MODELING, IDENTIFICATION AND CONTROL, 1995, voL. 16, NO. 3, 129-143
doi:10.4173/mic.1995.3.2

A method for the identification of state space models from
input and output measurements¥}
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In this paper we present a simple and general algorithm for the combined
deterministic stochastic realization problem directly from known input and output
time series. The solution to the pure deterministic as well as the pure stochastic
realization problem are special cases of the method presented.

1. Introduction

A method for identification of state space models from arbitrary input output time
series is presented in this paper, which is an extended version of a paper by Di Ruscio
(1994).

The method is based on the observation that the underlying model (assumed to be
a combined deterministic stochastic, discrete time, linear innovations model), can
be written as an extended state space model where the states are known. The known
input and output time series are stacked in vectors which yield the inputs and the states
for the extended model.

The stacked vectors are collected into two data matrices which define a set of
linear equations where the extended system matrices are unknowns. The extended
system matrices (which share the underlying system matrices) can be determined
from a least squares solution. The system order and the underlying system matrices are
then determined by simple singular value analysis and factorization on the extended
system matrices. An ‘output normal’ or ‘balanced’ minimal model realization results
naturally from this method because it is based on the Singular Value Decomposition
(SVD).

In our opinion, the method that is presented here for the realization of combined
deterministic stochastic systems from known time series is simple, compared to existing
methods. It should be noted that the purely stochastic realization problem, as well as
the purely deterministic, stands out as a special case in this context.

Other results exist and are presented in the literature. Some methods are based on
the factorization of Hankel matrices constructed from correlation matrices, and others
are based on constructing a state sequence for the underlying model, either from a
projection of the time series or from instrumental variables (Aoki 1991). The state
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space matrices are then determined from a set of linear equations defined by the
estimated state sequence and the known input output sequences.

A method of this last type is the ‘N4SID subspace algorithm’ by Van Overschee
and De Moor (1994). A simple example has been used to compare the method in this
paper with the N4SID algorithm.

The rest of this paper is organized as follows. Section 2 presents the problem
definitions and some preliminaries. A complete solution to the deterministic realization
problem is presented in § 3. The solution to the combined deterministic stochastic
realization problem is presented in § 4. Monte Carlo simulations are used to illustrate
and compare the method with existing algorithms, N4SID and ARMAX, in § 5. Some
concluding remarks are given in § 6.

2. Problem definition and preliminaries
2.1. A state space model on innovations form
Define the discrete-time, time invariant, linear state space model of the form

Xx+1=Axi+ Buy + Cey (1)
Y = Dxy + Euy + ey )

where k =0 is discrete time, x; € ‘R" is the state vector, y, € R”™ is the system output,
ux € N’ is the system input and e; € R™ is an unknown innovations process, which is
assumed to be standard white Gaussian noise. We will in this paper assume that the time
series yx and uy are known fork=0,1,...,N—1, i.e. a number N samples are known.
The following theorem is important for the results in this paper.

Theorem 2.1. (observability)
If rank (D) = d, then the system represented by (1) and (2) is completely observable
if the (n — d + 1)m X n ‘observability’ matrix
D .
DA

O =| DA? and rank (O) =n 3)

DA™ d
= 00" is nonsingular.

The proof is the same as that presented for controllability by Kalman, Falb and Arbib
(1969), Ch. 2, pp.37. YN

2.2. A matrix valued state space model
Given (the possibility matrix) dynamic, discrete time, linear state space model
X1 =A%+ BU, Yk=0 4)
W = D%« + EUx, (&)
This model can be determined from the state space innovations model as follows: shift

time index with k=i and i = : i + k in Egns (1) and (2), post multiply with u; (or y:-r)
and take expectations. %, % and Z; are in this case correlation and cross-correlation
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matrices given by

Y =E(yi+ ) € R™*" 6)
U= E(u; ku?) e R’ 0]
Xy =E( . }) € R (8)

where k= 0. Note that if the underlying system is assumed to be deterministic, then we
can take % =: y;, Lx=: x; and U, =: u; and the two model representations (1),
(2) and (4), (5) are identical.

We will in this paper assume that the sequences %, and % (or y and u,
deterministic case) are known for k=0,1,... Ny — 1, i.e. a number N; samples are
known.

2.3. Problem statement

The main problem of this paper can be stated as follows: From known input and
output time series, u; and y;, respectively, determine a state space model realization for
the deterministic part of the underlying system, i.e. the quadruple (A, B, D, E). It is
assumed that the output sequences, y;, are generated by an unknown underlying
combined deterministic stochastic state space model of the form (1) and (2) excited by
the input sequences ;. Note that the deterministic realization problem as well as the
stochastic is a special case of the problem addressed.

The results in this paper are presented in two parts, §§3 and 4, respectively.
A description is given in the following.

