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A globally stable adaptive ship autopilot with wave filter
using only yaw angle measurements
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A stable minimum phase transfer function from rudder angle to yaw angle is used
to design a globally stable adaptive ship autopilot. First-order wave disturbances in
yaw are filtered by applying a notch filter. Integra) action is introduced by using a
reference model technique. Global stability is proven for the total system which
include the yaw rate observer, the parameter update law, the feedback controller,
the notch filter and the integral part of the controller. The simulation results showed
that the performance is excellent, even with no a priori knowledge of the ship
parameters.

1. Introduction

This paper addresses the problem of controlling a ship with unknown parameters
by using feedback only from the yaw angle. In addition the problem of high-frequency
rudder motions due to 1st-order wave disturbances in the feedback loop is addressed.
This problem is usually solved by using a Kalman-filter to estimate the low-frequency
motion components of the ship and use these in the controller. Wave filtering in terms
of the Kalman filter algorithm has been discussed by Balchen et al. (1976, 1980a, b),
Grimble ef al. (1980a,b), Selid and Jenssen (1983), Reid ef al. (1984) and Holzhiiter
and Strauch (1987). However, if the wave filter, the control law and the parameter
update law are designed independently, global stability and robustness cannot be
guaranteed. In this paper an unified approach based on cascaded notch filtering and
Model Reference Adaptive Control (MRAC) is proposed. The MRAC scheme is based
on the input error direct adaptive control law of Bodson (1986) and Bodson and Sastry
(1987). This scheme uses observers instead of full state feedback (see Fig. 1) and the
reference model has to be stable and of the same relative degree as the plant.

This approach proved to have several advantages; only measurement of the yaw
angle is necessary and in theory it is possible to filter the Ist order wave disturbances
sufficiently and prove global stability at the same time. In addition no exact tuning of
the initial values of the control parameters was necessary. Low-frequency disturbances
due to currents and wind were compensated for by adding integral action in the
controller. This is done by modifying the reference model. Finally, the controlled ship
showed to be robust and globally stable also under rudder saturation. This is due to the
fact that the input error is used to update the parameter estimates.
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Figure 1. Block diagram showing MRAC principle.

2. Direct adaptive control: an input error approach

The first step is to derive an adaptive control law under the assumption that the ship
is minimum phase. This constraint is no limiting factor, since all ships are minimum
phase from rudder (8) to yaw angle ().

Consider the ship model of Nomoto et al. (1957)

v ayp  diz ] v 73}
Fl=1an azz 0 r|+ bz P (1)
Up 0 1 0]y, 0

where ¥/, is the yaw angle, r is the angular velocity in yaw and v is the sway velocity.
Applying the Laplace transformation to this model yields a 3rd-order transfer function

Yo (+T9
5 O T+ Tos(1+ Tos) @
For simplicity egn. (2) is writien as
Yo n,($)
PP oy = P(s) A g
5 (s)=P(s) & Kpdp(s) 3)

where the polynomials n,(s) and d,(s) have degrees m = 1 and n =3, respectively, and
therefore P(s) has relative degree v, = 2. These polynomials are also monic and coprime
because T # T3 and T, # Ts.

2.1. Reference model

A reference model with dynamic properties equal to the desired closed-loop ship
dynamics has to be chosen. A natural choice is a 2nd-order critical damped system

Y @
r )= s2 + 2Cwes + wyp, @
where { =1 and oy is the natural frequency. The transfer function is
'.bm 1,(S)
=M(s) LK,
. (s) (s)AK, d,(s) (5)

with obvious choices of n,,(s) and d,(s). Notice that the reference model has relative
degree Ym =7, = 2.
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2.2. Output feedback law

The control design methology of Bodson (1986) and Bodson and Sastry (1987), see
also Sastry and Bedson (1989), is applied to design a globally stable output feedback
autopilot. Consider the control law

_ D] d'(s)
6(5)—cor{s)+ (s )6( s) + ) Y(5) ©6)
where d’'(s)/A(s){,(s) can be written as:
o'(s)
o) Yls) = doy,(s )+ X }wp( $) )

Here /(s) is chosen equal to Ay(s)n,(s), whereas n,,(s) is the numerator of the reference
model. The only constraint is that J¢(s) must be Hurwitz. In addition the polynomials
have to satisfy dim(4) =n — 1, dim(c) =n — 2 and dim(d) = n — 2. Moreover

M)=s*+ s+ 4y
c(s) =25+ (8)
d(s) =d»s + d,

The control law given by Eqns. (6) and (7) is linear in its parameters. This can be seen
by defining two signals

wi(s) & ‘A( ) [ ] a(s) &)

wo(s) & ) [ ] Yp(s) (10)
Hence

c(s) _ T

) Yp(s) = c'wy(s) (n

d(s) 5 Vok) = d"wls) (12)

where ¢ = [¢},¢;] and d” = [d}, d3]. Hence the control law (6) and (7) can be written:

8(r) = @T(w() (13)

where
(1) & [co(D). €T(1), do(t), d™(1)]" (14)
w(t) & [r(t). wi(D), Y (1), wh(D)]" (15)

Notice that the controller parameters are time-varying. This is because an identifier
algorithm will be applied to estimate @(r), see Section 2.3.

