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Input saturation in nonlinear multivariable processes resolved
by nonlinear decoupling

JENS G. BALCHENT and BJARNE SANDRIB}
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A new method is presented for the resolution of the problem of input saturation in
nonlinear multivariable process control by means of elementary nonlinear
decoupling (END). Input saturation can have serious consequences particularly in
multivariable control because it may lead to very undesirable system behaviour and
quite often system instability. Many authors have searched for systematic
techniques for designing multivariable control systems in which saturation may
occur in any of the control variables (inputs, manipulated variables). No generally
accepted method seems to have been presented so far which gives a solution in
closed form. The method of elementary nonlinear decoupling (END) can be applied
directly to the case of saturation control variables by deriving as many control
strategies as there are combinations of saturating control variables. The method is
demonstrated by the multivariable control of a simulated Fluidized Catalytic
Cracker (FCC) with very convincing results.

1. Introduction

The development of control strategies for multivariable nonlinear processes has
high priority. In order that such control strategies shall be realistic, they must be able
to cope with the cases when control variables (manipulated variables) reach saturation
levels. No control strategy published so far has a closed form solution to this problem.
Saturation in control variables may or may not be a serious problem. As an example,
take a SISO-process which is unstable before it is stabilized through control by strong
negative feedback via its control variable. If this control variable saturates the process
will again become unstable. In multivariable processes the same situation may occur,
but if the process is state controllable through more than one control variable, a
systematic method for handling saturation may be developed. In control strategies based
upon optimization and control vector parametrization (CVP) saturating control
variables are easily handled (Biegler 1984, Balchen, Ljungquist and Strand 1992) but
these solutions are not in closed form. Other attempts to resolve the problem are given
and referenced in Singstad (1992) and Kothare, Campo, Morari and Nett (1993). The
strategy to be developed below is based on the principle of elementary nonlinear
decoupling (END) (Balchen 1993, Balchen and Sandrib 1994) which is a variation of
the exact linearization technique (Isidori 1989). In END a property variable is
introduced which becomes the object of control and which has as many degrees of
freedom as the number of independent control variables. In the case of saturation in
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control variables the property variables are designed according to which control
variables are saturated.

2. The problem of saturating control variables
The process to be controlled is in general described by a nonlinear model where

x=f(x,u,v) 1)
Xx: state vector (dim x = n)
u: control vector (dimu =)
v: disturbance vector (dimv = p)
J(©): vector of nonlinear functions (dim f= n)

Furthermore it is assumed that measurements from the processes are available
through the relationship

y=hx)+w (2)
where

y: measurement vector (dimy = m)
w: measurement noise vector (dimw = m)

In the following it is assumed that a state estimation scheme in the form of an
Extended (Augmented) Kalman Filter or something equivalent is implemented so that
the whole state vector (x) is available in the development of the control system.

A linearized version of (1) and (2) will be

5% = Adx + Bou + Cov 3)
dy = Hox +w @)

where the matrices are appropriate Jacobian matrices of the nonlinear functions in (1)
and (2).

The problem to be encountered is the situation which occurs when one or more of
the control variables constituting # reach a saturation level. Such a situation is very
realistic because physical variables definitely are limited in magnitude either caused by
equipment constraints or safety considerations and these limits may be reached under
normal disturbance conditions (v) which are not necessarily severe.

When a control variable reaches a saturation value, either positive or negative, that
particular variable seizes to influence the process behaviour by more than a constant
value. The consequence is that the process has lost a degree of freedom in control.
This may or may not have serious consequences depending on the structure of the
function f(-) of (1) or the matrix B of (3).

The matrix B can be ‘written in terms of parameter vectors b; each representing the
influence of the individual control variables (1;) upon the state equation of (30).

YO _ g (byby...bs...b)] (5)

du

Therefore (3) can be written
ok = Adx + B"éu" +b,-(‘iu,-m, +b,-5u,—,m ... + Cov (6)

where BY has been introduced for the matrix B where the columns i,j... are either
removed or replaced by small numbers, duY is the control vector with elements i, j. ..
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removed and i and Oujs, represent the saturating values of the control variables
number i and j respectively.

