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Elementary nonlinear decoupling control of composition in
binary distillation columns
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Elemenatary nonlinear decoupling (END) is a model based control algorithm which
intends to decouple and linearize a nonlinear multivariable process in order to
achieve better control than can be obtained by conventional decentralized linear
feedback control. The application of END to the composition control of a theoretical
binary distillation column illustrates that the achievable quality is very high.

1. Introduction

The control of composition in binary distillation columns has been the subject of
research for many years and a large number of contributions with different control
strategies have been presented. A comprehensive review of such contributions is given
in Skogestad (1993).

One control strategy which has so far not been tested for the composition control
of binary distillation columns is nonlinear decoupling. This control strategy attempts
to linearize and decouple (diagonalize) the process in order that high performance linear
control can be applied (Isidori 1989, Balchen er al. 1987, Balchen 1991, Balchen 1993).

Since a distillation column controlled by the reflux of liquid top product and boil-up
vapour flow of bottom product is highly nonlinear and has a large number of state
variables the theory of elementary nonlinear decoupling (END) introduced by Balchen
(1993) seems very appropriate.

2. Elementary nonlinear decoupling (END)

END is a version of the original nonlinear decoupling algorithm that solves the
invertibility problem by designing the property space which is the object of the
linearization and decoupling. It has some similarity with the input—output linearization
(Isidori 1989) in which the invertibility problem is solved by differentiating the output
variables a number of times. In Balchen (1993) it is claimed that the END is the most
realistic solution in practical systems.

A nonlinear dynamic process is described by

% =f(x,u,v) (1)

where x,u,v are state-, control- and disturbance vectors respectively and f is a set of
nonlinear functions.
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In a distillation column the dimension (n) of the state vector will usually be very
much larger than the dimension (r) of the control vector. This has severe consc*juences
in the development of most model based control strategies. As will be shown in the
following, the consequences in END are less pronounced.

A common phenomenon in nonlinear modeling of dynamic processes is that the
system is only nonlinear in the states and disturbances but linear in the control variable
such that

X =f(x,v) + B(x)u @

In END one defines a property transformation z = d(x) which is commonly replaced
by a simple linear transformation

z=Dx 3

in which the property vector z may be interpreted as the properties one wants to control.
END intends to determine the control action (u) which will drive the dynamic
system in such a way that Z follows a desired trajectory Z,.
From (2) and (3) it follows that

2=Dx =Df(x,v) + DB(x)u @
(4) can be solved with respect to u yielding
u=(DB()) "' — Df(x, 7)) )

in which Z has been replaced by Z,.

Equation (5) will only have a solution as long as the matrix DB(-) has an inverse.
That puts restrictions on both D and B. The first restriction is that DB(*) must be a square
matrix implying that dim z = dim «. If dim & > dim z one has an optimization problem
which will not be dealt with here.

Since in general B(*) is given for a certain process, one has to design the D matrix
such that DB(-) becomes non-singular and the resulting system has acceptable dynamic
properties.

Applying (5) and (2) yields
%= (I—B(DB) 'D)f(x,v) + B(DB) 'z ©
which when linearized becomes
%=(I— B(DB) 'D)(Ax + Cv) + B(DB) " 'z4 D

assuming for simplicity that B(x) = B = constant. Multiplying (6) by D gives
i=Dk=1a (8)
which shows that the system has been decoupled and linearized and is replaced by r
integrators between Z,; and z.
24 can be regarded as the new control input and z as the new property output.

The dynamics of the system is determined by the differential equation of (6) and
approximately by (7) with eigenvalues of the matrix

(- B(DB)"'D)A ©9)

characterizing the system stability.
From (7) the main system transfer matrix is given by

x(s) = H(s)Zds) (10)
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Figure 1. Nonlinear decoupling structure.

Figure 2. Feedback control loops.

where
H(s) = (sI — (I - B(DB) 'D)A) 'B(DB) ! (11)

This transfer matrix converted into the frequency response matrix H(jw) can be
characterized by means of its maximal and minimal singular value éx(jw) and oxljw).
This gives a method for designing dynamic behaviour by choosing different D matrices.

The contents of (5) and (3) can be expressed in a block diagram as shown in
Fig. 1. The blocks below the dashed line reflect the mathematical model of the process
and as can be seen, the full state (x) and the disturbance (v) are assumed to be available.
In order to achieve that, a state estimator is employed which may be e.g. an Augmented
Kalman filter based on the measurements (y). Note that the quantity ¥ acting upon the
nonlinear function, represents the measurable part of the process disturbance (v). In this
way feed forward is realized in a very direct and correct manner.

The design of the property transformation D has the goal of making the system
invertible with acceptable dynamic properties. One could think of another transform-
ation z°= D% which expresses the desirable but nonrealizable output vector. The
reason for the nonrealizability is that the matrix D°B most often is singular.

When introducing the difference Az =z —z° and the frequency response matrix
AH(jw) defined by

Az(jw) = AH(jo)id jo) 12)

one can find the transformation matrix D which minimizes some scalar measure of the
matrix AH(jw). Such a measure is the H.-norm given by — max,oax(jw). In the
following the design of D is done in a rather simple manner by choosing a matrix which
only has a few elements different than those of D° such that the dynamic behaviour of
the system is acceptable.
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Figure 3. Maximal and minimal singular values from 2, to . (Lower curve implemented.)