Part I. A solution to the identification (or realization) problem based on the matrix
valued state space model given in (4) and (5) will be presented in § 3. The estimation
problem of the correlation and cross-correlation matrices %; and %), from the measured
sequences, u; and y;, can in some circumstances be hard to obtain. However, our
experience is that the unbiased estimates, viz.

l N—k—1
W =E(y s atd}) = 1 — Vit rdy
"R N_l_k ,‘Z() "
l N—k—1
U =B ) =1 ————— Ui itt]
X k Y 2‘3 k]

(where N is the number of samples in the time series of y and u and k= 0), work
satisfactorily for many systems.

However, the inclusion of the correlations matrices is only a trick to transform the
innovations model into a deterministic model. The main purpose in § (3) is to solve the
deterministic realization problem.

Part I1. A solution to the combined stochastic and deterministic identification (or
realization) problem can be obtained directly from the state space innovations model
formulation given by (1) and (2), directly from the output input time series, yx, and uy.
without the need of correlation and cross-correlation estimation. This result is presented
in §4. A solution to the stochastic realization problem which results as a special case
will also be presented.

3. Partl
We will in this section as a starting point develop the solution of the realization
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problem with the matrix valued state space model, Egns (4) and (5). The solution
coincides with the solution to the deterministic realization problem.

3.1. The general extended model formulation

Introduce L as the number of block rows in the ‘extended’ observability matrix.
This definition will be clarified later.

The state space model, Eqns (4) and (5), can in general be written as the following
extended state space model.

Wy i1 = Ay + Bl ©

where k=0 and A and B are constant matrices given by
A=oA0"0) 'O" (10)
B =[OB — AEy Eo— AE, E, — AE; ... E 1] an

The extended output sequences, 7, € R"-*"and % € R+ VT respectively, are given
by

(&, (]|
Wy WU

o= Wisa Y=\ Uk +2 (12)
| W rar -] | Ui+

Note that A contains the system matrix, at least as a submatrix. This can be clarified
as follows. Assume that (A, B, D, E) is an output normal realization and let C be the
controllability matrix for the pair (B, A). Let the product of the observability (O) and
the controllability (C) matrices be factored into OC = USVT by the singular value
decomposition. In the case of an output normal realization, O = U and 0"O = I. this
gives

A=UAU" (13)
which shows, through similarity, that A contains the eigenvalues of A.

Proof of Equation (9)
The system model, (4) and (5), can be written as

X1 =AZy + BUk (14)
= O+ By + E\WUi1+ ExWUis2t ... YEL\Uri1-1 (15)
where %, is defined above and
(D ] E ] [0 1 0 |
DA DB E 0
O=| DA? Eo,=| DAB E\=| DB EL_,=|: (16)

DAL | DA"?B | | DA* B
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Express Eqn (15) for time & + 1 and substitute for 2., from Eqgn (14). We have
@i+ = OA(O™0) 'O - OFy + OBy
‘EUk i+ EUisr ¥ E5Uy i3+ ... Y EL \WUrsr an

because O'O is nonsingular. Substitute 0%, defined from Eqn (15), into Eqn (17).
We have

Wrv1 =A%+ (OB — AEo)ilx
+ (Eo— AE) Uk i1 + (Ex — AE) Uy 2+ ... +Ep \WUyry (18)

which is identical with Eqns (9), (10) and (11). QED.

The system dynamics can now be isolated from Eqn (9). Assume that the sequences
@\ and %y are known for k=0,1,2,...,K, i.e. the sequences are of length K+ 1.
This requires that the output sequences %, and %; are known for
k=0,1,2,...,K+ L—1,i.e. the sequences must be of length K + L. The sequences %,
and %; are by definition known for N, samples, this gives K = N; — L. We will also
define L such that L = 1. Note that L coincides with the number of (m X n) block rows
in the extended observability matrix (O).

The known sequences % and % can now be collected into data matrices Y}, ¥y and
Uo which satisfy the following linear matrix equation

e[
where
r=[A B (20)
VYZiw=[% %, ... Ty 2
Yo=[%y % ... Fx_i) (22)
Uo=%o T ... Wx-)] (23)

The system of linear equations, Eqn (19), can be solved for I in a least squares sense.
The system quadruple (A, B, D, E) can then be extracted from I". This will be shown
later.

The matrices Y, Ypand Up which are defined from the known sequences can be more
precisely defined as follows.

