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Robust performance in dynamic positioning systems
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Robust performance of dynamic positioning of surface vessels is considered.
The structured singular value, y, is used as a robusiness measure. A tight uncertainty
description of the wave disturbance model and performance weight matrices based
on physical insight is presented. Two controllers are analysed: a decentralized PD
controller with notch filters and an LQG based controller. Performance of the control
systems is shown to be sensitive with respect to changes in the dominating wave
frequency, .

1. Introduction and problem statement

The purpose of a dynamic positioning system for surface vessels is to achieve a
desired position and orientation of the vessel in the presence of disturbances from
waves, wind and water currents (Morgan 1978, Fay 1990).

One of the main problems encountered in the design of dynamic positioning systems
is to obtain high positioning accuracy without excessive thruster modulation due to
wave induced motion.

Early implementations of dynamic positioning systems used a PD controller for
each of the three degrees of freedom: surge, sway and yaw. Notch filters were used to
reduce thruster modulation due to first order wave motion. Later, applications using
state estimation and optimal control have been reported (Balchen er al. 1976, 1980,
Salid er al. 1983, Grimble and Patton 1980, Grimble ef al. 1980).

Environment disturbances change over time. In particular, the dominating wave
frequency may change as an offshore operation requiring dynamic positioning is in
progress. Balchen et al. (1980) propose using a gradient adaptation algorithm to update
the wave frequency estimate in the vessel model. Earlier work (Balchen er al. 1976)
proposed wusing an augmented Kalman filter,

In the present paper the effect of changing dominating wave disturbance on control
system performance is addressed. It is assumed that the wave frequency may vary in
a band around a nominal value. It is shown how a tight uncertainty description in the
wave disturbance model can be constructed. Both a traditional decentralized solution
and an LQG based controller are considered.

Performance of multivariable linear control systems may be analysed in the
frequency domain (Doyle and Stein 1981). With the introduction of the structured
singular value (¢, SSV) (Doyle 1982), analysis of systems with a certain block diagonal
structure is possible. Summaries of this theory may be found in Maciejowski (1989)
and Skogestad (1994).
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The paper is organized as follows: firsi the vessel model is presented and an
uncertainty description in the wave disturbance model is given. Then robust
performance in the frequency domain is defined and two different control designs are
analysed with respect to performance robustness.

2. Vessel model

The vessel model from Fossen (1994) is considered, and the following
simplifications are made:

(S1) Water currents will not be considered.

(S2) Effects due to wind will not be considered.

(S3) Thruster dynamics are neglected.

(S4) Thrust allocation will be assumed perfect.

These simplifications are made only to be able to focus on uncertainty (variations) in
the wave frequency.

Three degrees of freedom are of importance in dynamic positioning:

® surge

e sway

® yaw

Velocities may be expressed in a vessel fixed coordinate system B, i.c.

These velocities cannot be integrated in B to give position and orientation, but will have
to be transformed to an earth fixed (inertial) frame of reference, E, i.c.
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2.1. Low frequency vessel model
A model of the form
My, +Dv, =1, +wp, 3)
is assumed, where
up
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is the low frequency velocity vector, 7, is a vector of control forces and moment, and
@y is a vector (of zero-mean Gaussian white noise processes) describing unmodeled
dynamics and disturbances.

Suppose 11s= (x4 ya ¥2)" is the desired position and orientation, ¥ = v, and the
earth fixed frame of reference is oriented so that ;= 0. Then J( y=1I.

This gives the following state space model:

.1"L=A;_x;_ +B.L1:L+ELWL’ (5)
where

- T
X = (xy, yb,l,h, Ur, v, 1),

0 I 0
A“(o -M—'D)’ BL_(M ')’

2.2. Wave model

A model of the environment which induces oscillatory movement of the vessel is
now included. This model is used both in the design of an LQG based controller and
in the performance evaluation.

A linear approximation to the Pierson-Moskowitz spectrum (Faltinsen 1990,
Fossen 1994) is given by

Yh 2K, Las
; =: = _— .,
is) ", (s) 2 2o + 0
In this model K,, is the intensity, «y is the wave frequency and { is a damping factor.

This gives the following model for the wave disturbances in the three degrees of
freedom:

(6)

éx = XH
(Ta)
'tH = = 2Cw{)xh" - w{l)ﬁx + ZKM.'JL:(DOWI
f. =¥y
(7h)
Yu= — ZCUJO}'H - wé&) + 2K, J'Ca)ﬂwy
Ey=vm
. ) (70
VYu= — 2loopy — wly + 2K,ylmowy
this can be written as
Xy =Apxy+ Egwy, (8)

where
Xy = (éx‘ C‘—y' &aﬁ,xH;}‘Ha t;IL‘H')Tv

— Y
Wy = (W,, Wy, ”’l'ft) .
It is assumed that wy is a vector of zero mean Gaussian white noise processes and

E{wi(twi(1)} = I3 % 30(¢ — 7). 9)
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Figure 1. Uncertainty description in the wave disturbance model.

