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Optimal and adaptive control of underwater vehicles

SVEIN I. SAGATUN{}
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This article contains a continuous-time optimal and adaptive control scheme for
underwater vehicles moving in six degrees of freedom. The control scheme is an
extension of the algorithm of Johansson (1990) and a modification of the algorithm
found in Sagatun (1992). The algorithm is optimal in the sense that it minimizes the
state errors and the forces which contribute to the vehicle’s kinetic energy that is
spent to correct these errors. The performance measure does also contain a term
which penalizes the quadratic tracking errors proportional to the rate of energy
which dissipates from the system due to damping.

1. Introduction

Optimization is in the dictionary defined as: “To make as perfect, effective or
functional as possible’. Formally speaking, the optimal-control problem is to find the
optimal control v* which minimizes a given performance functional J(u). This
functional 1s usually written as

I, 0)=S(x(t,)) + I L), u(@) de (1)

where Zis the system state we wish to control. It is well known from the literature, e.g.
Athans and Falb (1966), that the optimal control u*(z) for the state space we want to
control with the performance measure in (1) is found by solving the following equation
for all ¢

¥z, "min{uz(:), nx(t))+aj*;§ "3’.}:0 )
1]

A .,

Hence, the problem is to find the function J*(Z ¢) which is called the Hamilton principle
function of optimization.

2. Kinematics

This article uses an earth-fixed coordinate system sometimes denoted the inertial
frame and a vehicle fixed system. We will use the SNAME convention, SNAME (1950)
for the placement of the coordinate systems. Position and orientation will be
represented by Euler angles and inertial-fixed coordinates x=[x, y,z, ¢, 0,y ]"e#°
while we will only deal with vehicle-fixed velocities and accelerations denoted
v=[u,v,w,p,q,r]"e#°® and veR®.
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The earth-fixed wvelocities and rate of change of Euler angles
i=[%, ¥, 2 ¢,0,§]1" can be transformed to a vehicle-fixed velocity vector v by using the
transformation matrix J(x), the so called Jacobian matrix. Hence, the transformation
from the vehicle-fixed frame to the inertial frame can be performed by employing the
following relations

v=J Yax
p=J Y (x)x—J () L(x)%) (3)

for a nonsingular J(x) matrix. Notice that the vector v is not generalized coordinates,
while the vector x represents proper generalized coordinates.

While it is most common to express the equations of motion in the vehicle-fixed
frame, the formulation in the inertial frame has some advantages. One is that the
differentiation of position, with respect to time, yields velocity directly without going
through the Jacobian matrix J(x). This property is necessary if we want to employ the
Euler Lagrange equation and is of great advantage in proofs of stability and
optimality.

3. The vehicle model

The kinetic energy for the vehicle and its ambient water is in the inertial-fixed frame
formulation gives by

T,=3x"M(x)x

where M(x)=J~"(x)M_J " '(x) and x s a generalized coordinate vector. M, is the mass
of the vessel and its added inertia formulated in the vehicle-fixed frame. We can
formulate the Euler-Lagrange equations for the ‘rigid body-ambient water’ system in
the vehicle-fixed frame:

_4(eT T o7,
'n—at(a—,—;‘.) ox Taxs Tl i
which yields
T=M(X)X+ M(x, Jf)-i‘—;ai (A"M(0)X" x D(x, %)%
or
=M%+ C(x, )X+ D(x, X)X (5)

where D is the vehicle’s damping matrix formulated in the vehicle-fixed frame. Recall
that M equals to 0. It is useful to define the matrix C(z ) as

C(x, X)=3M®+ N(x.%) (6)
where N(x, x) is defined such that
R P X7
Nix, x)x—zM(x)x ox

It is easy to prove that N(x,%) is such that ¥"N(x, )x=0 Vx(t). The physical
interpretation of this is that the N,(x, X) matrix represents the workless forces of the
vehicle Sagatun (1992) and Sagatun and Fossen (1981).

(X" M(x)% (7
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We will, in the rest of this article, assume that potential energy, i.e. the effect of
gravity, is included in the 7 vector such that t=t,,—g (x) is the vector representing
forces and moments acting on the vehicle due to gravity.

