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Generalized predictive control of nonlinear systems of
the Hammerstein form
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A nonlinear generalized predictive control algorithm based upon a Hammerstein
model is presented. Stability of the closed-loop system is analyzed with a control
horizon equal to one. An adaptive nonlinear generalized predictive control
algorithm with a linear estimator is then proposed. Finally, some results from
simulation experiments are presented in order to show the algorithm’s ability.

1. Introduction

Generalized predictive control (GPC) based upon linear models has enjoyed
growing attention in the last few years, see, e.g., Clarke et al. (1987), Clark and Mohtadi
(1989), De Keyser and Van Cauwenberghe (1985), De Keyser et al. (1988), Krdmer and
Unbehauen (1988), Lelic and Zarrop (1987), Wang and Henriksen (1992a, 1992b), and
Ydstie (1985). Experimental studies and practical applications have demonstrated that
satisfactory control performance can be obtained using GPC. However, most plants
and systems to be controlled have some kind of nonlinearity, so there is definitely need
to extend GPC design methods to nonlinear systems.

One extension of that kind appears in Zhu et al. (1991) where a GPC algorithm was
used to control a plant described by a Hammerstein model. Due to the fact that the
linear and non-linear parts of the system were considered separately in the latter, the
stability of the closed-loop system was hard to analyze. Besides, a nonlinear estimation
scheme had to be used in their algorithm. In this paper we will derive a nonlinear GPC
algorithm based upon a Hammerstein model of the underlying system. Somewhat
different from the work presented in Zhu et al. (1991) we will use a new cost function for
the controller design. Stability analysis of the closed-loop system will be carried out
with the control horizon equal to one. An adaptive nonlinear GPC algorithm with a
linear estimation scheme will then be proposed, and some results from simulation
experiments are presented at the end.

2. Controller design

The plant which is about to be controlled is assumed to be representable by a
Hammerstein model of the form
Ay,=Bx,_;+Cu/A (1)
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where 4, B, C and A are polynomials in the backward shift operator z~ ! of the form
A=l+a;z" '+...+az"
B=by+bz "+...+b,z " 2
C=l+cz '+...+ez™! A=1—-2z7"
whereas the static nonlinearity is given by
Xy =ro+riy+rul +...+ruf (3)

where p is an odd number. {,} and {y,} are the input and output processes, respectively.
The model form depicted in (1) has the advantage that the controller derived in what
follows will contain an integrator. {,} is a stochastic process defined on a probability
space (Q, #, %) on which we have a sequence (%, teN) of increasing o-algebras where
F,is generated by the observations up to and including t. The process {«,} is assumed
to satisfy, with probability 1,

E{w|#, ,}=0 E{wﬂg:—l}:"'z

1 N
lim sup (ﬁ 3 wf)<oo @)
=1

n=* o

The cost function has the following form

3=E{ 8 0, e a0t 17 B

where {y;} is a (known) bounded set-point sequence, N, is the prediction horizon
whereas /A is a weighting constant. The conditional expectation in (5) is, as indicated,
taken given data up to and including time . The cost on Auf is physically meaningful
because Auf is monotically decreasing. The above therefore allows us to penalize
changes in the control action.

We will, for the sake of simplicity, now assume C = 1. It should be noted, however,
that our method can readily cope with coloured noise. Now, using the following two
polynomial identities

1=F;AA+z’G;  BF;=E;+z 'H; (6)
for j=1,2,..., N, and where
Fi=1+fiz ' +.. . +fj_ 27!
Gi=gh+giz "+...+giz™" M
Ei=eq+ez ' +...+e;_z7 !
Hy=hh+Hz "+ . +h,_yz7""!
we can write the plant equation (1) in the form
Verj=Eidxyy; 1+ G+ HAX  + Fiw 8

for j=1,2,..., N,.
Using (3) we can write the N, equations in (8) in vector form, viz.