@, Wy e Wy
@2 @3 @Ki 1

Y, = (24)
_@’L WY+ ... @K+L-l J
_@’g % e WUk |
@, P W

Yo= i . . (25)
_@L—l @/L ree @k‘-{f_ 2 |
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(e U ... Uk
U Gy U
Us=| U U Uk +1 (26)

U U1 von Ukvr-1

where ¥, Yo € RE"¥E7 Uy e RE VD> K and I ¢ REm> Em+ €+ DN Note that this result

also is valid if @=: y; and % =: w. In this case ¥;, Yoe R"*¥ and
erm(bn+(l.+l)r)><x

Note that the complexity of the problem can be reduced if the system matrix E is
assumed to be zero, i.e. when the system is strictly proper. The last column in B,
(i.e. EL_1), and the corresponding last row in Up can be removed in this case (i.e. when
E=0).

3.2. Determination of the system matrices
Define, for simplicity

o- 2]

Post multiply (19) with Of and divide on both sides with K for consistency with the
expectation operator. The linear matrix equation can then be written as

1 1
EY1Q3=1"IEQ0Q3 (28)

The known matrices on the left and right hand sides of the least squares problem,
Eqn (28), can be expressed as follows

1 1 1" !
Lygia 21=[LY a0t L3 gl @
_l i @ lk'z" @@T
Tdeon o K=o K=o Kok
_QOQD So U ] l KE—-1 1 K—1 (30)
0 2 — > Wl
- Kk=0

We will now clarify the link between the above matrices and the known data % and
. Tt is necessary to point out that the above matrices can be formulated in terms of
symmetrical and nonsymmetrical block Toeplitz matrices where the block matrices in
Eqns (29) and (30) are given from following submatrices

Z Wrr Y1

K—1

Uj.i'—_ z Ui+ UL+

1
j =k 2 @&+J'%k+f
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1 K1
Sp=r X Uns i1y
K=o
From the partitioning defined above we have the following two equations which define
A and B.

Ay =AA + BS, (31)
T, =A%y + BU, (32)

Note that o= Sj. From this we get
A1 —E\Uqg 'So = A(Ao— ZoUg 'So) (33)

Note that the pseudo inverse should be used instead of Uy ' in the case when U, is not
of full rank.

We will now go for the system order n and the system matrices. For the sake of
simplicity, define the matrices Z; and Z, such that Eqn (33) is identical with

Z,=Az, 34)
The system order n
The system order is determined by a singular value decomposition of the matrix on the
right hand side of (33), defined as Z,. Obtain the singular value decomposition for Z,
ie.

Zo=USVT (35)
where
S, 0
U=[U U} S=[0 0] V=I[WVi Vi (36)

where S, € R"*" and n is the number of non-zero singular values of Z,, which is equal
to the system order. n is determined by inspection of the non-zero diagonal elements
of S or SS".

The extended observability matrix for the pair (D, A)
The (extended) observability matrix can be taken directly as the first left part in U,
ie. Ui. We have

O=U(1:Lm, 1:n) 37

The system matrix A
The system matrix A is determined as follows

A=UiZ,V,8; ! (38)

The system output matrix D
The system output matrix D can be taken as the m X n upper submatrix in the
observability matrix U. This can be formulated as follows

D=Ul:m, 1:n) 39

The extended system matrices A and B
A can now be determined from (34) and (35). We have

A~ = Z|V|Sn_ IU-{ (40)
The matrix B is defined from (32) because A is known from (40).
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The system matrices B and E

The system matrix E can be extracted directly as the lower right (m X r) comner of the
matrix B. The matrix OB is extracted recursively from block columns of the matrix B
and A. The system input matrix B can then be taken as

B=(0"0) 'O"-0B=U}-0OB 41)

We have now determined a complete realization for the underlying system (A, B,
D, E). We have for simplicity, chosen O = U, in Step 2, because O"O = I. This gives
an output normal realization when L — . The algorithm can also be formulated with
O = US", i.e. a balanced realization when L— . OO is equal to the observability
grammian as L tends to infinity because, in this case, DA "' tends to zero.

4. PartIl

We will in this section solve the combined stochastic and deterministic
identification problem directly from y; and u, without the need to form the correlation
and cross-correlation matrices.

4.1. The combined deterministic stochastic problem

The innovations model, Eqns (1) and (2), can generally be written as the following
‘extended’ state space model. Note also the connection with a MIMO ARMAX model
formulation with constant polynomial matrices. However, the main point of writing the
model in this form is that the ‘state’ description is known.

Fes1 =Ai + B+ Cé V k=0 (42)
where 7, € X1 g, e WEYDXT and &, € R™LHDX are given by
[ Yk ] -uk | [ €k ]
Yi+1 Up+1 €41
Ye=| Yi+2 W=\ tgv2 | &=| ex+2 (43)
L Ye+r—1] \.ut+L_ | €+ L]

The matrices A € R™*™, B e REXME+D gnd € e RE>*™E+D are constant and
defined as follows.