Elementary conditions for linear state controllability express that the system with
saturating control variables w;, u;__ is controllable if

rank [BY|ABY|...|]A" " 'B¥[]=n @

Equation (7) can be tested for all possible combinations BY-". If a non-controllable
combination is discovered, the resulting system can be further analysed to see if the
noncontrollability is detrimental or not (unstable etc.). If the noncontrollable modes are
nondetrimental, a feedback control system can be implemented for each BY- based upon
the estimated states (£) and the system will eventually return to normal nonsaturating
conditions. If the noncontrollable modes are detrimental, there is usually no other way
to solve the problem than by redesigning the process, for instance by adding more
control variables.

3. Elementary nonlinear decoupling (END)

END is a version of nonlinear decoupling algorithms that solves the invertibility
problem by designing the property space which is the object of linearization and
decoupling. It has some similarity with the input—output linearization (Isidori 1989) in
which the invertibility problem is solved by differentiating the output variables a
number of times. In Balchen (1993) it is claimed that END is the most realistic solution
in practical systems.

The objective of END is to derive the control vector () for a nonlinear dynamic
process described by (1) such that a property vector defined by the property
transformation

z=d(x) (8)

follows a certain desired trajectory defined by z=2Z, In most cases the property
transformation of (8) is replaced by a linear transformation

z=Dx ©

where D is a constant matrix.
One solution to the above problem is an iterative equation solver given by

i = K,()za— Df (x,u,v)] (10)

where the matrix K,(-) secures convergence of (10). One way of securing the
convergence of (10) is to require that the linearized loop described by (10) has
prescribed and constant eigenvalues (A) such that

i-[('_)) !

ou (n

K()=—A (D

A block diagram illustrating the END algorithm is shown in Fig. 1. It includes the
nonlinear estimator which has an updating matrix denoted K,(+) of unspecified form
since a number of algorithms may be used.

Assuming for the sake of simplicity that (1) is replaced by (3) and the eigenvalues
A of (11) are very large the resulting system after the application of END will be




98 J. G. Balchen and B. Sandrib

<|

Figure 1. Block diagram of the END algorithm including nonlinear estimator.

described by
x = (I1— B(DB) " 'D)(Ax + Cv) + B(DB) 'z, (12)
Multiplying (12) by D yields
Z=Di=1%4 (13)

It is obvious from (11) that in order for a solution to exist the matrix (DB) must be
non-singular. The least requirement for this to be true is that dim z = dim u.

Furthermore we must require that the dynamic system described by the state
equation of (12) must have acceptable behaviour, i.e. eigenvalues properly located in
the left half of the complex plane.

The dynamics of the system is determined by the differential equation of (12) with
the eigenvalues of the matrix

(I — B(DB) 'D)A (14)

characterizing the system stability.
From (12) the main system transfer matrix is given by

x(8) = H(s)24(5) (15)
where
H(s) = (sl — (I — B(DB) 'D)A) 'B(DB) ' (16)

This transfer matrix converted into the frequency response matrix H(je) can be
characterized by the eigenvalues of (14) or by means of the maximal and minimal
singular values Gx(jw) and ow(jw). This gives a method for designing dynamic
behaviour by choosing different D matrices so that the system becomes invertible with
acceptable dynamic properties.

One could think of another transformation z° = D% which expresses the desirable
but nonrealizable property vector. The reason for the nonrealizability is that the matrix
DB most often will become singular.

In the following design procedure D is chosen in an unformal manner as a matrix
which has only few elements different from those of D° such that the dynamic behaviour
of the system characterized by the eigenvalues of (14) is acceptable.
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Figure 2. The control loops around the decoupled and linearized process.

In Fig. 2 is shown how feedback control is applied around the system which has
been decoupled and linearized by means of the END algorithm. There is an inner loop
(1) containing a control matrix G and with a reference vector zo and output z. When there
is no saturation in any of the control variables, this loop will have nearly perfect response
with very high bandwidth. Next there is an outer feedback loop (II) containing a control
matrix G, a reference vector zg and an output z°. This outer loop will be slightly
degraded relative to loop (7). In some cases the inner loop (f) can be omitted yielding
a high bandwidth performance.

4. The end algorithm with saturating control variables

When one of the control variables (i) reaches saturation, the system looses one
degree of freedom. This means that the number of property variables (z) which can be
controlled by the END algorithm must be reduced by one. In order to avoid introducing
discontinuous jumps in the state variables of the process all but one of the property
variables (rows of D) should be kept unchanged when a new saturation occurs.
That is, one of the property variables must be sacrificed. The obvious choice in most
cases is to sacrifice that property variable which has least significance in terms of
‘survival’ of the process rather than ‘economy’ of performance. This is so because
saturation in one or more of the control variables is a transient phenomenon which will
disappear after short time. If the saturation phenomenon does not disappear, there is
something wrong in the design of the process which calls for major modifications.