P )
y=E Y ru+Gy+H ) rAuy_,+F 9)
=1 =1
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where
Y= [y:+ 1 Ve+2-- -y¢+N|]T

“i‘—_[A“:A“: t IA”; +-N1-1]T
G=[Gl.. .GNI]T H=[H1...HNI]T
F=[Flw:+1---F~.w:+N.]1 (10)

€o
€4 €o

€; €y €

I_"Nl -1 ©ny-2 : €o
Define
Yo=DVis1 Vs z-‘-}’:-f-n,]‘r (11)
From the definitions above we can write (5) as
J=E{(y—y) (y—¥,) + Augu,|F } (12)

Substituting (9) into (12), differentiating J wrt. u,, and putting the result equal to zero
yield
p—1 Ju¥ P .
(r,,l+ Y r%'—)ET(E )i ru,+Gy,+H Y rAu_, —y,)+ Au,=0 (13)
i=1 p i=1 i=1

Neglecting the dependence of ;(i=1,..., p—1) on u, we obtain
il .
r,,ET(E Z ru;+Gy,+H fl rAul_, —y,)+),ll,,=0 (14)
i=1 i=

which can be written as

p_1 .

r,E'E ) r,-n,-+(rjETE+).I]up=rpET(y,—Gy,—H i riAu:_,) (15)
i=1 i=1

(15) constitutes a total of N, equations with N, unknowns. It is not, however, easy to
find a solution for u,. In the above, note that the control horizon and the output
prediction horizon have been selected to to be the same, i.€., N . This is not a necessary
requirement. A control horizon N, <N, can be used, see Clarke et al. (1987).
Furthermore, it is possible to obtain satisfactory control of most plants by putting the
control horizon N, = 1, see again Clarke et al. (1987). We therefore adopt N,=11in our
design of the controller, ie., Ay, ;=0 for j=1,..., N,—1. In this case uw; and E as
defined by (10) will take the forms, respectively,

u=Auy; E=[ege,...ey, ] (16)
From (16) and the fact that z " "wi=u_, for i=1,..., we can rewrite (15) as
p—1 I . p_1
ke Y raug+ul =Py, .y, —op,—F ) rdu_ ke Yy ru_,+ul (17)
i=1 i=1 i=1

where ,
k=—5"t—e= ) € (18)
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whereas P, o, and B are polynomials in the backward shift operator z ™! given by (G;and
H; are polynomials, see (7))

P=key,_1+ey,_z ' +...4egz M*1)

Ny Ny
o=k _Zl e; G, B=k _Zl e;_\H; (19)
i= i=

Equation (17)is a p’th order Hammerstein polynomial in u, which is fairly easy to solve
numerically in order to find u,. For example, the improved root solving method given in
Zhu et al. (1991) can be used. Note that a real root of minimum magnitude can always
be found because p is odd.

3. Stability analysis
Let us rewrite (17) in the form

p-1 )
(ke+z7'f) Y rfui+(1+z 'r,fAuf =Py}, y, — oy, (20)
i—1
From (1) and (3) we have
r—1
AAy,=z"'B Y rAuj+z"'r,BAuf + o, (21)
i=1
Lemma
Let a system be described by (T is a polynomial in z7)
p-1 .
TAW=Ay,,.,+B Y rAuj+Co, (22)
i=1
and let w, satisfy (4). If T is stable, then for some positive integer d
LR 2 Ko &
N L Q< ¥ yat Ko (23)
t=1 t=1

where 0<K, <o and 0<K, < o0.
Proof. See the Appendix.

Theorem
If the control law given by (17) is used with N, and A chosen such that the
polynomial
T=AA1+z"'r f)+z 'raB (24)

is stable, then with probability 1

(1) The resulting closed-loop system will be stable in the sense that {Auj},
i=1,..., p, and {y,} are sample mean square bounded.
(2) The control law (17) minimizes the cost function

S =E{[P(ye+n, —Yien) VAP F ) (25)

where 4’ = Ak/r,. Moreover, the minimum possible value of the quadratic cost
function (25) is

Ny [ Ni—j e
?2=k252JZ ( i;o ﬁe,-”_,) (26)

=
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(3) For constant reference y; and with w,=0 it follows that

lim(y,—y;)=0 27

t—aow

Proof. (1) Multiplying (20) by AA and z~ 'r,B respectively and using (21) we obtain

—1
TAu = AAPY;, v, —[ADke+2 " f)+2 'aB] Y. rilu—ao, 28)
i=1
I )
Tyi=z "1, BPYw,+ 27 KB 3, rhui+ (1427 r, o, (29)
P l._l

If T is stable, then conclusion (1) of the theorem follows from (28) and (29), use of
superposition, the above lemma, the last of the assumptions in (4), and boundedness of