4. Optimal criteria

Sagatun (1992) presents an adaptive and optimal controller for a mechanical
manipulator which minimizes the tracking errors and the forces which are needed to
correct these errors. Only the forces which contribute to the manipulator’s kinetic
energy are minimized. There is no point in optimizing the forces that contribute to the
potential energy since the potential energy is end-point dependent only. This article
presents several modifications of the control scheme introduced in Johansson (1990).
We employ a performance measure which, in addition to the kinetic energy also
includes the energy which dissipates away from the vehicle due to damping effects from
the water, e.g. viscous friction. The work done by the system when subtracting potential
energy becomes

iy
w= I ,tT(Mii+;Mi+ Nx+ Dif) dt
i
The term X" N, x is evaluated to zero. A natural extension of the control variable found
in Johansson (1990) is therefore for underwater robots

u=M,T,z+ (D +iM)T,z (8)

since the dissipative effect (i.c. viscous damping) is very important for marine vehicles.
The vector Zis defined as z=[(z— 2,)", (x— x,)"]" and the matrix 7 is the upper n x 2n

matrix of T, defined as
B T, _ T, T,
el o,

The introduction of the T, matrix results in a non-physical interpretation of the u
vector since the matrices are multiplied with a linear combination of acceleration and
velocity, and velocity and position respectively. An advantage with the use of the T,
matrix is that the new control variable also becomes a function of the position errors.

5. Basic assumptions

The following assumptions are made in the derivation of the control schemes in this
article. Assumption A8 is relaxed when the adaptive controller is derived.
Al The motion is in the inertial reference frame governed by the equation (5).
A2 The reference trajectory is smooth, bounded and within kinematic and
physical limits. This can be achieved by assuming that the desired reference
trajectory is generated by the strictly stable reference model

%+ K%+ K, x,— K,x, )

The n x n matrices K, and K, are defined such that %, %, and x, arc within
the physical limits of the vehicle. Physical limited accelerations and
velocities imply that %,, %, and x,, are eL* and x,eC".

A3 The state variables we use in the presented control algorithm are defined by

the vector z=[x",x"]T and the tracking error vector Z=[(z—x,),
(x—x,)"T%, Ze%>". It will also be useful to define the vector z, =[x}, x} |".
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A4 The control variable to be minimized is given by (8).

AS All states are measured, that is vehicle fixed velocities v and inertial
positions and orientations x

A6 In the discussion of the controller, the y vector is referred to as the
measurement vector, see also AS5. A useful transformation in the
coming discussion is z= Ty where the transformation matrix T'is given as
T=diag(J(»), L, ).

A7 The structure of the equations of motion are completely known and linear
in its parameters.

A8 The parameters in the equations of motion are completely known.

A9 We will use the term global stability when we use Jacobian matrices, even
though, it is not mathematically correct from a rigorous point of view, since
the Jacobian matrices may become singular.

6. The optimal control algorithm

This section presents extensions of the algorithm presented in Johansson (1990).
Global uniformly asymptotic stability is proven for the case of a perfectly known
vehicle model. However, this is rarely the case for underwater vehicles, so an adaptive
version of the algorithm is also presented. Global asymptotic stability is proven for the
tracking errors and a bounded parameter estimate is guaranteed in the adaptive case.

6.1. State-space representation

A state-space description of (5) combined with the control variable in (8) expressed
in the Z space can be found according to

_af-1 _ =1 1
Z=T;" M (cl'+D) Ourn =T Tyz+ Tt M u (10)
Tll TIZ 0n><n

6.2. The control objective

The control objective is to minimize the quadratic performance index given by (1)
with the Lagrangian

Lz u)=1Z"(QT}ED (2E" T,)2+ u"Ru (11)

where R=r,"1,.,,=R">0, E=[I,.,,0,,,]", Q=Q"'>0, and 1, is not fixed. A
diagonal structure of the matrix R given above is assumed since energy spent to correct
tracking errors in one direction is as valuable as in another one. The weighting of the
distribution of energy to each of the vehicle’s thrusters is taken care of in (22). It is
important to realize that we minimize the velocity and thrust in the inertial coordinate
system.

