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It is of great importance that high precision manipulators are well designed from
a mechanical peoint of view. A thorough analysis of all mechanical aspects
concerning an accurate manipulator will make a good basis for further design. This
paper presents a new approach to mechanical analysis of high-precision
manipulators. A typical six axis anthropomorphic manipulator configuration is
chosen as a model for the analysis. The paper is divided into two main parts; static
deformation analysis and dynamic analysis. The static deformation analysis consists
of three sub-parts; link deformation, joint deformation and total mechanical
deformation. A simple fixed beam deformation model is used to simulate every link.
Both specific gravity and a load attached at the end of the beam 1s considered. By
varying material, outer dimensions and wall thickness it is possible to determine
optimal values. Looking at the whole structure with an attacking force at the end,
it is possible to select appropriate motor/transmission combinations. Each
combination represents compliance and combined with the arm compliance the total
deformation can be found. The result shows that deformation due to compliance in
the joints represents 97% of the total. Based on the result of the previous section,
the dynamic model can be simplified significantly. The arm elements are supposed
to be rigid and all the compliances are due to the Joint deformation. This gives a
coupled mass/spring system to be analysed. The resonance frequencies of the system
are found through theoretical analysis and through simulation in 2 Finite Element
based program for Dynamic analysis of Elastic Mechanisms (FEDEM) (Sintef
Production Engineering 1993).

1. Introduction

Stiffness is one of the most important general criteria of machine design. This is
especially true for manipulators. The problem of stiffness enhancement is especially
important since conventional techniques, such as ‘beefing up’ cross-sections or using
high-modulus conventional materials, are in many cases not acceptable either because
they are counter-productive and/or not cost effective. In many instances, both the
external and internal dimensions of the links are limited by design and/or application
constraints.

‘Effective stiffness’ is a frequently used phrase. This definition means a numerical
expression of the response of the structure at a certain important point to
performance-induced forces. Such a response (i.e., effective stiffness and compliance)
is a result of four basic factors (Rivin 1988):

(1) Structural deformations of load-transmitting components which are idealized
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for computational purposes as beams, rods, plates, shells, etc., also with
idealized loading and support conditions.

(2) Contact deformations between parts contacting along nominally small contact
surfaces (e.g., balls, rollers, etc.), nominally large but actually small contact
surfaces (e.g., not perfectly machined flat surfaces.

(3) Deformations in the energy-transforming devices (motors and actuators)
caused by compressibility of a working medium in hydraulic and pneumatic
systems, deformations of an electromagnetic field in electric motors, etc.

(4) Modifications of numerical stiffness values caused by kinematic transforma-
tions between the area in which the deformations originate and the point for
which the effective stiffness is analysed.

The work that is presented in this paper was specially focused on underwater
robotics. Some of the selections and conclusions are thus affected by that.

2. Static deformation analysis

The basic static force and deformation formulae are found in Irgens textbook (Irgens
1985a).

2.1. Link deformation

Robotic links have to comply with several constraints. Some of the constraints are
as follows (Rivin 1988):

e The links should have an internal hollow area to provide conduits for electric
power and communication cables, hoses, power-transmitting components,
control pods, etc.

e At the same time, their external dimensions are limited in order to reduce waste
of the usable workspace.

e Links have to be as light as possible to reduce inertia forces and allow for the
largest payload per given size of motors and actuators.

e For a given weight, links have to possess the highest possible bending (and
torsional) stiffness.

Figure 1 shows the deflection model of a simple beam. A more thorough beam analysis
with different profiles and strutting is found in Opitz (1970). A vertical force Fis applied
at the end of a beam. The beam is of length L, height h, width b, wall thickness 1,
elasticity module E and cross-sectional moment of inertia I. It is horizontal and fixed
in one end. The weight of the beam W, gives a distributed load ¢ = W#9 81/L. A torque
T, is attached at the end caused by moment from the next arm element. Simple
calculations show that bending and/or torsional compliance is stiffness-critical for the
robot structure (Rivin 1988). The vertical deflection &, at the end of the beam caused
by the force F, is given by

dr=—— (¢))]

Equation 2 gives the vertical deflection &g, at the end of the beam caused by the
distributed weight of the beam.
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Figure 1. The deflection model.