Figure 2 shows the proposed feedback control around the system where the END
algorithm has been applied. There is an inner loop (I) containing a control matrix G
and with a reference vector zo and output z. This loop will have a nearly perfect response
with very high bandwidth. The outer feedback loop (II) containing a control matrix G°,
a reference vector z) and an output z° will be slightly degraded relative to loop (I)
particularly with respect to bandwidth, but with a performance which is in many cases
greatly improved compared to a system containing only loop (II).

3. A dynamic model of a binary distillation column

A number of state space models for distillation columns are available in the literature
with varying degrees of details in the models. Skogestad (1993) presents arguments for
different kinds of simplifications which may be done without losing too much of the
important dynamics of the column. A common simplification is to neglect the vapour
hold up and the energy hold up in the column. The important dynamic effects left in
the model are liquid dynamics and composition dynamics. The result is adynamic model
with a reasonable complexity with 2N + 4 state variables where N is the number of trays
in the column. This type of model presented in the Appendix will be assumed in the
next paragraphs even though other models could just as well have been used.
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Figure 4. Estimator responses.

4. Illustration of end control of a distillation column

A simulation study has been performed using a distillation column as described in
the appendix. The total system employing an Augmented Kalman Filter as shown in
Fig. 1 and with feedbacks as shown in Fig. 2 is studied.

Figure 3 shows é4( jw) and a4 jw) for two choices of D as given in the appendix
of which the latter is implemented in the system.

The performance of the Kalman filter is illustrated first without any nonlinear
decoupling and feedback.

Figure 4 shows estimator responses to step changes in relative volatility (a) in the
process.

In Fig. 5 nonlinear decoupling is employed and responses in z, z° and u are shown
following step changes in Z, (Fig. 5 (a)) and v (Fig. 5 (b)).

In Fig. 6 diagonal, proportional control is employed in loop 1. z and the responses
of the ‘realizable’ non-linear decoupling is illustrated following steps in z.

In Fig. 7 diagonal PI-control is employed in loop II and responses following step
changes in z{ (Fig. 7 (a)) and disturbances v (Fig. 7 (b)) are shown.

Figure 8 shows reponses of an ordinary well-tuned PI-two point controller (top
concentration-reflux, bottom concentration-boil up) with weak nondynamic feed
forward following a step change in feed flow (v).

5. Conclusion

This investigation shows that the END principle yields superior control quality
compared to conventional approaches both with regard to the suppression of
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Figure 5{a). Nonlinear decoupling responses, step changes in Zg.
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Figure 5(b). Nonlinear decoupling responses, step changes in v.
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Figure 6. Loop I responses.

disturbances and following set point changes. Further studies of the influence of
different kinds of model errors are suggested.
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Appendix
The model to be used here is developed in Di Ruscio (1987) and uses standard
self-explanatory notation as follows:

Reboiler stage
B=Kg(L, —Vs—B), (13)
My = Mog + BIKp (14)
Mpig = Lix) — Vpys — Bxp — Mpxs (15)
Tray 1
Li=K(L:~ L+ Vg—V)=Ki(l,— L)) (16)
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M, = My, + L/K, amn
Mty = Lyxy — Lixy + Vpyp — Viy, — Mix (18)
Tray i=2,...,f—1,f—2,...,N—1
Li=K{Li+1— L+ V;—1 — V)K{Li+, — L) (19)
M; = My + L/K; (20)
M= Liy i1 — Lixi + Vie 1yi-1 — Viyi — Mix; 21
Feed tray i = f
Li=K{Lis1—LV;— = Vy+ F)=K{(Ls+, — L;+ F) (22)
My= Mo+ LiK, (23)
M= Lyv X+ 1 — Lexp+ Vi1 yr— 1 = Viyr+ Fxp— Myxy (24)
Top tray i=N ]
Ly=KM—Ln+VNy-1—Vy+R) (25)
x10° T T
24} ram W
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Figure 7(a). Loop II responses, stepchanges in z5.
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Figure 7(b). Loop II responses, step changes in v.
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In=KM—Ly+Vy_1—Vy+R)
My = Moy + Ly/Ky
Myin= — Lvxn+ Vn—1yn—1— Vyn + Rxp — Mpxy
Accumulator
D =Kp(Vx— (R + D))
Mp=Mgyp + DIKp

Mpip= Vnyny — (R + D)xp — Mpxp

61

(25)
(26)
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(28)
(29
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Equilibrium relationship between vapour and liquid concentration is assumed by

oLx;

Y ¥ (a— @D

where o: relative volatility.
The model consists of 2N + 4 differential equations and 2N + 3 algebraic equations.
Parameters which have to be specified in the model are:

Number of trays, N =10

Column feed tray, f=35

Relative volatility, o =25

Tray constant, K; =1 (1/s)

Liquid mass in reboiler, Moz = 7-2 (Mol)
Liquid mass on tray, Mo = 1-8 (Mol)

Liquid mass in accumulator, Mop = 1-1 (Mol)

The manipulated variables are:

Reflux, R = 1-025 (Mol/s) (1)
Vapour flow from reboiler, Vg = 1-2 (Mol/s) (u2)

Disturbances:

Feed flow, F=0-3 (Mol/s) (v;)
Feed concentration, xg = 0-5 (Mol/Mol) (v2)

Q1= XB
z2=xp+ da3D
The B(x) and D matrices are as follows

0 0..0 bni o]"

0
By = [b].z bz 0...0 0 0

where the nominal values are:

boy =005, bya1 = —1-0, bia= — 1, byp = — 0045

D_[o 1 0.0 0 0]
0 0 0..0 dyss 1

where

dy 23 = — 0-01: implemented,
d>23 = + 0-01: tested in Fig. 3.
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