2.3. Measurements
The measured position and orientation is assumed to be a lincar combination of the
low frequency vessel model and the wave induced motion, i.e.

y=Crx,+ Cpxy +v, (10)
where
Cp =33 03%3), Cyp=(03x3 I3x3),

and v is zero mean Gaussian white noise.

2.4. Uncertainty description in the wave disturbance model
It is assumed that the dominating wave frequency o varies within a band, 1.e.

@0 € (W0.nom — AWo, o, nom + Ap).
As can be seen from Fig. 1, this can be modeled with a real uncertainty block

5 0
w09

Generalizing this, it is seen that the uncertainty in three degrees of freedom can be
represented with
A=Ay = A3 =0l x2, (12)
such that
A= dlexe (13)

and & e (— 1, 1). This implies that equal frequency variations in the surge, sway and
yaw degrees of freedom are assumed.

3. Robust performance
3.1. Robust performance and performance weights

Consider the block diagram in Fig. 2. Variables with a tilde, (), are scaled according
to Appendix B. Define

Ze= Tz,.wHwH + Tzi.r;dﬁds (]4)
L= TszHwH + T‘,I;idﬁd- (15)
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Figure 2. Control system with weights on reference signal and performance. There is
uncertainty in the environment model.
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Figure 3. Structure for assessing robust performance.
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such that Fig. 2 can be transformed into Fig. 3. With a proper scaling of inputs and
outputs, robust performance is defined as follows:

Definition 1 (Robust performance)
The system in Fig. 3 is said to exhibit robust performance if
lzGo)l| <1, Vo,w Alw(o)| <1, 6AGw)} <1, an

HTllm =1, (18)
when z=Tw.

Remark: From equations (14)<15) it is recognized that

T.., T.
T= (T 4 T"’”). (19)
Wy Tetle

Now weights on control error and control input as shown in Fig. 2 will be considered.
Let

1+ 10°
D= wd)xs (20)

Wdls)=10? (1 + 10°%)(1 + 10s)

and

s
W(s)=p 1+10s I3 = wi(s)ls <3, 1)
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Figure 5. Weight on control input.
where
p =50 (22)

These weights indicate the following:

e small stationary control error allowed

e no weight on high frequency control error

e no weight on stationary control input

e weight on high frequency control input to penalize thruster modulation

A weight on the reference signal is included. This indicates that the reference signal
has low frequency components only. Let

1
W)= 1 mhxa- (23)

Plots of |w.(jw)| and |w.(jw)| are shown in Figs. 4 and 5.
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A

Figure 6. Mairices in definition of the structured singular value.

3.2. Analvsis of robust performance using the structured singular value

The structured singular value will now be studied. The SSV will be used due to the
block diagonal uncertainty description.

Definition 2 (Structured singular value, jt, (Doyle 1982))
Let X, denote the set of stable, block diagonal perturbations (see Fig. 6) with a
particular structure, where the diagonal elements satisfy ||A]|.. = § then,

Oifno A € X.. solves det(I — MA)=0.

(Minacx, lc'f(d)ldet I—MA)=0))""' otherwise. (24

Ha(M) = {

Computer software exists to compute the structured singular value (Balas et al. 1991).
In particular, new versions of the software can compute p with a mixed real/complex
uncertainty structure.

A recent tutorial on the structured singular value can be found in Packard and Doyle
(1993). Details on pu analysis with real parametric uncertainty can be found in
Young et al. (1991).

Now, consider the following sentences which will prove useful.

Lemma 1 (Robust stability)
The system in Fig. 6 is stable for all A € X, if and only if

uaAiM(jo)} <1, Vo. (25)
Proof: See Maciejowski (1989). (|

Lemma 2 (Robust performance)
The system in Fig. 3 has robust performance if and only if

PAIN(jo)} <1, Vo, (26)
where
. (A 0)
A= ( 0 A) 27)
Proof: See Maciejowski (1989). |

Note that robust performance is ensured by adding a fictitious uncertainty block A,.

4. Evaluation of performance robustness for different controller structures

Two controller structures are now investigated, a PD solution and a solution using
state estimation and optimal control. Robust performance is analysed using methods.
uncertainty description, and performance weights from the previous sections.
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Figure 7.  ua{N(jw)} with Awy= 0 and PD controller.
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Figure 8. pa{N(je)} with Awg = 0-4 rad/s and PD controller.

Both controllers are tuned to give a closed loop bandwidth of approx. 0-1 rad/s.
Nominal dominating wave frequency is assumed to be wy = 27/10 == 0-6 rad/s.

4.1. PD solution

A PD controller combined with a notch filter (for attenuation of wave disturbances)
will be used in each degree of freedom.
The control input (scaled) is given by

T = Cpplijs — 71, (28)
where
Cpp(s) = diag {c(s)  cfs) cy(s)}, (29)

2
s
2t ()
L+ Tys ¢ )y X,

Kﬁ-i 5.
+ 4Ty
1+ a5 | 2Cn_s__ (s)
wp  \wo

Numerical values are given in Table 1.

with

(&D)]

ci(s) =




Dynamic positioning systems 83

Now A = 8lgx6 and A, € C5*°. Figs. 7 and 8 show pa{N(j®)} with Aw,= 0 and
Awq = 0-4rad/s, respectively.

