LF ship model in surge, sway and yaw can be described by Fossen (1994)

My+Cwv+Dlv—v)=7+w (8)

where v = [u, v, r]T denotes the LF velocity vector, v. = [u,, v.,r]" is a vector of current
velocities, 7 is a vector of control forces and moments and w = [wy, wo, wia]" is a vector
of zero-mean Gaussian white noise processes describing unmodeled dynamics and
disturbances. Notice that r. does not represent a physical current velocity, but can be
interpreted as the effect of currents in yaw. The current states are useful in the parameter
estimator since they represent slowly-varying non-zero bias terms.

The inertia matrix including hydrodynamic added mass terms is assumed to be
positive definite M =M " >0 for a dynamically positioned ship, whereas D >0 is a
strictly positive matrix representing linear hydrodynamic damping. Nonlinear damping
is assumed to be negligible for station-keeping of ships whereas the assumption of
starboard and port symmetry implies that M and D can be written

[ m— X, ] 0
M= 0 m—Y, mxc—Y: )
0 mxg—Y: I.—N;

—X. 0 0
D= 0 -Y, Y (10)
_Nv _Nr

The Coriolis and centrifugal matrix C(v) is included in the model to improve the
convergence of the parameter estimator. Moreover this matrix may be significant for
a ship operating at some speed whereas C(v) = 0 for a ship at rest. It should be noted
that inclusion of C(v) in the model will not increase the number of parameters to be
estimated sine C(v) only is a function of the elements mj of the inertia matrix; see
Theorem 2.2. on p. 27 in Fossen (1994). In fact M = {m;;} yields

0 0 — MoV — MigaF
Clv)y= 0 0 my (1n
mipv + ik — mn 0
where the non-zero elements m; = — m;; are defined according to (9) such that

mu=m—X; My = mxg— Y;
(12)

myp=m— Yy maz =1 — N;

2.3. Kinematics

The kinematic equation of motion for a ship is

n=J0pv (13)




Identification of dynamically positioned ships 157

System model Stk + 1) = F (&K, uk)) + I'w(k); w(k) ~ (0, Q(k))
Measurement z(k) = H(ER)) + v(k); v(k) ~ N(0, R(k))
Initial conditions &0) =& P0)=P,
State estimate propagation Ek+ 1) = F (&), u())
Error covariance propagation  P(k + 1) = (PP (k) + F' kORI (k)
Gain matrix K(k) = P()H " () [H(K)P(k)H " (k) + R(k)] !
State estimate update (k) = &(k) + K(k)[z(k) — (&)
Error covariance update k) = (I — K(YHK) PG — K()HET + KEROK (5
.. aF () ()
Defi Dk) = ——= H(K) =—
nitions O=3e® kw-t0 TP =38 lawr-ion

Table I. Summary of discrete-time extended Kalman filter (EKF).

where i = [x,y, ¥]" and J(y) is a rotation matrix defined as
cosyy —siny 0
Jap=| singy cosyy O
0 0 1

3. Off-line parameter estimator

The off-line parameter estimator is based on the state augmented extended Kalman
filter (EKF).

3.1. State augmented extended Kalman filter
Consider the following nonlinear system
x(k + 1) = f(x(k), u(k), 0(k)) + w1 (k) (15)
O(k + 1) = (k) + n(k) (16)

where x € R" is the state vector, # € R” is the input vector, 6 € R’ is the unknown
parameter vector to be estimated and w,,n € R" are zero-mean Gaussian white noise
processes. This model can be expressed in augmented state-space form as

Sk + 1) = F(&(k), u(k)) + w(k) (7

where & =[x",0"]" is the augmented state vector, w = [w], 5"]" and

k), u(k), 0k
FE®R), ulk) = [f (e, o, 6 ”] (18)
o)
Furthermore, it is assumed that the measurement equation can be written
z(k) = H(&(k)) + v(k) (19)

where z € R™ and m is the number of sensors. The discrete-time extended Kalman filter

algorithm in Table 1 can then be applied to estimate & = [x", 8"]" in (17) by means of

the measurement (19). For details on the implementation issues see Gelb er al. (1988).
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3.2. Off-line EKF for parallel processing

