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An output feedback tracking controller for ships with
nonlinear damping terms

MARIT J. PAULSENT and OLAV EGELAND+
Keywords: Nonlinear ship control. tracking, wave filtering

A tracking controller with wave filter for ships with nonlinear manoeuvring
characteristics is derived. Only measurement of the yaw angle is needed to assure
global asymptotic stability of the yaw angle and yaw rate of the ship about the
desired yaw angle and yaw rate. A case study finally shows that the influence from
the wave disturbances on the rudder is attenuated in some frequency range.

1. Introduction

Most autopilot designs for ships concern course-keeping. That is, the controller is
designed to keep the ship’s yaw angle at a constant desired yaw angle. However, in some
situations, like course-changing, turning, and position tracking, it is desirable to be able
to track a time varying reference for the yaw angle.

The following design criteria for a yaw angle tracking control system are
emphasized:

1. The yaw angle and yaw rate of the vehicle should track the desired time history.

2. First-order wave disturbances should not be fed back to the actuators (wave
filtering) to reduce unnecessary use and wear of actuators.

3. There are no measurements of the yaw rate.

A tracking controller is often considered to be a controller which makes the ship
track a position reference possibly in addition to a desired yaw angle, see for instance
Holzhiiter (1990). In the present paper, we refer to tracking as the act of following a
time varying desired yaw angle. However, a yaw tracking controller can easily be
extended to include position tracking by including an additional control loop, see Fossen
(1994).

Turning or course-changing controllers designed for linear ship models include a
combined optimal and feedforward turning controller by Kiillstrtém and Theorén
(1992). Also, van Amerongen and ten Cate (1975) introduced model reference adaptive
control for linear ships. For nonlinear ship models, Fossen and Paulsen (1992) have
proposed an adaptive feedback linearization autopilot, and Fossen (1993) has derived
an autopilot using Lyapunov theory. Both autopilots need yaw rate measurements.

To the authors” knowledge, for nonlinear ship models, global asymptotic stability
has not been proved for yaw angle tracking controllers without yaw rate measurements.
In this paper such a proof is presented for a tracking controller. The proposed controller
is an extension of the controller in Paulsen ef al. (1994), which is an output feedback
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controller for keeping a desired constant position/attitude for nonlinear marine vehicles.
The controller also includes a wave filter. Global asymptotic stability of the yaw angle
and yaw angle velocity about the desired angle and velocity, is proven.

2. Ship model
The SISO nonlinear manoeuvring model
my + d, ) =8 (N

of a surface ship is considered. Here, y/(¢) is the yaw angle of the ship and o(z) is the
rudder angle, which is the control input. The positive constant m is the inertia and d(-)
is a nonlinear function of the yaw angle and yaw rate. The function d(-) is assumed to
have the following properties:

1. d(, ) is continuously differentiable in ¥ and ¢ and

>0, V.. %‘Ii"f’)aﬁ, )

d@p. ) =0 3)

2. ad(y, l,b)!ﬂl,l/ is bounded and uniformly continuous in time ¢ for all y(r) and for
Yr(7) and () bounded.

or

In this paper, the function d(, 1) will be denoted as a damping term. The damping
may for instance be given by (Norrbin, 1963),

Ay, ) = dsyp® + d? + dify + do @

where d;, j € {0, ..., 3} are constant parameters. Due to symmetry, a large number of
ships have the property d, = dy = 0. Note that the damping term in (4) satisfy Property
1 trivially if d, =0, d, >0, and d5 > 0. Also, it can easily be seen that Property 2 is
satisfied, either by applying Lemma 1, Appendix A, or simply by investigating
8d(y, y)1o y directly. Most damping terms are independent of the yaw angle y/(f), but
here it is assumed that d(-) also may be a function of y(z) for the sake of generality.

3. Control law

In this section a control law that ensures tracking of a time varying desired yaw angle
/(1) is proposed and analysed. The control law consists of a linear controller/observer
and a feedforward compensation term. Since measurements of the yaw rate are not
available, the nonlinear damping term d(, ) cannot be compensated for directly.
Thus, the following controller is proposed

& = kpo(Wo — ¥) + mijra+ d(, ¥ra) (5)

where kp is a positive constant, /(1) is the measured yaw angle, and o(7) is a virtual
reference trajectory given by

kpu(@ro — Y1) = k(1 — Yo) + kpoyh — o) 6)
where Yi(), i € {1, ...,n}, are given by the n equations
miWri — Wa) + ke — Wi - 1) + ki — i)
F kp Wi — Wis 1) + ko oW — e 1) =0 @)
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Figure I.  Mechanical equivalent of vessel with control system.