6.3. Optimality and stability

It is well known from the literature, e.g. Athans and Falb (1966), that the optimal
control u*(t) for the state equation in (10) with the performance measure in (1) can be
found by solving the Hamilton-Jacobi equation given by (2).
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Lemma 1

The following function J* satisfies the Hamilton-Jacobi equation and constitutes a
Hamilton’s principal function for the optimization problem formed by (2) and (11)
under the assumptions made above

M>x) 0,
0 K

nxn

JH9=32"()T7 ]Toi'(t) (12)
where K is a positive definite symmetric matrix Ke#"*" and for K and T, solving the
matrix equation

K 0

n*n

(0""" K )+ Q-T!ER'E'T,=0 (13)

The optimal feedback law w* that minimizes (1) with the Lagrangian in (11) is
u*(t)=— R ETT,2() (14)

Proof* The proof is rather lengthy. A complete proof is found in Sagatun (1992).
OJ

Theorem 1

The system described by (10) and controlled by (14) always globally uniformly
asymptotically stable with the choice of the weighting matrices T, and K given in
Johnsson (1990) and the above assumptions.

Proof: The theorem is proved if we can find a suitable Lyapunov function candidate
V(2,1) for the nonautonomous system described by (10) satisfying, Lee and Markus
(1967):
(i) V(1) is continuous at Z=0 VI,

(ii) V(Z 1) 1s positive radially growing with | Z],

(i) V(Z1) has a unique minimum at the origin of the error space and

(iv) V(Z1) is negative definite along Z and t.
It is straightforward to show that Wz t)=J*(Z t) satisfies the three first requirements.
The last requirement is also easily proven since (2) states that

dv_aJ*(z1) |_0J*(Z :)T%_
dt  a 8z

U

av
—<0 Vz 0
I 0 Vz()+#

—L(2(1), u(t))

Hence we have shown that the system described by (10) and controlled by (14) is always
globally uniformly asymptotically stable. This concludes the proof. O

Comment 1. The dissipative forces in (11), represented by the D(z) matrix, increase the
stability of the system. This can also be seen when we look on the mapping from the
vehicle’s thrust 7 to velocity X written as T —x which is dissipative since V=1T%—x"
D(2)x, (Sagatun and Fossen 1991). We observe from the expression of V that the
gradient of V'becomes more negative, that is V' converges faster to zero, with increased

damping. This, of course expected compared to the corresponding linear case
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where the phase margin increases with increased damping. The positive term
Z()"TOED(E™T,Z(t) with T,,=0, T,,=1,,, corresponds to the rate the energy
dissipates from the vehicle. O

6.4. The control law
A combination of the control variable in (8) with the state-space representation in
(10) yields the following expression for the resulting thruster forces
%= Cx%+ Di+ M[x,— T[T, 5— TP M~ ((C+ D)E"Tyz— u*(1)))

where #} is given by (14). This expression is considerably simplified if we also assume
that the Q matrix can be written on the form Q=diag[q, I, x,. 42" I, x,]- T, and T,
will then become diagonal matrices such that Ty, =¢,,-I,.,and T,,=t,, I ., The
new control law then becomes

1:*=Iv(,i':,—i”i'+(C+ D)(X,—i‘—zi)+£ 15)

11 11 tl.l.

This expression can be simplified even more by defining the signals

s(t) =ty % — ;X

$(t)=t;, X, —1,,X (16)

and performing the parameterization
1
V6,5, % 0= "—(Ms+ Cs+ Ds)
11

1
and u;':.(t)=t—u(t} such that
11

T*=y($, s X, x)0+uf (1) (17

Notice the similarity between the error signal s(t) and the one employed by Fossen and
Sagatun (1991). The control law in (17) is of no practical use, since the resulting thrust
forces are calculated in an inertial reference frame. Eqn. (17) is also impractical in the
sense that they use velocities decomposed in an inertial reference frame while we
measure the vehicle-fixed velocities. A last drawback with (17) is that it is much more
complicated in the inertial-frame than in the vehicle-fixed frame. It is, however, possible
to transform equation (17) to the vehicle-fixed frame by using the following lemma.