If the ship dynamics is known, the exact control parameters can be calculated from
the closed-loop identity

oK, A(s)ng(s)

M(s) (16)

[A(s) — c(8)]dp(s) — K,,n,,(.s)d'{s)
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which has the unique solution

K
C% = K_p
*(s) = Ms) — g(sIng(s) (7)

1
d’*(s)= K. [g(s)dy(8) — Ao($)dp(5)]
P

when 3, = ... Then, application of the control law
8D = O *Tw(r) (18)

to the ship model (2) makes the closed-loop dynamics equal to the reference model
dynamics (4).

2.3. Identifier structure
Equation (5) can be written

r(s)=M ~(Wnl(s) a9
Hence the plant input can be defined as
r(s) A M~ ($(s) (20)

Then the input error e(s) can be defined as
ei(5) & ry(s) — r(s)
=M ' (Wp(8) — Ynls)) (21)

Perfect tracking, see Eqn. (16), implies that it is possible to derive an expression for
the input error

eds) = $ B ()2(s) 22)
where

As) = [ ()], P(s) = O(s) — O
and

w(s) = [wi(s), Yp(s), wi(s)]" (23)

The signal r,(s) = M~ '(s)/,(s) is not available since y,» = 2. Hence a modification of
the input error is necessary. Therefore a new transfer function, L I(s), is introduced.
This transfer function is stable, minimum phase and has relative degree y; =n —m = 2.
Moreover, the following signal can be defined

v(is) AL Y($)z(s)
_ [(M(s)L(s)) ‘-.b,,(s)]T
L™ (s)W(s)

Notice that the signal (M(s)L(s)) ~ '{s,(s) is available since M(s)L(s) has relative degree
ym = 0. This leads to the definition of the modified input error

ex(s) = PT(s)v(s)
= @"(sw(s) — L™ '(5)d(s) (25)

(24)

where ex(s) € .
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Figure 2.  Block diagram showing MRAC applied to a ship with yaw measurements.

2.4. Identification algorithm

Given the modified input error in Eqn. (25), a identification algorithm is used to
update the control parameters in Eqn. (13). Because the controller is linear in its
parameters several algorithms are available. For instance, the normalized least square
algorithm

ex(NP(Hv(1)
1 + W OPHV(D)

Py (OP(1)
I+ POV

with g,7 > 0and P(t) € R°*® showed excellent performance. The ship with the MRAC
is shown in Fig. 2.

omn=—g

(26)

Pn=—g

27

2.5. Integral action

Itis necessary to introduce integral action to avoid steady-state errors due to slowly
varying disturbances like currents, wave drift and wind. Notice that the reference model
(4) can be written

_ hots)
M) = 1 + ho(s) (28)
where
2
W
ols) = s(s + 2L wy) 9

is the reference model open-loop transfer function. Hence integral action can be
obtained by defining a modified open-loop transfer function

- 1+7T;
ioks) = T8 ) (30)
Tis

which yields the following reference model

s+ 1UT)

sy = R SFVT)
) 0¥ 2L e + wls + YT

(31

From Eqn. (30) it is easy to see that the reference model (31) has integral action, and
therefore the ship will obtain the same property.
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2.6. Stability analysis
If a gain K is defined, such that

K, < Kax (32)

then, according to Appendix B, the ship (3) with reference model (4) or (31), controller
(13), identifier structure (25) and identification algorithm (26) is globally stable.
In addition ex(7) — 0 and thus y,(7) = ¥,.(f) whereas d(#) is bounded. Rudder saturation
does not affect this result.