Here, ¥, 4 1(f) = Y1) is the desired yaw angle which is assumed to be smooth. The
desired yaw rate i, + 1(f) = 4(r) and  ,(t) are assumed to be smooth and bounded. The
controller constants kg;, kp;, i € {1,...,n+ 1}, and m;, i € {1,...,n}, must be chosen
positive.

The equations (5)—(7) describe the total output feedback controller including a wave
filter. Equation (6) may be considered to be a first order linear velocity observer, while
(7) may be considered to be the wave filter.

We select the state vector as

=W —vodo— .. Wi—Wivty e U — Ya,
U =i ol = — " (8)
ie{l,...,n—1}. Note that x € R® 27
Theorem 1. Given the ship (1) and controller (5)—(7) with positive and constant
controller parameters. The system is globally asymptotically stable about
x=0 9

Thatis, the ship’s yaw angle and yaw rate, [(1), !}}(t)l, are globally asymptotically stable
about the desired yaw angle and yaw rate, [yr4(f), y /D]

Proof: See Appendix B.

Remark 1. The ship (1) with controller (5)-(7) excluding the nonlinear damping parts
d(-), can be interpreted as a mechanical system with virtual masses, dampers, and
springs, see Fig. 1.

Remark 2. In the case of no wave disturbances, no filtering is required. Thus, the
controller where n =0 can be chosen. In this case, our controller reduces to

8 = ker(ra — o) + kpn(Wra — o) + mig + d(r, )
o= kpy'lkei(a— Yo) + kpo(l — o)l + ra (10)

The controller has a PD structure with compensation of the vehicle dynamics. A linear
first-order observer provides an estimate of the yaw angle yo(f) and estimate of the yaw
rate {bo(l‘).

4. Analysis of wave influence on the control input

Since wave disturbances are a problem in ship control, the wave filtering properties
of the proposed controller is investigated in this section. We analyse a SISO linear
marine vehicle model with controller in the frequency domain to show that by proper
selection of the controller parameters, the wave modulation on the control input is
reduced. The analysis given here follows the same line as in Paulsen et al. (1994).

The transfer function from the external disturbances to the control input é(s)w(s)
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is determined to show that the control action may be attenuated in some frequency range
around the dominant wave frequency.
To facilitate the analysis, a linearized ship model is considered (Nomoto et al. 1957),

my + dijp = 8. an

Here it is assumed that d is a constant positive damping term.
The wave disturbance is considered to be an output disturbance. Therefore, the
measured yaw angle ,.() is

'1/m='.b +w (12)

where w(#) is the yaw angle induced by the wave disturbance.
Define the transfer functions h,(s), h2(s), and hy(s) as

h(s)=kpis + ke
hy(s) = mys? + kpas + ker (13)
h(s) =ms® +ds

Applying the controller (5)—(7), n=1, to the ship model (I1) and taking the
measurement equation (12) into consideration, the system is given in the s-plane as

hy(sW(s) = d(s)
3(s) = kpo(Pro(s) — Y(s) — w(s)) + hy(s)a(s)
kpo(Y(s) + w(s) — Yro(s)) = l(s)(Wo(s) — Yi(s))
hao )Y 1(s) — Yu(s)) = ha(s)(ols) — Yi(s))
The transfer function from 8(s) to the signals w(s) and ¥4(s) becomes

— kpohyhiah,
o, + o) + ool + iy ") VA ue)
From (14) it can be seen that by proper choices of the transfer functions h(s),i € {1,2},
the wave influenced motion on the rudder can be reduced. This is possible by letting
the transfer function hx(s) have complex conjugated zeros with small damping and by
ensuring that the denominator of d/w(s) is not too small.
Moreover, (13) is rewritten as

ho(s) = m(s* + 2010 + ©F)

é(s) =

which implies that the constants kp> and kp; should be chosen as
kpa =28 100y, kpy = (U':'ml (15)

where {; and ), are constants which can be interpreted as the relative damping factor
and the natural frequency, respectively. If {; is chosen smaller than 1 and w, is chosen
equal to the dominant wave frequency @,, which is usually estimated with good
accuracy, suppression of the wave influence on the control input will be achieved.
Equation (15) gives a design tool for how to choose some of the control parameters.
Further comments on this issue are given in Paulsen er al. (1994).