{i}-
(2) Multiplying (9) by r,E", adding AAuf on both sides, and then using (16) we have

r—1 .
r ETy + AAuP =rZeAuf + JAu? +r,e Y rdu+ rpET(G y.+H i ru,_,+ F) (30)
i=1 i=1

which results in

p p—1
AuP =Py, y, + X AUl —v sy, —oy,—B izl rui_ —ke i_zl rAul (31)
where
Ny
Vien, =k ‘21 ej-1F;0,4; (32)
=
Defining
Geen,=PYean, + A AU7 (33)
we can write (31) as
r . p_1 .
b i, _"'HN.:O:J’:"“; _Zl ridu;_ +Auf + ke 'El rilu; (34)
i= i=

Here we note that ¢, , y, —V,4+ vy is F -measurable. It is obvious that ¢, , y, — V4 n, 1S the
optimal linear prediction of ¢, , given %, ic.,

P . r-1
Gor = Pren,— Vean, =0+ 'Zl rif\v;_y +Auf + ke 'El ru; (35)
= i=
Now, making use of the fact that ¢,,y, =@y, +V,+n, and then substituting this
equation and (33) into (25), we obtain after some manipulations
I =E{($%n,— PV nIF S+ EQVEL N |F 2 EVn | F ) (36)

The first term in the middle part of (36) is greater than or equal to zero. It becomes equal
to zero by putting

Fien,=Pyian, 37

Substituting (35) onto (37) yields the control law defined by (17). Finally, from (32) we
obtain

5 Ny j—1 2
E{"Hn,'ry:}:E{(k jg:l €1 _z;} fiwr n-j—a‘)

Ny f/ Ni—j 2
gc}=k202 Z ( Z fieuj-i) ='}’2
i=1 i=0
(38)
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(3) Using (6) and the definitions of the polynomials a and f, we can write the
polynomial T as

T= AA(I —z7'rk _2 Z'e;_ 1Ei) +z 'r kB :Zl] Z'e; (39)

From (39) we find
TW=rkB() ¥ e 4=r,BOAW) @0)
Conclusion (3) now follows immediately from (29). O

4. The ANGPC algorithm

We assumed in the previous section that the plant parameters were all known.
When the plant parameters are unknown we will have to use a parameter estimator. In
this section an adaptive nonlinear generalized predictive control algorithm (ANGPC) is
defined by combining the controller derived in Section 2 with a general parameter
estimation scheme, Our ANGPC algorithm is based upon the following assumptions:

Al. The polynomial degrees n and m in (1) are known.
A2. pis a known odd positive integer.
We now rewrite the plant equation (1) in the form

P .
Ay= ) BAu_,+o, (41)
i=1
where
A'=AA=l+a'lz_l+...+a:,+lz n-1
Bi=rB=by+b\ +...+bz "i=1,....p 42)

Computation of the polynomial G; and two other polynomials E;; and H;; are done
from the two following equations

1=F,A'+z7G, (43)
BF;=E;;+z 'H;; (44)
where
E;=ep+éiz7 ' +...+él_z77*!
Hy=hg+hiz "+ bl z7m*! (45)
fori=1,...,pand j=1,..., N,.
Define

E,=[che} ... ch, 1"
Hi=[Hi1 Hiz---HiN.]T (46)

This allows us to write the control law (17) in the form

r_1 r )
E; ;-Zl Eu,+(EJE,+ /iju,= E,T,( y,—Gy,— __Zl H,Au 1) (47)
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The ANGPC algorithm now follows below.

(1) The parameters of system (41) are updated from the following estimation scheme
(Goodwin et al. 1980)

p

6,=6,. 1+A— x!-L[y:_x;r-let—ll p>0 (48)
-1
A=A+ XX, Ag=1 49)
where
X =V Yoon Dty Ay A0 Auf_ ] (50)
0" =[—d,y... ~d,,, bb...bh...BY...bE] (51)

(2) G;, E;;, and H;; are caiculated from (43) and (44), respectively.
(3) The control action , is determined from equation (47).

Note that the above parameter estimation scheme is linear, whereas a nonlincar
scheme has to be used in the algorithm introduced by Zhu et al. (1991) in order to
update the parameters of both the linear part and of the nonlinear part, viz. a; b,andr,
respectively.