4.2. State estimation and optimal control
States

are estimated using a Kalman filter. Tuning parameters are

E{wu(tWwi(7)} = I35 30(t — 1), 31)
E{wy()W(1)} = W d(t — 1), (32)

and
E{#(6)p" (1)} = V(r — 7). (33)

Feedback is taken from the estimated low frequency state, i.e.

T = Keontr I:(o:]: 1)_fL]- 34

K conie is computed using the performance index
T
J=f (X10%, + TTPT) dr. (35)
0

Numerical values are given in Table 2.
Figures 9 and 10 show pa{ N(jw)} with Awy = 0 and Awy = 0-4rad/s, respectively.

5. Discussion and conclusions

First note that the control design examples did not include integral action. In practice
this would be used to give the required high gain at low frequencies. In addition, the
PD control example should include filtering to avoid feedback of high frequency
measurement noise. However, this would not change the robustness analysis
significantly.

Figures 7 and 9 may be interpreted as plots of nominal performance, which is
satisfied—with the proposed performance weights. When uncertainty is imposed,
Figs. 8 and 10 show that robust performance is not achieved. The structured singular
value pa{N(jw)} crosses 1 both at frequencies above and below the nominal dominating
wave frequency. This indicates that robust performance is not obtained with the selected
controller parameters, and that thruster modulation may be experienced. It also suggests
that tracking the dominating wave frequency is indeed reasonable.

In the analysis, it has been assumed that only the frequency of the dominating wave
induced vessel motion is changed, and that the intensity (amplitude) of that motion
remains constant. For this to be true both the dominating wave frequency and wave
intensity would have to change. This is due to the fact that wave excitations are filtered
through the vessel dynamics to give the vessel motion.

Other uncertainty factors could easily have been included in the analysis, such as
uncertainty in the intensity of the wave induced motion or uncertainty in the thrust
allocation algorithm.

It is common to include blocks indicating uncertainty due to high frequency
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Figure 9. pa{N(jwy =0 and state estimator/foptimal control.
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Figure 10. pua{N(jw)} with Acyp = 0-4rad/s and state estimatorfoptimal coentrol.

unmodeled dynamics. Using the structured singular value, such general model
uncertainty can be combined with parametric uncertainty (as in the present analysis).

One important point to notice, is that robustness requirements in general are
independent of a particular designed controller. In the two control designs proposed in
Section 4 uncertainty was not considered explicitly.
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Appendix A. Model parameters
Data for a supply vessel is given in Fossen (1994)
MYV + DWW =17, (36)
V=A""+B", 37

where all quantities with double prime (-)" are scaled with the so-called bis system.
These non-dimensional quantities are scaled to physical values using three
parameters:
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L=762m length
m=4-10g  mass
g =9-81m/s’ acceleration of gravity

The following values are estimated:

1-1274 0 0)
M= 0 1-8902 —00744 |,
\ 0 —00744 01278
(—0-0318 0 0
A"=M") ! 0 —00602 —00618 |M"
\ 0 —00075 —0-2454

Appendix B. Scaling of inputs and outputs

It would have been possible to work with a dimensionless model in the bis system.
However, it seems reasonable to use characteristic parameters in the problem at hand.
The following characteristic deviations in inputs, outputs, disturbances etc. are selected
as scaling parameters:

|ATmax = 7-3-10°N
|ATy|max = 3-7-10°N
|Aty|max = 1-1- 10" Nm

|AW gifmax = 1-0
|Ae ) = 5Sm |Aé.|mar = 0-5 11/s
|Ae,|max = 5m |Aé,|max = 0-5 m/s
|Aey|max = 3° |Aé g max = 0-3%%s

With these scaling parameters, a control input of 1 will indicate saturation (maximum
achievable thrust). A value of 1 in measurement of x position then corresponds to a
physical measurement of 5 meters.

Maximum forces in the surge and sway directions and maximum torque about the
yaw axis are estimated from parameters in Fossen (1994).

Appendix C. Controller parameters
C.1. PD controller

J Kp‘ i Td.j o
x 1720 3333 0-1
y 6 3333 0
W 1/35 33-33 01

Table 1. Numerical values in PD controller.

L, =0-3,{4=1-5, wy = 27/ 10. the controller is designed with respect to the scaled plant,
i.e. the controller gains are dimensionless.
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C.2. State estimation and optimal control
Let

K,= K. K., K.y).

This tuning parameter is a function of sea state. Here a reasonable example value is
selected. Ky, K., and K,y are scaled using the values for characteristic deviation in the
surge, sway and yaw directions.

0=10Isxs
P=I3><3
WL=5'10_3I3;<3
V= 10_213;.(3

K,=(06 04 1:33)

Table 2. Numerical values in state estimation/optimal control.

Note that wy is scaled using values for maximum thrust.
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