In order to improve the convergence and performance of the parameter estimator
the same quantity can be measured N=2 times for different excitation sequences.
Moreover, let the input u; € R” correspond to the state vector x; € [R" and measurement
vector z; € R™ for (i=1...N). Under the assumption of constant parameters, the
parameter vector @ € R” will be the same for all these subsystems. This can be expressed
mathematically as

xi(k + 1) = f(x1(k), ur(k), 0(k)) + wi(k)
x5(k + 1) = f(xa(k), uz(k), 6(k)) + wa(k)

xnk + 1) = fentk), unk), 0(ky) + wik)
ok + 1) = 0(k) + n(k) (20)
with measurements
zi(k) = h(xy(K), 0(k)) + vi(k)
22(k) = ha(x2(k), 0()) + va(k)

k) = ha(xn(k), 0(K)) + vi(k) 21

Hence, this system can be written in augmented state-space form according to
x(k + 1) = F(EF), uk)) + wk) (22)
z(k) = H(E(K)) + v(k) (23)

where u = [ul, ..., uy]", z2=[z], ..., 20", €= [x1. ..., x5, 07" and

[ Fxi(k), ur(k), 0(K))
FOea(k), us(k), O(K))

F (EK), u(k)) = : 24)
S Oendk), undk), O(K))
! 0(k) ]
" h(xi(K), 606))
h(xa(k), 0K)
H(E(k)) = : (25)

| B(xn(K), O(K))

It is observed that dimx = Nn + p, dimu = Nr and dimz = Nm. It is then evident that
more information about the system is obtained by using multiple measurement
sequences. Increased information improves parameter identifiability and reduces the
possibility for parameter drift. However it should be noted that parallel processing
implies that the parameters estimation must be performed off-line.
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Figure 3. Parallel configuration of EKF for N = 2.

For ship applications significant performance improvement is reported already for
N =12; see Abkowitz (1975), Abkowitz (1980) and Hwang (1980).

4. Identification of a supply vessel

Full-scale experiments with the supply vessel in Fig. 1 will be used 10 demonstrate
the convergence of the proposed parameter estimation algorithm.

4.1. System identification model

The system identification model is based on the mathematical model presented in
Section 2. Assuming no environmental disturbances a dynamically positioned ship can
be described by the following non-dimensional model (Bis-system) in surge, sway and
yaw (see p. 178 in Fossen 1994)

MV + C"(WV'W' + D"V = T'K"'u" (26)
where
(1-X; 0 0
M= 1-Y; xg—Y/ 27
! x¢—Y; K—N;
[ X, 0 0
D'=| 0 -Y. —v (28)
| 0 =N, —NJ
The thruster configuration matrix was computed to be
1-0000 1-0000 0 0 0 0
=0 0 1-0000 1-0000 1-0000 1-0000 (29)

00472 —0-0472 —0-4108 —03858 0-4554 0-3373

whereas K” = diag { K, K3, K3, K1, K5, K¢} is the unknown matrix to be estimated. In
addition to this it will be assumed that D" is unknown. An a priori estimate of M" is
calculated by applying semi-empirical methods. For more details about the computation
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Figure 4. Decoupled parameter estimation in terms of three system identification schemes
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Figure 5. Sea Trial 1: Full scale experiment with a supply vessel (uncoupled surge).

of the added mass derivatives X5, Y, Ny and Y7, see Faltinsen (1990). The inertia matrix
M" was computed to be

1-1274 0 0
M"=|0 1-8902 —0-0744 (30)
0 —0-0744 0-1278

Hence K” and D" are the only remaining unknown matrices in the DP model (26).

4.2. Sea trials

In order to improve the convergence of the parameter estimator it is proposed to
use several off-line measurement series generated by a number of carefully predefined
manoeuvres. For instance, it is advantageous to decouple the surge mode from the sway
and yaw modes in order to fmprove the convergence of the parameter estimator. This
is motivated by the block diagonal structure of M" and D"

Decoupled ship manoeuvres. The following three decoupled ship manoeuvres are
proposed:

(1) uncoupled surge: the ship is only allowed to move in surge (constant heading)
by means of the main propellers u; and uz. The heading is controlled by means
of one of the bow thrusters. At least two manoeuvres should be performed; see
Fig. 5.
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Figure 6. Sea Trial 2: Full scale experiment with a supply vessel (coupled sway and yaw).
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Figure 7. Sea Trial 3: Full scale experiment with a supply vessel (azimuth test).