A=0A0"0)"'0" (44)
B=[OB— AEy Eo— AE, E\ — AE,...E._] (45)

C have the same structure as B but with B substituted with C and E with the (m X m)
dimensional identity matrix.
Note that it is expected that the stacked noise process, &, satisfy

E@+e)=0Vj=L+1 (46)
Define the data matrices from the stacked vectors, (43), as follows

Y= [FaFe+1-- Ferx—1] 47

U=l fig sy ... Bk r k1] (48)
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Er=[é&éiv1...&+k-1] 49

Let the matrix " be defined as

H
[

(50)
We then have

Y
Uk—l

From the definition that the white noise e; is uncorrelated with ¢; , , (k # i), then, we
have:

Yk=1“[ ]+C'Ek_1 Vk=1 (51

1 N e g
Jim — Eye iy = lim E,-Zo Gerr+jfi-14;=0 (52)
where k = 1. Note that (52) coincides with (46) if ergodicity is assumed. We then have
the definition E(-) = limg_,« /K= ().
Several sets of linear equations which define I', can now be defined from Eqn (51).
Define the following two linear matrix equations from (51), withk=1and k=L + 1.

Y,
Y1=l"[ "]+CEO (53)
Uy
Y,
Yy =T ]+C‘EL (54)
U
Define
n]
= 55
O [ Ul (55)
and the matrix of ‘instrumental variables’
Y,
W= [D‘j] Vi=0 (56)

Post multiply Eqn. (54) with W; and divide with the scalar parameter K for consistency
with the expectation operator. We have

1 1
EYL+.WF=FEQLWT (57
because
1 e 1 [YO]T
_.E W‘ :—E = 58
gEWi=pE U, 0 (58)

when K approaches infinity.

Equation (57) can now be solved for I in a least squares sense and the quadruple
(A, B, D, E) extracted from the extended system matrices A and B. The procedure is
the same as that presented in § 3. The realization problem, details and special cases are
discussed further in the next section.

Assume that the time series yx and u; are of length V. The parameter K, which defines
the number of columns in the data matrices Yy, ¥1, ¥ +1, U and Uy, is of size
K=N—2L—1 in this case.
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4.2. Details and special cases

The system matrices (A, B, D, E) can be determined exactly in the same way as in
§ 3. However, it is necessary to clarify some details and special cases. Note that the pure
deterministic as well as the pure stochastic realization problem are special cases of the

problem addressed.

The known matrices on the left and right hand sides of the least squares problem,
Eqn (57), can be expressed as follows. However, note that we have introduced the lag
parameter M. The justification for this will be clarified later.

1 def 155 15!
EYM+IW;F2[AM+1 Tyail= -Ek=ll ~x+m+|j’:{ Kkz_:ﬂj"kd-.wtlﬁ}u] (59)
'l.&'—l 1!{'21_ T
= Vera¥r = Yoo+ mitp 4
lQ Td;r[AM EM]= K <o k+ MYk K =, + Mty 4 .
K=" sy Ul (1S 1‘“"ﬁ il
- i = \ ;
_Kk=u k + MYk K5 k &+

From the partitioning defined above we have the following two linear equations which
define A and B.

Apr+1=AAy+ BSy (61)

Tym+1=AZy+ BUy (62)

The justification for the lag parameter M will now be clarified. For variations of M,
special cases concerning the type of the system result.

M = L: Combined deterministic stochastic systems

Api1=AAL+ BS; (63)

Y1 =A%+ BU, (64)

We will first discuss the case with i=0 in the matrix of instrumental variables,
Eqgn (56), i.e. Wy. Consider the rare case where the system input is standard white
Gaussian noise. In this case U, is singular as the number of samples approaches infinity.
The system matrices (A) and (B) defined from (63) and (64) in any case. We mention
it because it is obscure to invert U in this case. However, this problem is avoided by
using i = L in the matrix of instrumental variables, i.e. Wy.

M = 0: Purely deterministic systems
A =ANo + BS, (65)
%, =ASs + BU, (66)

Note that £y = SE in this case. Note also that Uy # 0 in the rare case where the system
input is white noise.
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4.3. Purely stochastic systems
From (63) and (64) with u; = 0 we have

Arvi=AA, 67

Itis important to point out that the (D, A) matrices, in the stochastic realization problem,
are defined from two finite matrices (Eqn (67)), instead from one Hankel matrix as with
the traditional approach. The matrices A; .+ ; and A, will have a Toepliz structure when
the number of samples approaches infinity.

5. Monte Carlo simulation
5.1. Example I

A scalar example is chosen in order to compare the algorithm presented in this paper
(DSR) with two other algorithms, N4SID (Van Overschee and De Moor (1994)) and
ARMAX (MATLAB: System identification toolbox, Ljung (1991)).