5. Simulation experiments

In order to investigate the performance of the above ANGPC algorithm, we will in
this section present some results obtained from simulation experiments. For the
purpose of being able to compare results, we will use the same two plants (L1 and L2)
and the same two nonlinearities (NL1 and NL2) as were used by Zhu et al. (1991).
Referring to (1) and (2), the following values are used:

Ll:a,=—09 by=1 b;=2
LZ: al = — 2'87 ﬂ,2=2?4 a3 — __08?
b0=0'04 bl =0-002 b2= — 0037

NL]:rc':I r1=] r2=l
ry=02
NL2: r0=0 rl=] r2=0
r3 = - 1
Here we note that L1 is open-loop stable and nonminimum phase, whereas L2 is open-

loop unstable and minimum phase. In addition, o, is here a zero-mean random

disturbance with covariance ¢ =0-1.
In order to consider transient behaviour, we assign a set-point sequence as follows

L1: L2:
Samples: Set-point value: Samples: Set-point value:
01-20 1 01-40 1
2140 2 41-80 2
41-60 1 081-120 1
61-80 0 121-160 0

The cycle from respectively 1 to 80 or from 1 to 160 is repeated periodically in each
experiment. In the plots shown in Fig. 1-4 the output y, and the control input u, are
shown as unbroken lines, whereas the set-point sequence y; and the intermediate
variable x, are shown as broken lines.
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The parameters of the ANGPC algorithm are chosen as N | =3 whereas 4 =001 for
L1 and 4=0for L2. From the plots in the figures it is seen that the output tracks the set-
point sequence quite well even though there is a random disturbance. The large input
and output deviations at the outset are more or less what should be expected in a
commissioning period when the parameter estimates have not yet converged. The
predictive nature of the controller can clearly be seen in the plots, where prior
knowledge of a change in the set-point value has caused the output y, to start moving
before the actual change in the set-point has occurred. If we compare with the
simulation experiments in Zhu et al. (1991), a somewhat better performance of our
algorithm is seen. Whereas rapid changes in the control signal u, occur in the simulation
experiments of L2+ NL1and L2 + NL2 in the above reference, the control signal in our
simulation experiments of the same systems (Figs. 3 (b) and 4(b) appears to be quite
smooth.

o 50 100 150 200 250 "o 50 100 150 200 250

(a) ()
Figure 1 (a). Output and set-point of system L1+ NL1. (b) Control and intermediate variable of
L1+NL1.
3 : 1.5 . T -
2t : T
0.5 E
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¢ W\W )
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e %0 00 150 200 250 g 56 ) 150 0 250

(a) ®)

Figure 2(a). Output and set-point for system L1+ NL2. (b) Control and intermediate variable
of L1+NL2.

(b)

Figure 3(a). Output and set-point for system L2+ NL1. (b) Control and intermediate variable
of L2+ NLI1.
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Figure4(a). Output and set-point of system L2+ NL2.(b) Control and intermediate variable of
L2 +NL2.

6. Conclusion

In this paper we have derived a nonlinear generalized predictive control algorithm
for systems which can be modelled by a Hammerstein model. Stability of the algorithm
has, subject to fairly to weak assumptions, been shown with the control horizon N, = 1.
We have also suggested an adaptive nonlinear generalized predictive control algorithm
which turned out to perform quite well in simulation experiments. Stability and
convergence of the latter algorithm have, however, not been shown. As point of fact, we
have so far not even tried to do that because analysis of stability and convergence of
nonlinear generalized predictive control algorithms in adaptive or self-tuning form is
indeed a very difficult task to carry out.

APPENDIX

Proof of the Lemma
Using superposition and Lemmas A.1. and A.5 in Goodwin et al. (1981), we obtain

-~ Z (Au"}z(w z V2ot Z }: (Au’)2+L— wp. 1 (A.1)

Define, for j=1,2,.., p,

8= Aul 1[|A:ff|>M.M>0 (A.2)
0 otherwise
We then have, for j=1,2,..., p,
1 - 2 1 al 2 2
— Y (A< Y (O)P+M (A.3)
=1 N.5
Take M large enough such that
L,., X 1
PN — 2: (Bury? (A-9)
It then follows that
f_\’_cgl (AuP)* < <y 'Zl y,+,,+ Z (AuP)? + Ly wp. 1 (A.5)
and hence
Z (ﬂu")2< Z Yivat Ky wp. 1 (A.6)
O
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