(2) coupled sway and yaw: the ship should perform two coupled manoeuvres in
sway and yaw by means of the three tunnel thruster us, u, and us. Two
manoeuvres should be performed; see Fig. 6.

(3) azirnuth test: the last test involves running the azimuth thruster ug alone. Two
measurements series are required; see Fig. 7.

4.3. Implementation issues

This implies that at least 6 sea trials must be performed for N = 2. The first two sea
trials are used to identify the parameters K| = K3 and X, in the decoupled surge equation

(1 — X" — X" = Ky + Kous 31
L=u" (32)

where X is computed by using strip theory (Faltinsen 1990). The parameter vector




162 T. I. Fossen et al.

corresponding to this system is denoted as 01 = [K|,X.]". The estimated parameter
vector B in surge is frozen and used as input for the second system identification scheme
(S12), that is the coupled sway and yaw identification. Similarly, the output from the
second parameter estimation scheme 83 is frozen and used as input for the last parameter
estimation scheme (SI3), that is #3. The last scheme is used to estimate only one
parameter, that is 0% = K¢ whereas the second parameter estimation scheme is used to
estimate the coupling terms in sway and yaw; see Fig. 4. In the last to parameter
estimation schemes the ship is commanded to change heading during the manoeuvres
which implies that the nonlinear kinematic equation

i = J" W 33)

where 5" = [x",)",y"1* should be used together with the dynamic model (26).
Hence the unknown parameter vector corresponding to sea trials 2 is
05 =[Y", Y. Ny NI, K3 K5|". In this example the tunnel thrusters at the stern are of
same type (K3 = K3). It is convenient to rewrite (26) and (33) in terms of the vessel
momentum

h=M" (34)
and a momentum bias term b; which yields the following model

W+ Cy ("R = A (OMR" + T'K"(0"W" + b+ wy (35)

7" =J" " M" " 'h" (36)

b" = ws (37

0" =we (38)

Here w,, wy, and wg are zero-mean Gaussian white noise processes, by is a slowly-varying
parameter representing unmodeled dynamics and environmental disturbances, 0" is
the parameter vector to be estimated. The new matrices in the model are defined
according to

A}. = - DM (39)
Ci(h)=C(M " 'h) (40)

Since M is assumed to be known with sufficient accuracy the only unknown quantities
in (35)—(38) are A; and K. The main motivation for using the momentum equation
instead of the standard dynamic equations of motion is improved performance of the
state and parameter estimator. Moreover estimation of the states h = Mv, 5 and b,
together with the parameter vector  is easier to perform than estimation of v, n, b, and
0. Hence the resulting model can be written

x1(k + 1y = f (k) ur(k), 0(k)) + wi(k) 41
x2(k + 1) =f (e2(k), uz(k), 0(k)) + wa(k) (42)
&k + 1) = 0(k) + we(k) (43)

where x; = [hY, 47, bF]Y, wi= [wh,wi]" (i =1,2) and with obvious definition of f. If
position (x,y) and heading (i) are measured (23) becomes

z:(k) = Hixy(k) + v1(k) “44)
22(k) = Haxa(k) + va(k) (45)
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Figure 8. Parameter estimates )65 versus time for the supply vessel.

4.4. Experimental resuits

Six manoeuvres with the supply vessel were used to estimate the DP model. The
unknown parameter vector 8” =[87, ..., 0] is organized according to

07 0 0
Av=|0 05 0%
0 0 6%
K" = diag {05, 05, 07, 07, 05, 05} (47)

The parameter estimates for the off-line parallel configuration of the EKF algorithm is
shown in Fig. 8 whereas the steady-state numerical values are given below.