Xk+1 = 0-91';4 + 0‘51{(- + 0‘68‘& (68)
Ve = 1-0x, — 1-0uy + €4 (69)

Three types of input signals were used. One input equal to a sum of four sinusoid
signals, u', one input equal to a white noise signal with unit covariance. «?, and one equal
to a sine, 1.

k k k
w02 (4) (1) 108 s
w o u=072 (sm (25) sin (10) sin 5 sin (k) (70)
u*  White noise, unit covariance (71)
@ w=sin(k) (72)

For each input the time series (y&, tx) was generated by simulating the model with 100
different white noise sequences ¢, also with unit covariance.

The DSR algorithm parameter L was changed from 1 to 5 and the N4SID parameter
I'from 2 to 6. For each L and I, the mean and standard deviation of the parameters of
the 100 different estimated models are presented in Tables 1 to 6. The results obtained
by the ARMAX algorithm are also shown in the tables. See Ljung (1991) for the
description of the parameters nn = [1, 2, 1, 0] which is used as arguments to ARMAX.

The true deterministic system quadruple is denoted (a, b, d, €): = (0.9, 0.5, 1, — 1)
and the deterministic steady state gain and deterministic zero are denoted H4(1) = 4-0
and pA1) = 1-4, respectively. The parameters in the stochastic part of the model are
(c, A):= (06, 1). The stochastic steady state gain and stochastic zero are denoted
H*(1) =7-0 and p(1) = 0-3, respectively. The signal to noise ratio is as low as 0-4,
hence, the identification problem is not simple.

The NASID algorithm sometimes estimated systems with negative (b, d)
parameters, i.e. sometimes an estimated quadruple (a, b, d, e) and some times (a, — b,
—d, e). This happened with the algorithm parameter /= 3 and with an random input
signal.

The results are very good both for the DSR method in this paper and for the N4SID
method, Tables 1 and 2. There are small differences in the estimated models for both
methods when N is large, see Tables 1 and 2.
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Alg. Par. a b d e [ pa(1) L{T} c A pe(l) | H(1) |
DSR L=1 08908 | 04965 | 1.0000 | -1.0021 | 1.3975 | 3.9598 | 0.6088 | 1.0045 | 0.2010 | 7.0910 |
DSR. L=2 0.8995 | 0.4971 | 1.0000 | -1.0021 | 1.3979 | 3.9516 (.6003 | 0.9980 | 0.2002 | 6.9867
DSR | L=3 0.8098 | 0.4965 | 1.0000 | -1.0021 | 1.3975 | 3.9604 | 0.5392 | 0.9985 | 0.3006 | 6.9940
DSR L=4 0.8996 | 0.4967 | 1.0000 | -1.0019 | 1.3977 | 3.9572 | 0.5992 | 0.9981 [ 0.3004 | 6.9875
DSR L=5 0.8008 | 0.4963 | 1.0000 | -1.0020 | 1.3975 | 3.9644 | 0.5989 | 0.9977 | 0.3009 | 6.9976
N4SID | 1=2 0.5096 | 0.4967 | 1000 | -1.00ZL | 1.3977 | 3.9545 | 0.6008 | 1.0046 | 0.2988 | 7.0015
N4SID | 1=3 0.8996 | 0.4972 | 1.0000 | -1.0026 | 1.3960 | 3.9572 | 0.5995 | 1.0000 | 0.3001 | 6.9849
NaSID | 1=4 0.8998 | 0.4952 | 1.0000 | -1.0034 | 1.3961 | 3.9471 | 0.5990 | 0.9994 | 0.3008 | 6.9930
N4SID | I=5 0.8006 | 0.4984 | 1.0000 | -1.0012 | 1.4003 | 3.9714 | 0.5992 | 0.9993 | 0.3003 | 6.9830
N4SID | 1=6 [0.8996 | 0.4975 | 1.0000 | -1.0016 1.3902 | 3.9659 | 0.5093 | 0.9993 | 0.3003 | 6.9872
ARMAX | nn=[1,2,1,0] ]| 0.8095 [ 0.4982 [ 1 -1.0024 | 1.3987 | 3.9604 | 0.5995 0.3000 | 6.9769

Table 1. Mean of the parameters of 100 different estimated models: input type u', N=10000.