3. Adaptive control law with cascaded notch filter

An important part of a ship autopilot is the wave filter. The wave filter is included
to avoid high-frequency rudder motions. This is usually solved by applying a
Kalman-filter to estimate the low-frequency motion components. In this section another
approach is suggested. The ship model is augmented with a notch filter and the
augmented model is used for control design. The augmented ship model is

By — — g SNs)
Pls) = BOPO) = KK 4 S

o (s)
=K, 4,(5) (33)

where K, = K,Kp, fi,(s) = ny(s)ny(s) and @,(s) = di(s)d(s), see Fig. 3. B(s) is a notch
filter given by

s + 2005 + 7Y
Bsy=" (sc-l-_c;s)T) (34)

where @, is the encounter frequency and {,<1. Notice that K, = kK= K.
The augmented ship model can be written as

Yh(s) = B(s)P(s)u(s) = B(s)Y,(s) (35)

where g!/f;(s} is the low frequency part of ,(s) which is used for feedback. Therefore,
high-frequency rudder motions can be avoided by proper selection of B(s).

3.1. Reference model

Notice that the relative degree is unchanged, that is y; = y,. Hence augmentation
of the reference model is not necessary, and M(s) = M(s).

3.2. Adaptive control law with noich filter
From (6) and (7), the following polynomials are obtained

ﬂ(s)=52k'2+i2k+252’“]+...+1|

o(8) = cmr 25T+ L+ (36)

d{S}=d2k+zSzk+l + ... +d;
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Then, by defining

1
1 .
wils) & - : o(s) (37)
2(8)
G2k
DR
W(?)“L : 28 (38)
AT B R :
e
the control law
5(1) = O(1)'w(1) (39)
is given by
o(t) = [ci(®), 1), ..., can+2(D]" (40)
d(t) = [di(8), dx(), -..,dxu 1 2A(D)]" 41)
O =[ci(D), €T(1). do(t).d"()]T (42)
w(t) = [r(t), wi(0), Y1), w3 ()] 43)
3.3. Identifier structure
The identifier structure is now given by
e3(5) = @' (s)(s) — L™ '(5)8(s) (44)

where L '(s) is a stable, minimum phase transfer function with relative degree
Ar=n—m and
M =) (s)

wi(s)
v(s) =L~ (s) (45)
lrbp(s)

wa(s)

3.4. Ideniification algorithm
The identification algorithm for Eqns. (44) and (45) is given by
_ e(DP(v()
"1+ TPV
P(x]v(:)v"'(:)P(r)_

o= —g (46)

PH=—g én

"1+ T OPOV()

where g,y >0 and P(t) e R 01X (ak+0)
The ship with the notch filter B(s) and MRAC is shown in Fig. 3.
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Figure 3. Block diagram showing the MRAC and the notch filter.

3.5. Stability analysis
Again, if a gain Kmax is defined, such that

K, < K (48)

then, according to Appendix B, the ship (3) with reference model (4) or (31), controller
(39), identifier structure (44) and identification algorithm (46) is globally stable. In
addition ex(f)—>0 and thus Y(f) = Yu(f) whereas ®(z) is bounded. Rudder saturation
does not affect this result.

4. Simulation study of the adaptive ship autopilot

A simulation study is done for the ship model presented in Appendix A. The desired
ship dynamics is given by (4) whereas the parameters were chosen as

we=005 (=1 49)
The initial parameter vector and weighting matrix are chosen as
©(0) = [co, €7(0), 0, d"(O)]"
c(0)=d(0)=0
PO)=1
and the adaptation parameters are chosen as
g=7=10 (50)
The transfer function L~ '(s) is chosen to be equal the reference model
L™ (s)=M(s) (&1

The sample frequency is 1 (Hz).

Case 1: PD control
Figure 4 shows the time-response of the ship when

2(s) = Ao(s) = (s + 0-05) (52)

Notice that after only one step in the reference, the closed-loop dynamics matches the
reference model.
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Figure 4. The plots show the measured yaw angle #,, and the desired yaw angle Y (dotted)
for a step input r = 10 (deg) when r = 0 (s) and r = 20 (deg) when ¢ = 300 (s). In addition
the time response for the parameter estimates co and dp (the dotted lines indicate the exact
values, c§ and d) and the rudder & are shown.
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Figure 5. The plots show the measured yaw angle y/, and the desired yaw angle 1, (dotted)
for a step input r = 10 (deg) when ¢ = 0 (s) and r = 20 (deg) when # = 300 (s). In addition
the time response for the parameter estimates ¢y and dy (the dotted lines indicate the exact
values, ¢§ and d§) and the rudder  are shown. Notice that the rudder saturates (Smax = 3
(deg)) without affecting the stability.