Mocnnnv&tpadlcboqummsecﬁonplm
Length, I=1m og load, F=500N

hb= O.D'o'm:

Flxed wall thickness, 1=0,006 m X
- - - Dim.hand b varies from 0,07 - 0,16 m.|

W w2 om0 o
Specific load, q (N/m)
Figure 2. Deflection of the beam model with metals.

The vertical deflection &7, caused by the torque attacked at the end of the beam is
given by
TI?

or= 2E] 3)

The total deflection dry, at the end of the beam is then calculated by
(5‘1‘01 = (5;: + 6,; + &r

2 2
(]
where the cross-sectional moment of inertia 1, for quadratic profiles is calculated by
=12(bh* — (b — 20(h — 21°) ®
and specific gravity g, is calculated by
_mg
77
_PVe
L
= (bh — (b — 20)(h — 20))pg (©6)

where g is the gravitational acceleration, p is the material density and V is the material
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volume. The torque 7, results from the weight of arm elements with a distance from
the beam elements further out. The deflection analysis of the beam will not include the
torque influence from other elements. This will not affect the qualitative result of the
analysis. The numerical values of the analysis will not be precise. The analysis is just
meant to give an impression of the relative influence of changing the cross-sectional
dimensions or material of the beam.

Figure 2 shows the deflection of the beam is reduced when the outer dimensions
are increased. Each bullet represents the same quadratic dimension from 7-16 cm for
each material selected. Observe that the difference in deflection is significant for the
smaller dimensions and that it is decreasing until approximately the same deflection
appears with the largest dimensions. The wall thickness and load remain constant during
the dimension alteration.

The lighter material shows much higher increase in stiffness/specific weight ratio
than the more heavy steel material. Aluminium showed the best property in this case.
Other selection criteria, like corrosion resistance and price, have to be considered to
choose between the different materials.

Figure 3 shows that changing the outer dimensions on profiles gives more stiffness
per weight unit than changing the wall thickness. This is a well-known statement, but
is worth mentioning. More exotic materials, like polymer composites with boron or
kevlar fibres and metal composites with carbide particles, show good characteristics.
Two disadvantages are the price and the problem of joining elements.

Figure 4 shows the deflection characteristic versus specific gravity of some
composite materials. The best metal from Fig. 2, aluminium, is shown in comparison.
As can be seen from Fig. 4, taking 0-2mm deflection as a reference, the different
materials shows different dimensions and specific gravity. The choice of material
depends on which criteria to emphasise, i.e. cost, specific gravity, dimensions, stiffness
etc.

2.2. Joint deformation

The method used in this section is based on lecture notes from Lien (Lien 1992).
When the manipulator structure and arm material are selected, it is important to do some
static and dynamic analysis to ensure good performance of the robot.

Figure 5 shows the arm in worst position, referred to as minimum deflection of the
structure. In this position both joints 2, 3 and 4 together with link 1 and 2 contribute
to the total deflection in the direction of the load. Both material selection in link 1 and
2. length of the arm elements and selection of servo/transmission systems influence this
total deflection. The servo/transmission part contributes with both weight and stiffness
properties. The selection of motor/transmission system on each joint of an open chain
manipulator arm, has to be taken from the outer most joint and inwards to the base. The
load is supposed to have a centre of gravity 5cm from the rotation axis of joint 6 to
make a realistic dimensioning torque to joint 6. This is after all not the most critical
part of the structure. When maximum torque is established to the sixth joint, a proper
reduction ratio is selected based on velocity criteria, necessary torque and available
servo motors. With this reduction ratio a motor is selected to satisfy the new torque and
velocity requirements. The weight of the selected servo/transmission combination
contributes jointly with the external load to the total torque needed in joint 5. The above
mentioned procedure is repeated and repeated until joint 1 is established with a motor
and a reduction gear.
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Deflection versus specific load on a square section profile.
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Figure 3.  Different beam dimensions for aluminium and their effect on stiffness/weight ratio.
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Figure 4. Deflection of the beam model with composites compared to the best metal,
aluminium.