Alg. Par. a__|b dle paD) | HI() ¢ A () | H(D |
DSR L=1 D.0054 | 0.0269 | 0 | 0.0677 | 0.0436 | 0.3020 | 0.0101 | 0.0153 | 0.0130 | 0.3170
DSR. L=2 0.0052 | 0.0261 | 0 | 0.0678 | 0.0434 | 0.3063 | 0.0099 | 0.0152 | 0.0121 | 0.3021
DSR =3 0.0054 | 0.0257 | 0 | 0.0678 | 0.0434 | 0.3190 | 0.0102 | 0.0152 | 0.0128 | 0.3211
DSR L=4 0.0056 | 0.0250 | 0 | 0.0678 | 0.0435 | 0.3236 | 0.0105 | 0.0151 | 0.0135 | 0.3309
DSR L=5 0.0059 | 0.0261 | 0 | 0.0677 | 0.0433 | 0.3328 | 0.0111 [ 0.0151 | 0.0145 | 0.3447
N4SID =2 0.0052 | 0.0266 | 0 | 0.0678 |0.M31’ 0.2959 | 0.0101 | 0.0153 | 0.0124 | 0.2994
NaSID | I=3 0.0051 | 0.0294 | 0 | 0.0691 | 0.0471 | 0.3423 | 0.0097 | 0.0152 | 0.0118 | 0.3009
N4SID | I=4 0.0053 | 0.0333 | 0 | 0.0702 | 0.0517 | 0.3920 | 0.0096 | 0.0152 | 0.0118 | 0.3155
N4SID =5 0.0055 | 0.0381 | 0 | 0.0704 | 0.0572 | 0.4456 | 0.0096 | 0.0151 | 0.0119 | 0.3236
N4SID~ | I=6 0.0058 | D.0376 | 0 | 0.0699 | 0.0563 | 0.4554 | 0.0096 | 0.0152 | 0.0122 | 0.3391
ARMAX | nn=[1,2,1,0] || 0.0051 | 0.0269 | 0 [ 0.0662 | 0.0420 | 0.2925 | 0.0095 0.0115 | 0.2983

Table 2. Standard deviation of the parameters of 100 different estimated models: input type

u', N=10000.
Alg. Par. a b d e pall) | HI) [ A p1) | H'(1) |
DSR L=1 D.8861 | 0.5074 | 1.OODD | -0.9922 | 1.4047 | 4.0874 | 0.6093 | 0.9961 | 0.2768 | 7.0385
DSR L=2 D.8884 | 0.5023 | 1.0000 | -0.0945 | 1.3991 | 3.9833 | 0.6045 | 0.9699 | 0.2839 | 6.9509
DSR L=3 0.8886 | 0.5016 | 10000 | -0.9971 | 1.3980 | 3.9781 | 0.6094 | 0.9476 | 0.2792 | 7.0266
DSR L=4 0.8801 | 0.4998 | 1.0000 | 0.9932 | 1.3985 | 4.0110 | 0.6128 | 0.9218 | 0.2763 | 7.1207
| DSR =5 0.8902 | 0.4999 | 1.0000 | -0:9940 | 1.3092 | 4.0741 [ 0.6139 | 0.8991 10,2763 | 7.2495 |
N4SID | 1=2 0.8865 | 0.5077 | 1.0000 | -0.9920 | 1.4056 | 3.9629 | 0.6027 | 1.0102 [ 0.2838 | 6.8462
N4SID [ 1=3 08865 | 0.5031 | 1.0D0D | -0.0954 | 1.3996 | 3.8055 | 0.6072 | 0.9953 | 0.2793 | 6.8840
N4SID | 1=4 0.8859 | 0.5004 | 1.0000 | -0.8974 | 1.3957 | 3.8534 | 0.6111 | 0.9916 | 0.2749 | 6.9022 |
NaSID | I=5 0.8852 | 0.4994 | 1.0000 | -0.9973 | 1.3938 | 3.8399 | 0.6122 | 0.9844 | 0.2730 | 6.9141
N4SID | 1=6 0.8840 | 0.5007 | 1.0000 | 0.9307 | 1.3960 | 37969 | 0.6145 [ 0.9801 | 0.2695 | 6.8643 |
ARMAX | nn—|1,2,1,0] || 0.8864 | 0.5036 | 1.0000 | -0.9935 | 1.3093 | 3.8848 | 0.5087 [ 0.9971 | 0.2877 6.7799 |

Table 3. Mean of the parameters of 100 different estimated models: input type 2, N = 200.

[ Alg. [Par. —  ]a b
DSR -1 0.0379 | 0.0057
DSR L=2 0.0351 | 0.0907
DSR =3 0.0357 | 0.0931

dle pall) | HY(1) [c iy (1) [H'(1) |

0 [ 0.0725 | 0.1320 | 2.3261 | 0.0101 | 0.0907 | 0.0884 | 2.4984 |

0 | 0.0716 | 0.1222 | 1.5766 | 0.0131 | 0.0889 | 0.0915 | 1.9967

0 | 0.0793 | 0.1234 | 1.8585 | 0.0158 | 0.0857 | u.0064 | 2.0683

DSR L=1 0.0363 | 0.0045 | 0 | 0.0844 | 0.1227 | 1.9096 | 0.0183 | 0.0872 | 0.1046 | 2.1884
DSR L=5 00361 | 00877 | 0 | 0.0895 | 0.1212 | 1.9666 | 0.0210 | 0.0865 | 0.1095 | 24102 |
N4SID | I=2 0.0354 | 0.0956 | 0 | 0.0726 | 0.1325 | 1.9081 | 0.0104 | 0.0936 | 0.0844 | 1.9693
1]