For simplicity, only the case where n =1 is analysed in this section. However, it
can be shown that by choosing n > 1, the frequency range where good wave filtering
properties can be achieved. can be increased (Paulsen et al. 1994).
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5. Case study
The following nonlinear ship steering model was proposed in Norrbin (1963)

my + d(f) = & (16)

where d(\)) = djy + dsy*, and d; and d5 are constant damping parameters which are
assumed to be positive (course-stable ship). As discussed in Section 2, the damping
satisfies both Property 1 and 2. Similar to section 3, m is a positive constant, (f) is the
rudder angle (control input), and (1) is the yaw angle without influence from wave
disturbances. The measured yaw angle is, as mentioned in Section 4. y,, = Y + w, where
w(r) is the first-order wave induced yaw angle. Grimble er al. (1980) suggests that a
linear approximation of w can be given in the s-plane as

K,.s

wis) = (5% + 2L, + 2y’

n(s) (7)
where 7 is a normally distributed random variable with zero mean value and variance
equal to one, w, is the dominating wave frequency, { is the relative damping ratio of
the waves, and K,, is a gain that is dependent on the wave height. The parameters of
the wave model are chosen as: w, =0-7, { =0-1, and K,, = 0-015.

In the case study, the system with wave disturbances is described by (16), (17), and
(5)—(7) with the number of virtual masses n=1.

The model parameters used in this example is adopted from van Amerongen (1982).
In this reference, ‘the R.O.V. Zeefakkel’, a small training ship with length 42 m, is
described by the following set of parameters:

m=062, d=2, d3z=08. (18)
the controller parameters (n = 1) are chosen to be
my =0-25m kpe = 2L e0m,
) = Wy, kpr = w%ml
{1 =0-0001 kpy = kpp + 7000
kpo =kp+ 10 ket = kp1-0-2

Figure 2 shows a frequency plot of the amplitude |5/w(s)| of the controller with n = 1
applied to the linear ship (11) (d = d,). Here, we have disregarded the effect from /.
It clearly shows that we obtain a notch effect at a frequency range around the dominant
wave frequency.

Next, the properties of the proposed controllers are studied in the time domain. A
sampling frequency of 10 Hz is used in the simulations. The Runge-Kutta fourth-order
method is implemented for numerical integration. The desired yaw angle is chosen to
be a sinusoid, see Fig. 3,

Y1) = 5sin (0-11)[deg].

At first we assume no disturbances, that is w = 0. The error between the actual yaw angle
and desired yaw angle, and the rudder angle are shown in Fig. 4. We see that the yaw
angle tracks the desired yaw angle.

We now add the disturbance given in (17), see Fig. 5. We want to compare the yaw
and rudder angle that are obtained by using the controller with wave filter (5)~(7),n= 1,
and by using a controller without wave filter (10), n = 0. The results are shown in
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Figure 2. Amplitude |8/c(s)| in dB as a function of frequency.

ettt yarw &rghe [dea]

Figure 3.  Desired yaw angle /g versus time.

Figure 4. Yaw angle error (f — {/z) and rudder angle é versus time, (w = 0).

Fig. 6 and Fig. 7, respectively. The simulations show that the rudder action for the output
feedback controller with wave filtering is significantly reduced compared to the
controller without wave filter.

6. Concluding remarks

A ship output feedback tracking controller with wave filter is derived. Global
asymptotic stability is proven for the yaw angle and yaw rate about the desired yaw angle
and yaw rate.

A frequency response analysis show that the rudder action can be suppressed in the
arca around the dominant wave frequency by proper choices of the controller
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Figure 5. Wave disturbance w versus time.

Figure 6. Yaw angle errors ( — /) (solid line), (/,, — 1) (dashed line), and rudder angle &,
versus time using the controller with wave filter, with wave disturbance w.

parameters. This result is also verified in the case study, where a frequency plot of the
influence of the wave disturbance on the rudder action show that a notch effect is
obtained at the dominant wave frequency.

In the simulation example, the yaw angle tracks the time varying desired yaw angle.
A comparison between the controller presented in this paper with wave filter and
without wave filter, clearly indicates that wave filtering should be used to avoid
feedback from wave induced motion.

The controller proposed in this paper is not designed to compensate for constant
or slowly varying disturbances, like winds, currents, and higher order wave
disturbances. Integral action should therefore be included for practical purposes.