Figure 5. The anthropomorphic manipulator in worst position.

Equation 7 shows how the required motor torque 7j, is calculated for each joint
starting with joint 6. The torque contribution from the links is just included where
needed. Link 2 contributes to joint 3 and both link 1 and link 2 to joint 2.

6
7}=ET}+1+T|md+Tlink )

i=j

To ensure that the joint selection can handle supplementary dynamic peak loads, some
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calculations have to be done. Assuming that the load is given an acceleration from
0-1mvs in 1, = 0-20s. This acceleration of 5m/s” gives an additional torque load of
approximately one half of the static torque at the joint (5/g = 5/9-81 = 1/2), Eqn. 8.
T;

Tin=-

) (8)

In addition to this linear acceleration part, the joint motor has to overcome the total
moment of inertia of the motor and transmission. We assume that the motor and
transmission in joint (j) have moment of inertia given by:

J_j = Jmot + Juans (9)
The angular acceleration of the joint, §j, is given by
=T i
6 60 1, (10)

where #; is the motor velocity given in rpm and 1, is the time for velocity increase. The
additional torque from moments of inertia is given by

Ty = Ji0; an
The total peak torque T} o, is given by
T}.tﬂt = T} + Tﬁn + Tml (12)

2.3. Total structure deformation

When the torque appearance in every joint is established, the total deflection in the
structure caused by joint and beam compliance has to be found. The total deflection of
the arm elements, beam 1 and beam 2, are calculated by Eqn. 4. L is the existing arm
element length, ¢ is the load caused by the weight of the element, F is the point load
at the end of the beam caused by motor and gear at this point and T is the torque at the
end of the beam caused by the influence of all other weights outwards to the end of the
manipulator. The linear deflections of the arm, caused by rotational compliance in the
joints, dy;, are given by

8yj = sin (Y)Liox (13)
where
_5
wl Kj

In this equation ; is the rotational defiection in joint j, T; is torque in joint j, Kj is
stiffness in joint j and Ly is the total length from the current joint to the end of the
manipulator arm. The manipulator has to stay in worst configuration (see Fig. 5) to find
the total deflection of the arm. In this orientation the total linear deflection from the joints
is given by

Sy =0y2 + Oy3 + dya (14)

The arm element deflection of link 1 and 2 is summed and the total defiection at the
end of the arm is given by

St = 5wtm +8;+6; (15)
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Link h, b [m] t [m] I [m] Material
1 0-16 001 0-8 Steel
2 0-12 0-01 0-5 Steel
m Stiffness
Joint Motor m [kg] Gear [kg) [10° Nm/rad)
1 VOAC 75 HFUC 58 47 607
Fi11-10
2 VOAC 75 HFUC 58 4-7 607
F11-10
3 VOAC 50 HFUC 50 32 405
F11-5
4 Char-Lynn 20 HFUC 32 09 108
‘J-Series’
5 Char-Lynn 20 HFUC 32 09 108
‘I-Series
6 Char-Lynn 20 HFUC 20 0-98 17-5
‘J-Series’
Load 5 [kg]

Table 1. Test data for manipulator model.

2.4. Results and discussion

By selecting arm links of steel, high performance harmonic drive gears and
hydraulic motors (Table 1, Fig. 5), simulation has shown that the total deflection at the
end of the arm is 1-39 mm. Of this only 0-03 mm was caused by deflection in the arm
links.

It is interesting to observe that the compliance from the link elements is less than
3% of the total deflection. From this one can conclude that most energy should be
concentrated on reducing joint compliance. Here only transmission compliance is
referred, but also compliance in the motor/transmission and transmission/arm-element
connection on the shafts are important to consider (Rivin 1988). To make the total
manipulator system more accurate, one solution might be to measure the angular
deflection of each joint from outside, and actively compensate for this in the control
system. It would also be possible to measure the momentum applied by each motor and
then compensate for the joint deformation based on a model of the joint.