0

]

1]

0

N4SID [ I=3 0.0351 | 0.0987 00737 | 0.1374 | 1.8680 | 0.0106 | 0.0959 | 0.0839 | 2.0161 |
N4SID | 1=4 0.0357 | 0.0992 0.0768 | 0.1375 | 1.8757 | 0.0115 | 0.0931 | 0.0871 | 2.0303
| N4SID_ [ I=5 0.0367 | 0.0994 0.0778 | 01347 | 1.9511 | 0.0119 | 0.0951 | 0.0904 | 2.1405
N4SID [ I=6 0.0376 | 0.0983 0.0785 | 01331 | 1.8513 [ 0.0123 | 0.0955 | 0.0974 | 2.0864

e —— o
ARMAX | nn=[1,2,1,0] || 0.0348 | 0.0921 | 0.0675 | 0.1225 | 1.7760 | 0.0723 | 0.0933 | 0.0867 | 1.8969

Table 4. Standard deviation of the paraulgetcrs of 100 different estimated models: input type
, N =200.
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Alg. Par. a b d e pa(l) [HA (1) [ [A 2.(1) | H'(1) |
DSR L=1 || 0.8952 | 0.4927 | 1.0000 | -1.0011 | 1.3923 | 4.0501 | 0.6013 | 1.0006 | 0.2039 | 7.0975 |
| DSR L=2 0.8938 | 0.4925 | 1.0000 | -1.0021 | 1.3900 | 3.9881 | 0.5061 | 0.9879 | 0.2977 | 6.9587
'DSR | L=3 0.8934 | 0.4923 | 1.0000 | -1.0026 | 1.3893 | 3.9382 | 0.6000 | 0.9784 | 0.2934 | 6.9510
DSR [L=4 0.8631 | 0.4924 | 10000 | -1.0022 | 13893 | 3.9376 | 0.6018 | 0.9695 | 0.2914 | 6.9572
DSR | L=5 0.8936 | 0.4930 | 1.0000 [ -1.0024 | 1.3903 | 3.9736 | 0.6030 | 0.9612 | 0.2906 | 7.0060 |
N4SID | I= 0.8944 | 0.4923 | 1.0000 | -1.0017 | 1.3906 | 3.9908 | 0.5944 | 1.0047 | 0.2999 | 6.9579 |
N4SID | 1=3 0.8933 | 0.4921 | 1.0000 | -1.0013 | 1.3894 | 3.95568 | 0.5959 | 0.9998 | 0.2974 | 6.9273
N4SID | 1= 0.8931 | 0.4915 [ 1.0000 | -1.0000 | 1.3893 | 3.9105 | 0.5966 | 0.9992 | 0.2565 | 6.8970
NASID | I=5 [ 0.8930 | 0.4916 | 1.0000 [-1.0003 | 1.3892 | 3.9064 | 0.5967 | 0.9986 | 0.2963 | 6.8926
[N4SID_ [ 1=6 | 0.8931 | 0.4905 | 1.0000 | -0.9997 | 1.3886 | 3.8041 | 0.5972 | 0.9977 | 0.2960 | 6.8930
ARMAX [ nn=[1,2,1,0] ]| 0:8936 | 0.4927 | 1.0000 | -1.0024 | 13898 | 3.9354 | 0.5052 | 0.9980 | 0.2983 | 6.8954

Table 5. Mean of the parameters of 100 different estimated models: input type i, N = 500.