Appendix A—a lemma on uniformly continuous functions

The following lemma gives sufficient conditions for a function p(f) = p(x(¢), #(1))
to be uniformly continuous in .

Lemma 1. A sufficient condition for a function p(r) = p(x(2), (7)) to be uniformly
continuous in f, under the assumptions that k() and %(f) are bounded, is

ap

and @ bounded. (19)
ox 0x
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Figure 7. Yaw angle errors ( — ) (solid line), (/,, — Y) (dashed line), and rudder angle 4,
versus time using the controller without wave filter, with wave disturbance w.

Proof: The proof follows easily from the well known result that a sufficient condition
for a differentiable function to be uniformly continuous is that its derivative is bounded.

That is,
o, d
py="L5+Ls, (20)
ox ox

Since, by assumption, %(r) and ¥(f) are bounded, a sufficient condition for p(r) to be
bounded and thus p(#) be uniformly continuous in 7 is that dp/ax and dp/dx are bounded.

Appendix B—Proof of theorem 1
Consider the Lyapunov function candidate

V(x) = Mm@ — )y’ + mif —paf® + ...
+m— Y+ ...+ mf, — G + keo(Y — Yo)® + kp(Po — ¥ ) + .
F ks Wi — Yis )2+ ooe F ke (P — Y] 21)

which can be thought of as a sum of the kinetic and potential energy of the system.
The Mean Value Theorem gives

ad(y, z)
az

where p(f) is on the line segment between Y(1) and ljld(f). _

From now on the proof is divided in two parts. First, the case where d({, ) is
different from zero, according to Property 1, is considered. Last, we discuss the case
when d(¥, ) =0.

Differentiating V with respect to time, substituting (1) and (5)—(7) into V, and using
(22) and Property 1 gives

V< — B0 = Ya) — koi(o — 1) — koo — Y12 — ..
- "*’Df('.l/:‘—l - 'j’i)z IR kD{n* lJ(J/n - 'j/d)
= —Wx)<0 (23)

W — ¢ (22)

T=p

Ay, ) — d, ) =
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where f was defined in (2). Since V< 0. the system is stable, and the state [( — ¥),
(o — !}f.). N (el TR RN (7 7 M €2/ NN € 250 N € A/
re{l,...,n—1}, is bounded. Because the state and the desired velocny and
acceleration are bounded, it can be concluded, by using property 2, that W is bounded,
and hence that W is uniformly continuous. By applying Barbalat’s lemma (see e.g.
Khalil (1993)), we conclude that, as t— o,

W—=0
and thus that
im @i =i )=0, ie{0,...,n) 4
and = o
Jim (YY) =0 (25)

Recall that =1/, Since the velocities are bounded, we can conclude that
Wi— i), ie{0,...,n}, are uniformly continuous. Also, in view of (7) (|,lf. @d).
ie{l,...,n}, are uniformly continuous. Moreover, since Lim,_,.(; —s) =0,
ief{l,...,n}, ie. the limit exists and is finite, lim,, .(J; — Yy)) =0, i € {1,...,n},
according to Barbalat’s lemma. Eqns. (6)~«7) now imply that, as r— o

kPD('.l’ - '4’10)—’ - kPI('.Dl - 'po)
kit — o) — — ke — ),

(26)
keii = ri- ) = — ke (i — Y1)

k.Pn(',bn - 'j’n—— 1)— '_kP{n b 1}(';’&: - 'gbd)

Also, since , and i, are bounded and ad(y, 2oz, - w18 uniformly continuous in ¢
(Property 2), we can conclude from (1) that () — %) is uniformly continuous.
Moreover, since the limit lim,, .. (a,b a) =0 exists and is finite, then according to
Barbalat’s lemma, Ill‘l‘l,_,:.—(l,!! '.bd) 0. Equations (1) and (5) then imply that
lim, _, « (}y — 9) = 0. From (26) we can also finally conclude that

lim Wi—vir1)=0, ie{0,...,n} 27)

If d(f. ) =0, the time dcnvatwe V of the Lyapunov function will be equal to (23)
except that the first term S(y — ys) will be zero. However, this invokes no problems
in the stability proof, since in this case the system error dynamics will be linear and
autonomous. Thus, as in Paulsen et al. (1994), La Salle’s invariant set theorem can be
applied to ensure global asymptotic stability.

Thus, we can conclude that x is globally asymptotically stable about 0.
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