In general the property vector associated with a certain set of saturating control
variables symbolized by the associated control matrix B% will be given by an
associated property transformation matrix D?-. The resulting system will have the same
block diagram as that of Fig. 1 and the convergence matrix K2-(-) will still be
determined by the expression of (11) only with the new matrices applied.

In Fig. 1 the r integrators determining the control vector () must all be equipped
with an ‘anti wind-up’-facility securing that the integrators do not ‘overcharge’ when
saturation occurs in either direction.

The procedure of the *Saturating Elementary Nonlinear Decoupling’ algorithm
(SEND) will thus be as follows:

(1) A property transformation matrix D is chosen for each possible combination
of saturating control variables. These matrices are stored in a data base.

(2) The corresponding matrices K2 (+) algorithms are stored.

(3) Eachcontrol variable (4;) is tested to determine whether saturation has occurred,
and the appropriate DY and K} (+) are chosen and implemented.

(4) Controllability analysis according to (7) should be performed for all possible
combinations of saturating control variables to determine whether detrimental
noncontrollability may occur.
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(1), 3g(1)

Figure 3. The simulated cracking plant.

Further discussion of the SEND algorithm will be given below in relation to the
control of an FCC-process.

5. The fluidized catalytic cracking process (FCC)

A simplified diagram explaining the FCC process is shown in Fig. 3. It consists of
a reactor part in the form of a riser in which the actual cracking process occurs and
a regenerator. In the riser preheated oil consisting mainly of heavy hydrocarbons meets
a flow of very hot catalyst material coming from the regenerator. The regenerator in
turn receives the spent catalyst from cyclone separators on the top of the riser. In the
regenerator (which may have one or two stages, in this case one) the carbon which has
been deposited on the catalyst particles is burnt off by the supply of oxygen (air).

The FCC process is multivariable with a high degree of coupling between different
state variables. A simplified, but quite accurate model of this process has been
developed in Ljungquist (1990) and is reviewed in Appendix A. Five state variables
are considered, namely

x1 = C,.: Coke on regenerated catalyst

x; = Oy Oxygen in regenerator dense bed

x3 = T},: Temperature in regenerator

xs = yg(1): Weight fraction of gasoline in product
xs = Tpi: Temperature in oil from preheater

Three control variables are assumed to be active, namely

u; = Fg: Energy flow in steam to preheater
uy; = F,: Mass flow of air to regenerator
us = F,: Mass flow of regenerated catalyst

The main disturbances to be considered are

vi = k!: Rate constant for catalytic coke formation
v» = F,i: Mass flow of oil feed.
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6. Simulation of SEND-algorithm applied to saturating FCC
A large number of test runs have been made to evaluate the properties of the
SEND-algorithm. Seven possible combinations of saturating controls exist:
B,B'.B’,B’, B, B, B, B'* a7
where B represents the unsaturated and B'? the fully saturated case.
The following pairs of D and B matrices are tested
di] [1 0 00 o001
B-D=|di|=| 0 01 1 0 0001 (18)
di|] [01 0 0 1 —0015

dy |
B'—)D‘=[d.1r B D*=D' B*5D*=D! a19)
B?— D" =d;, B*—»D"=D", B* - D*?=D" (20)

As can be seen the DV are all submatrices of the larger matrices. This is not a
necessity but has the desirable feature that the state variables (x) will not exhibit
discontinuous jumps when switching the D~ matrices.

While the system is running (according to Fig. 1) it is continuously being tested to
determine what combination of saturating control variables (according to (17)) that
exists.

Since a mechanism is needed to bring the control variables out of saturation if
possible, a search procedure is undertaken illustrated by the search tree

B
2Tx
B' B> B
™ % 7T
Bﬂ B|3 B'Z3
~ T ~
8123

As an example:

If the system at present has u; and ; saturated (i.e. BY) a test is performed one level
up in the search tree. The test checks the system at the boundary of the control variable
range, i.e. first B' with ;= Uy and then B’ with 1; = ttimsy to examine if these are
‘possible’ saturation states. A “‘possible’ saturation state (B;) is indicated when w; is
leaving saturation when B’ is tested and vice versa.

If the test finds that B' and B’ are ‘possible’, the algorithm changes the current
saturation search state from BY to B’ or B'. If both B’ and B’ are ‘possible’ states a priority
strategy must decide the choice. From B’ (or B’) a similar procedure finally brings the
system to the top of the search tree (B) which means no saturation in any control
variable.