Identified momentum equation

-00318 0 0
Ar=| o - 00602 00618 (48)
0 — 00075 — 02454
K" =10"*diag {9:3,9-3,2.0,2.0,2-8,2.6} (49)

Identified state-space model. The estimated model (35) can be related to the DP control
model by assuming that C,(h) = 0. Hence

V' =A"Y' + Bt" 50)
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where A” = M" 'AIM” and B” =M" " '. The numerical values are

[ —0.0318 0 0

A= 0 —0-0628 —0-0030 (51)
|0 —0-0045 —0-2428
[ 00082 00082 O 0 0 0

B"=| 00001 —0-0001 0-0008 0-0008 0-0020 0-0017 (52)
Lo-ooss — 00035 —00059 —0-0055 00113 00079

For more details about the DP control system design, see Sgrensen et al. (1995).

5. Conclusions

In this paper a new approach for identification of dynamically positioned ships has
been proposed. Three different ship manoeuvres were used in a decoupled identification
scheme based on an off-line parallel configuration of the extended Kalman filter
algorithm. Simulation studies showed that the proposed parameter estimation scheme
was remarkably accurate for ship models that were coupled in surge, sway and yaw.
The parameter estimation algorithm has been implemented and tested on a supply
vessel. The estimated model of the supply vessel has been implemented and used for
model-based DP control system design. The estimated values of this ship showed good
agreement with experimental results from model tests.

REFERENCES

ABKOWITZ, M. A. (1975). System identification techniques for ship maneuvering trials. In:
Proceedings of Symposium on Control Theory and Navy Applications. Monterey, CA. pp.
337-393.

ABKOWITZ, M. A. (1980). Measurement of hydrodynamic characteristics from ship maneuvering
trials by system identification.. In: Transactions on SNAME, 88, 283-318.

BALCHEN, J. G-, JENSSEN, N. A, and S£LID, S. (1976). Dynamic positioning using Kalman filtering
and optimal control theory. In: IFACIIFIP Symposium on Automation in Offshore OQil Field
Operation. Holland, Amsterdam. pp. 183-186.

BALCHEN, J. G., JENSSEN, N. A., and S£LID, S. (1980a). Dynamic positioning of floating vessels
based on Kalman filtering and optimal control. In: Proceedings of the 19th IEEE
Conference on Decision and Control. New York, NY. pp. 852-864.

BALCHEN, J. G., JENSSEN, N. A., MATHISEN, E., and S&LID, S. (1980b). Dynamic positioning
system based on Kalman filtering and optimal control. Modeling, Identification and
Control, 1, 135-163.

FALTINSEN, O. M. (1990). Sea Loads on Ships and Offshore Structures (Cambridge University
Press).

Fossen, T. 1. (1994). Guidance and Control of Ocean Vehicles (John Wiley and Sons Ltd).

Funo, P. T.-K., and GRIMBLE, M. 1. (1983). Dynamic ship positioning using a self tuning Kalman
filter. IEEE Transactions on Automatic Control, 28, 339-349.

GELB, A., KASPER, J. F., JR., NAsH, R. A, JR., PrICE, C. F., and SUTHERLAND, A. A., Jr. (1988).
Applied Optimal Estimation (MIT Press, Boston, Massachusetts).

GRIMBLE, M. J., PATTON, R. J., and WIsg, D. A. (1980a). The design of dynamic positioning
control systems using stochastic optimal control theory. Optimal Control Applications and
Methods, 1, 167-202.

GRIMBLE, M. J., PATTON, R. J., and WIisg, D. A. (1980b). Use of Kalman filtering techniques in
dynamic ship positioning systems. In: JEE Proceedings, 127, D, 93-102.




Identification of dynamically positioned ships 165

HWwANG, WEI-YUAN (1980). Application of § ystem Identification to Ship Maneuvering. Master’s
thesis. Massachusetts Institute of Technology.

S#LID, S., JENSSEN, N. A., and BALCHEN, . G. (1983). Design and analysis of a dynamic
positioning system based on Kalman filtering and optimal control. IEEF, Transaction on
Automatic Control, 28, 331-339.

SORENSEN, A., SAGATUN, S. I, and Fossew, T. L. (1995). The design of a dynamic positioning
system using model based control. In; Preprints IFAC Workshop on Control Applications
in Marine Systems (CAMS’95). Trondheim, Norway.