Lemma 2
The equation described by (17) can be transformed to a vehicle-fixed coordinate system
by employing the following transformation:

T3, 8, % 0= (545, 5,, VO,
where the regressor matrix y,, is found from

1
[ ZCAE W, = : (M8, + C(V)s, + D vs,) (18)
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where §, and s, is defined in (21). The resulting control law formulated in the vehicle
fixed coordinate system then becomes

=S, 5, W0, 0 (19)
The feedback control law formulated in the vehicle-fixed frame af() is found from

1
w ()=~ —JTR E"T,Ty (20)

11
Proof: The new signals §, and s, are found by using (3) on each term in (16) such that
sy =ty,¥,—t;,J (XX
§(t)=t3,%,—t1o(J "(X)%+V) 1)
The rest of the proof is straightforward. .

Note that the first term in §, and s, are feed-forward terms while the latter are
feedback terms. The reparameterization, by using a virtual vector in (18), is similar to
the one employed in Fossen and Sagatun (1991). Notice also that all signals in (21) are
measurable or preprogrammed. The form of the y, vector is also much simpler than the
¥ vector.

The corresponding commanded angular velocities n, to each thruster can be
computed from

n,= Bl(vey 22)
where B}(w=W 'BI(BfW 'B)"" for m>n and B!=B; '(¥) when B](¥) is non-
singular. We have used a positive and diagonal Wwhich distributes energy between the
different thrusters after a quadratic cost criterion.

7. The adaptive control algorithm

Many of the parameters in the M, D(¥) and C(¥) matrices are unknown and time-
varying for marine vehicles and especially for small underwater vehicles. This
motivates the use of an adaptive version of (19).

Rewrite (19) such that it is expressed as a function of the current estimate of the
parameters

T, =W 8,5, v)@,, + W, (8 S W+ U (1) (23)

where (7) denotes the estimated value of (-) and ¥, represents the part of the model
which is completely known. The effective control variable u, is found by comparing (23)
and (19) to be

=t} +¥ (5, 3,5, W, (24)

where Y ,e#"*? and %", p is the number of parameters we want to adapt. The
corresponding new feedback law formulated in the inertial frame becomes

()=t (1) +¥($, 5, % )0 (25)

We define the augmented error vector ee®>"** such that e=[2",8"]" and introduce
the new Lyapunov function candidate, Johansson (1990):

Ve, )= W70+ Vo B,) (26)

where ¥, (8,)=07 K8, and K, = K; >0 and V(% 1) is found in Theorem 1. We are now
ready to formulate the following theorem:
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Theorem 2

The system described by (23) with unknown parameters and controlled by (24) is
always globally asymptotically stable with respect to y with the following adaptation
law

b,= —K; Wi (OE T, Ty 7)

Furthermore, the adaptive control law in (27) is stable in the sense that all parameters
remain bounded for all t. The adaptive controller will be an optimal adaptive control
system for constant parameters when 8, =0 and under the assumptions made in the
previous section.

Proof: If we differentiate (26) with respect to time we get
Vie)=V(z0+V, (0, (28)

A combination of (28) with the control law in (25) and the results from Johansson (1990)
and Sagatun (1992) yield

V(e <0

Notice that we assume constant parameters, i.e. 6 =0. We use the adaptation law in (27)
to eliminate terms containing 6 and 6. Hence we have proved that V(e,)<0. This
implies that V()< ¥(0) which, in turn, implies that z= Ty is bounded. Bounded
reference trajectories and the fact that y,, @ and J(x) are continuous bounded functions
ensure that V (e, t) as bounded, consequently V (e, t) is uniformly continuous in time.
Finally, application of Barbilat’s lemma (Barbalat 1959) shows that V(e )0 implying
that z= Ty converges to zero and that 9‘, remains bounded for all t. We have u, = u in
the case of no parameter errors and, hence, we have an optimal controller with respect
to the performance criterion in (1). O
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