The saturation levels assumed for control variables can be read from the
corresponding graphs. Two disturbance cases are studied:

e Soft step up and down of k.: Rate constant for catalytic coke formation
e Soft step up and down of F,;: Mass flow of oil feed
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Figure 4. Responses of the FCC to changes in k! with saturation.
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The property transformation D' given above leads to the control of
21 =x1 + 0-01xs = e + 0-017, @1
and
22 = 0-1x + x3 + 0-001x5s = 0-104 + T, + 0-0017,, (22)

whereas D'? leads to control of only z; given in (22).

Figure 4 shows the system response 10 a ‘soft’ step in k. (= 5min up, 7= 15min
down). This change in k. leads to immediate saturation of u, at lower limit. Thus the
system operates in state B' — D' with z; disregarded. At r =7 min u; will also saturate
at its lower limit, thus the system state changes from B' = D' into B> — D'>. At this
state only z; is controlled via ;.

At t=15min k! is changed down again from 0-022 to 0-019. The consequence of
this is that «; changes from the lower to the upper saturation limit. The system is still
in the state B'*— D',

At = 16 min u; comes out of its saturation state and the system operates in state
B' — D' with control of z; and z5.

Finally at 1= 20min u, also comes out of saturation and the system operates in
state B — D with control of all the properties. The corresponding responses in the state
variables and the property variables are shown in lower parts of Fig. 4. As can be seen
the property z; which has been given priority does not change and the corresponding
state x3 = T,, shows only a very small change (0-04%). The uncontrolled properties
show relatively small changes.

Similarly Fig. 5 shows the system response to a ‘soft’ step in F,; (t = 5min up,
t = 15 min down). This change in F,,; gives as result that &; goes into saturation at upper
limit. Thus the system attains state B' — D' with z3 out of control.

At 7= 8min u, nearly reaches saturation but since u, leaves saturation at about
the same time the state changes to B>— D?. This means that the system all the time
operates with two control variables and therefore has the possibility of controlling two
properties.

At ¢ = 15 min when F,; changes in negative direction u; reaches its lower saturation
limit whereas u, goes out of saturation. The consequence of this is that the state changes
from B>— D” into B' — D' via B'? but still controlling the properties z; and z;.

At t=20min, &, will also come out of saturation and the system finally operates
in state B— D with control of all the properties.

The responses in the states and properties are shown in the lower part of Fig. 5
again demonstrating that the control of the priority property z; and x; = T, is very
good.

7. Conclusions

The principle of elementary nonlinear decoupling (END) has been shown to offer
a direct approach to determining a control strategy when control variable saturation
occurs in multivariable processes. One of the features of the method is that the designer
must choose which properties to deemphasize through the choice of DY when degrees
of freedom in control are lost due to control saturation.
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Figure 5. Responses of the FCC to changes in F,;. with saturation.
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Appendix A
The mathematical model of the FCC of Fig. 3 is taken from Ljungquist (1990) with
some minor modifications. These modifications are:

(a) The riser dynamics are not neglected as in Ljungquist (1990) but replaced by
a first order diff. equation (state x4 = y,(1)).

(b) The dynamics of the oil preheater are not neglected as in Ljungquist (1990) but
replaced by a first order diff. equation (state xs = T,;).

The state space model becomes:

Regenerator:
w f;’-‘ = F(Cyc — C,0) — kO, W (A1)
40,  nt2+ @+
w a RO, — Oy) —4Mc'(1 o) kO C, . W (A.2)
dT, kO4C,.
Wep == T(F iy + TuF oy = TlFicps + Fucp) — AH n‘f W (A3)
Cooe=Cret Cear (A4)
_ R L) E_fb)
k= keomexp ((960 T.e) R (A3)
AH= — k1 — h2(T,, — 960) (A.6)
o= 1-1 + 0y(T,, — 873) (A7)
Cpa= 1:074 (A.8)
Riser:
1 F
DD 10y 1)+ 7 (1 =y () (A9)
t 1 Igp
where

F: gasoline yield factor of catalyst = 1
I gasoline recracking intensity = 0-9
yr(1): weight fraction of gasoil in product

and the equations for computing these variables are given in Ljungquist (1990).
Preheater:
AT,

_dt = ‘O'I(Tm‘;_ ngf‘[") + 42Fu (A.IO)
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