3. Dynamic analysis

The basic dynamic formulae are found in Irgens text-book (Irgens 1985b). Based
on the result of the previous chapter, the dynamic model can be simplified significantly.
The arm elements are supposed to be rigid and all the compliances are due to the joint
deformation. This gives a coupled mass/spring system to be analysed (see Fig. 6).

3.1. Dynamic model

Use of the general principles—the balance of linear momentum (F =m*a,) and the
balance of angular momentum (T, = dLy/df)—on each of the three separated links
resulted in a set of equations of movement for the mechanism. In this deduction we
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Figure 6. Sketch of the dynamic model.

assume small deflection angles. Organized in matrix form these equations result in

Eqn. 16.

U V3 1
M| . |+ K| ¥ |[=| L [F@) (16)
Vs V3 L

In this equation both the mass matrix M, and the stiffness matrix K, is 3 X 3 matrices.
This is a set of three second order linear differential equations. To find the resonance
frequencies, which was the main goal for this operation, we assumed a solution on the
form

Wi = Wiocos (ot — ¢) a7

By calculating the determinant of the resulting coefficient matrix and setting this
equation to zero, the resonance frequencies can be found. The analysed system results
in an equation of degree six, which gives three real and positive roots which are
associated with the resonance frequencies of the system.

3.2. Results and discussion

Based on the model data from Table 1, the math program MAPLE V (Char et al.,
1988) was used to find the resonance frequencies of the system

w; = 14-8Hz
o =T74-6 Hz
w3 = 159-6Hz

With the lowest resonance frequency about 15 Hz, the bandwidth of the servo control
system must be below this frequency. On the other hand, the control system must be
fast enough to fulfil the performance criteria. One way to increase the resonance
frequency of the system is to use stiffer drives. Joint one is intuitively the one that
influences the lowest resonance frequency the most. Assuming a one dimensional
mass/spring system doubling the resonance frequency would require four times the

stiffness (Eqn. 18)
wo= \/ : (18)
m

The robot was also modeled in a Finite Element based program for Dynamic analysis
of Elastic Mechanisms, called FEDEM (SINTEF Production Engineering 1993). This
analysis gave the same results as the classical dynamic calculation of a coupled




Mechanical analysis of high precision manipulator 241

mass/spring-system within a 1-5% margin. A model of the mechanism in FEDEM gives
much more flexibility in changing parameters and observation of the influence of these
changes. With a spring stiffness of four times the previous modeled one, this analysis
showed a rise in resonance frequency of about 70%. This is because it is a coupled
system and some frequency rise was also observed in the other joints.

4. Conclusions

Based on underwater requirements we chose an anthropomorphic arm configuration
to be analysed (Fig. 5). Three metal materials (steel, titanium and aluminium) and three
different composite materials (boron, kevlar and siliconcarbide) were examined to try
to find the best selection for our purpose. Among the metals, aluminium showed the
best stiffness/specific-weight ratio under given conditions (Fig. 2). The deflection
approximated the same value for the different materials with increasing dimensions—
h,b. The composite materials showed even better properties (see Fig. 4) but they are
expensive and joining of elements is difficult.

By selecting arm links of steel, high performance harmonic drive gears and
hydraulic motors (Table 1, Fig. 5), simulation has shown that the total deflection at the
end of the arm is 1-39 mm. Of this only 0-03 mm was caused by deflection in the arm
links. This is less than 3% of the total deflection and it shows that the main effort should
be put into reducing joint compliance. The resonance frequencies of the manipulator
system are of great importance. It is very important that the joint feedback control
system operates below these frequencies to avoid instabilities. The lowest resonance
frequency in the modeled system was about 15 Hz, the bandwidth of the servo control
system must hence be below this frequency. To raise this lowest resonance frequency
one has to make a stiffer mechanism. Intuitively an increase in stiffness in the inner
Joint contributes the most to the lowest resonance frequency. A simulation showed
that multiplying this stiffness by four raised the resonance frequency by 70%.

A more thorough dynamical analysis of the total mechanism and control systems
is forming the basis for further research.
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