Case 2: PD-control with rudder limitation

Figure 5 shows the time response when dpmax = 3 (deg) and the rudder saturates.
Notice that rudder saturation do not influence the stability. The performance is,
however, somewhat reduced.
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Case 3: PD-control with wave filtering

Figure 6 shows the time response of the ship when wave filtering is included by using
the notch filter in (34) with

k=1,{=001, w.,=07 (53)
In addition
A(s) = Ao(s) = (s + 1)’(s + 0-1)? (54)
¢p) 'nbm

8
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Figure 6. The plots show the measured yaw angle , and desired yaw angle ., (dotted) for
a step input, r = 10 (deg) when =0 (s) and ¢t = 600 (s) and r = 0 (deg) when ¢ =200 (s),
when there are lst-order wave disturbances (max value =3 (deg)) on the yaw angle
measurement. In addition the time response for the parameter estimates ¢p and dy and the
rudder 6 is shown.
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Figure 7. The plots show the measured yaw angle y, and desired yaw angle y,, =0 (dotted)
for r= 0 (deg). In addition there are 1st-order wave disturbances (max value * 3 (deg))
on the yaw measurements and a offset of 2 (deg) in the rudder. The time response for the
parameter estimates cq, dp and the rudder 6 is shown.




Adaptive ship autopilot 117

Notice the smooth behaviour of &(r) even for relatively large wave disturbances.
The autopilot does not compensate for the Ist-order wave disturbances.

Case 4: PID-control with wave filtering

Figure 7 shows the time-response of the ship when the notch filter in (34) is applied
to the yaw angle measurements and the reference model is in the form (31) with
T; = 5/wy. Bothrudder offset and 1st-order wave disturbances are introduced. The initial
values of @(1) and P(t) are the final values from a simulation with step inputs and

M) = Jo($)na(s) = (s + 1)’(s + VT (55)

It is seen that excellent tracking is obtained despite the noisy measurement and the
rudder offset.

5. Conclusions

In this paper a globally stable adaptive autopilot has been presented. Only output
feedback in terms of compass measurements was used. A cascaded notch filter has been
included in the design to obtain proper wave disturbance filtering whereas integral
action is obtained by applying a reference model shaping technique. The adaptive
autopilot applied to the ship with a cascaded notch filter proved to be easy to tune even
with no a priori information about the ship. Worst case initial values on &(r) may imply
large tracking errors, but one step in the reference signal is usually sufficient to improve
the performance significantly. In addition the 1st-order wave disturbances did introduce
parameter drift. The MRAC also appeared to be robust for rudder saturation.
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Appendix A. Ship parameters

The following ship parameters corresponding to a container ship with length 161
meters are taken from p. 174 in Fossen (1994)

T|= 18'5, T2=7-8
;=1180, K=0-185

(56)

Appendix B. Stability proof
The stability proof is given by Sastry and Bodson (1989). Consider a SISO, LTI
transfer function
Vp mp(s)
S@)=K," 57
5 (s) P d p(s) (57)

which is minimum phase and where K, > 0. In addition n,(s) and d,(s) are coprime,
monic and with degree m and n, respectively, where y, = n —m > 0. Also consider a
SISO, LTI reference model

,,(5)

M(s) = K, (58)

dn(S)
which is minimum phase, stable and with relative degree ., = ,. In addition K,, >0,
ny,(5) and d,,(s) are coprime and monic.
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Let the controller be chosen as
8(s) = O™ (s)w(s) (59)
where ©(s), w(s) € R Z and the two signal vectors are defined as

S
W=l : |éo (60)
wi(s) ) H
L]
-
l -
wa(s) = ) ; V() (61)
sn+2

where A(s) has dimension # — 1 and is Hurwitz. Then w(s) is given by

r(s)

w(s) = (62)

where r(s) is the reference signal. @(s) is given by

_ _ e s)Pws)
6{5)_ 8 S[l + WT(S)P(S)V(S)] (63}
T,
Ps)= —g P(s)v(s)v"(s)P(s) o

s[1 + pwi(SP(sV(s)]
where g, ye R*, P(s) e R® 2% =D 0)(5) = @T(s)v(s) — L~ (5)8(s), L™ '(s) is a
stable, minimum phase transfer function with relative degree y;=n—m and

M~ s)

B wi(s)
v(s)=L"'(s) (65)
'.bp(-? )

wa(s)

Then, according to Sastry and Bodson (1989) the controller (59) will stabilize the
transfer function (57) and y,(f) = ..(2) as t — o if #(f) and co(r) satisfy the following
two conditions:
1. Reference input assumption:
The reference signal, r(7), is piecewise continuous and bounded on R*.
2. Bound on gain:
An upper bound on the gain Kj, Kmax, €xist and is known. Then

K, < Kons (66)

Cmin £ Kinf/Kimax (67)
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and co(f) has to satisfy conditions (a) and (b):

(a) co(0)= cin
(b) If €o(f) = Cpin and co() < 0 then éo(f): =0

See Sastry and Bodson (1989) for details on the proof.
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