[ Alg. Par. a b [d]e pall) | HY1) [ A p.(1) [ H(1) |
DSR =1 [ 0:0277 | 0.0658 | 0 | 0.0768 | 0.1019 | 1.6168 | 0.0409 | 0.0644 | 0.0542 1.4790 |
DSR L=2 0.0274 [ 0.0660 | 0 | 0.0752 | 0.0996 | 1.6257 | 0.0442 | 0.0637 | 0.0580 | 1.4551 |
'DSR | L=3 0.0268 | 0.0660 | 0 | 0.0765 | 0.0993 | 1.5491 | 0.0456 | 0.0638 | 0.0583 | 1.4120
DSR |L=4 ~|[0.0272 ] 0.0661 { 0 | 0.0757 | 0.1000 | 1.5699 | 0.0470 | 0.0626 | 0.0600 | 1.4067
DSR L=5 0.0275 | 0.0665 | 0 | 0.0760 | 0.1000 | 1.6054 | 0.0479 | 0.0640 | 0.0609 | 1.4341
N4SID =2 0.0269 | 0.0659 | 0 | 0.0759 | 0.1002 | 1.5547 | 0.0417 | 0.0653 | 0.0542 | 1.4149
N4SID | 1=3 0.0275 | 0.0658 | 0 | 0.0755 | 0.0991 | 1.5903 | 0.0431 | 0.0642 | 0.0560 | 1.4463
N4SID | I=4 0.0268 | 0.0666 | 0 | 0.0748 | 0.0085 | 1.5164 | 0.0415 | 0.0645 | 0.0532 | 1.3767 |
N4SID _|T=5  |[0.0267 | 0.0664 | 0 | 0.0752 | 0.0950 | 1.5091 | 0.0420 | 0.0645 | 0.0539 | 1.3780
N4SID [ 1=6 0.0262 | 0.0667 | 0 | 0.0760 | 0.1007 | 1.5003 | 0.0433 | 0.0660 | 0.0539 | 1.3668 |
[ ARMAX | nn=[1,2,1,0] [[ 0.0260 | 0.0663 | 0 | 0.0747 | 0.0865 | 1.5207 | 0.0421 | 0.0643 | 0.0535 | 1.3581 |

Table 6. Standard deviation of the para:;eters of 100 different estimated models: input type
, N =500.

[Alg [Par. [a [pa() [H') [ & [pa(1) [A°Q1)
DSR | L=1 -

DSR | L=2
DSR | L=3
DSR. | L=4
DSR | L=56

+
+
+

+|+i+[+]"
++ |+ [+
+|+ |+ +

Table 7. Comparison of DSR and N4SID. + indicate better result with DSR: input type 12,
N =200.

The DSR method is at least as good as N4SID when the number of samples are small
(for this example and with N =200 and N = 500 samples) see Tables 3 to 6.

It is also interesting to observe that the results from DSR are as good as the results
from ARMAX, even for a simple SISO system. Note that the ARMAX method is based
on iterative optimization but that the DSR method only is based on SVD and QR
decompositions. Note also that the ARMAX method is rather complicated for MIMO
systems while the DSR method is very simple.

5.2. Example 2
A two input two output system with the following model matrices is considered.
5 1 01 00
A=| —07 0 01 B=|0 1 (73)
0 0 085 10
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System Singular Values 20 Condition numbers
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Figure 1. Singular values and condition numbers for system order estimation of the system in
5.2. The noise free (deterministic) case with A =0, upper. The case with A = I, lower.

I3 0 —0-6] _[0 0]
D__o 1 1 JElo o 4
[0 01
1 0
c=|01 A—[O 1] (75)
0 02

The system have a deterministic zero at — 3, i.e. the system is non-minimum phase.
The eigenvalues of A are 085, 0-75 *+ 0-3708i.
The deterministic and stochastic gain matrices are given by

16 15 25 47 ]

2-6667 —2-5 —-0-25 1-1833 (76)

HY1)= [ ] H(1)=

The algorithm gives ‘exact’ results when A =0 (deterministic case). Hence, this
result is not presented. The time series yx, ux was generated by simulating the model
with one particular random noise process e, with covariance A. The input was
u=[1u']". The DSR parameter was fixed to L=6 and the number of samples
was N = 10000. The system order can be estimated by inspection of the singular values
or the condition numbers illustrated in Figure 1. The following estimates are obtained
by DSR.

15-6575 14-6168] fi“(l)=[ 2-3625 4-5583]
2:5576  —2-4188 —0-2436 1-1275

[ 10531 - 0—0244]
— 00244 0-9859

a'w-|

A= an
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6. Remarks

We have in this paper presented a general method for the combined deterministic
stochastic realization problem. The method needs only the input output time series for
the construction of the state space model matrices. The pure deterministic as well as
the pure stochastic realization problem pulls out as special cases of the method
presented.

A general method for realization of deterministic linear state space models is
presented in Section 3. The method is derived from a matrix valued state space model.
Note that the correlation approach is a trick to transform the innovations model, (1) and
(2), to a deterministic model. We can then present some important results in a
deterministic environment. These results are also used to solve the combined
deterministic stochastic realization problem in Section 4.

The method gives ‘exact’ results in the deterministic case provided the input signal
is sufficiently ‘rich’ with respect to excitations, and does not require time series from
several experiments. However, one can in some circumstances have sets of input output
time series which are the result of process experiments. The time series can be collected
into matrices and assumed to satisfy a matrix values state space model.

The system matrices (D, A) will usually be properly excited from the innovations
process which is assumed to be standard white Gaussian noise (systems of opposite
nature do of course exists). Assume that the input signal is poor with respect to
excitations, this will only result in poor estimates of the (B, E) matrices.
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