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Randomness Reexamined

R. E. KALMANY

‘Roughly speaking, what we know is science and what we don’t know is
philosophy.’

Bertrand Russell, ca. 1968’

1. A manifesto

Having become a household name and being supposedly responsible for a huge
number of ‘applications’ of probability to the real world, I may be permitted to say a
few words, not necessarily in an unkind way, about the emotional, sociological and
philosophical aspects of what in the current fashion is called ‘applied probability’.

I see enormous activity?, seemingly aimless, I see fanatical devotion to ideas and
principles which have grown into a quasi-religion, but not into a scientific discipline;
1 see younger generation spinning its wheels at problems my contemporaries have not
felt worthwhile to devote their lives to. In short, I see a horrible, total, unimaginable
IMESss.

This is a view from the outside. From the inside politics, propaganda and polemics
are vigorously and obstinately pursued; science receives lip service only. It is surely
going too far to gush about ‘the probabilistic revolution’ (see Kriiger et al. (1986)).
Revolution? Indeed. Really? Isn’t Alzheimer’s disease the right diagnosis?

I would like to comment objectively on this state of affairs. This is not easy because
all the discussion is taking place near the boundary separating the two cultures of
C. P. Snow—the literary and the scientific. I am in no way schizophrenic and I am not
afraid to commute between these two cultures. I see the problem as converting those
in the literary culure—more precisely, detoxifying them from their romantic
infatuation with probability. To satisfy my friends in the other culture, I shall try to
phrase my arguments not only with passion but precision.

It is reassuring to know that I am not the first who felt compelled to comment on
the present topic. As a friend with ties to both cultures had put it fifteen years ago, ‘the
situation you are in is analogous to that which confronted Hercules in being asked to
clean out the Augean stables™.

On a politely esoteric level, it is mandatory to quote the late pope of probability,
Bruno de Finetti

PROBABILITIES DO NOT EXIST

(from the preface of de Finetti (1974), emphasis by de Finetti.)
Should they? Commingling philosophical ideas of probability with mundane
practical or scientific matters (codenamed ‘applications’) leads to some difficulties.
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Two of those are especially awkward:

(1) Introducing ‘probability’ (as here contrasted to ‘certainty’) into supposed
scientific discussions has the effect of rationalizing what we don’t know®.
I don’t think this is promising avenue for getting closer to the truth.

(if) Acting on rumors that probability has become the main theme of prestigious
sciences (physics?), less ambitious sciences (economics!) seem to be content
to describe the world in probabilistic terms as the best (?) that can be done. This
road leads to pseudo-science or, more accurately, ersatz-science. That's not
working hard enough.

True, questions of determinacy/indeterminacy have confronted physics for some one
hundred years with deep philosophical dilemmas. Yet it is grotesque to claim from just
this that physics underwent a probabilistic revolution; this clearly did not happen
because probability never became a physical concept. But physics did undergo a
Copernican revolution, and to some extent that analogy is relevant, both to this paper
and its author.

Has science become revitalized and revolutionized by exploiting probability as
the organizing principle? To me this is just mushy and wishful thinking. Historians’
claims that this actually happened in, say, economics, or, better, econometrics (see
Morgan (1990)), may be relevant for classifying the deluge of literature after 1940. But
such talk (so unlike the scientific critique of Copernicus) has contributed nothing to
advancing to a higher level of knowledge in science. Econometrics today is hopelessly
mired in misunderstandings. Aren’t revolutions supposed to create clarity?

The theme of this paper is quite simple. When we research and try to comprehend
randomness in Nature we must try to avoid the temptation to automatically, ‘explain’
randomness in terms of (conventional = games-of-chance = Kolmogorov) probability.

It is our claim that

The majority of observed phenomena of randomness in Nature (always excluding
games of chance) cannot be and should not be explained by (conventional) probability
theory; there is little or no experimental evidence in favor of (conventional) probability
but there is massive, accumulating evidence that explanations and even descriptions
should be sought outside of the conventional framework.

2. Randomness redefined

This suggests a basic problem: define randomness without probability. Historically,
vague notions of randomness were believed to have been made clearer by being
translated into probabilistic terminology. (Like random — independent random.) Now
the task appears to be exactly the opposite: separate randomness from probability.

There is no need to embark on writing a treatise concerning this subtle problem.
A simple remark will do. Suppose we consider the sequence of integers

3,7,3,0,9,5,0,4,8,8,0,1,6,8,8.

(They happen to be digits 10 through 24 after the decimal point in the decimal
expansion of V/2.) Is this sequence random?

The answer depends on what one means (or wants to mean) by ‘random’. In the
framework of conventional probability theory, the precise question would be: Is this
a sequence of (probabilistically) independent random digits?

There is no knowledge vouchsafed to Man in the 20th century that would reveal
an unambiguous answer to this question. (If we were given the additional information,
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very hard to deduce from the given digits, that the sequence is part of the decimal
expansion of /2, then the answer would be negative (hence useless); this is so simple
because the successive digits of the sequence are generated by an exact, deterministic
algorithm and are, therefore, obviously not probabilistically independent.)

There is only one (currently) known way of creating or identifying an independent
random sequence. We use an artificial mechanism, not normally found in nature (such
as an icosahedral die, a lottery machine, etc.) to generate the sequence by actual
experiment. If this is how we got the sequence we have rational grounds to assume that
it is ‘independent random’. But, alas, there is then (roughly speaking) no known way
of assessing how close to the ideal our generating machine comes.

Not being able to test a sequence for ‘independent randomness’ (without being told
how it was generated) is the same thing as accepting that reasoning about an
‘independent random sequence’ is not operationally useful. Therefore, for me,
‘independent randomness’ is not a scientific concept. Unfortunately ‘independence” has
evolved into a such basic and useful assumption in probability theory that is hard to
separate ‘probability’ from ‘independence’.

Let us be bold and remove the question of independence, the method of generation
and even probability from the way we look at randomness. Then the proper intrinsic
definition of randomness becomes obvious. Randomness is the opposite of regularity.
In mathematical terms, taking a rather abstract point of view of course, regularity
usually appears as uniqueness (as regards the nature of solutions, description of results,
etc.). For example, the theorem of Pythagoras shows that a right triangle is not a random
object; the features of the right triangle are so regular that from a little bit of information
we can (re)construct all we need.

So we are lead to the major claim of this paper:

Definition. Randomness, in situations susceptible to precise mathematical discussion,
means nonunigueness; more generally, a random object is one where nonunigueness
cannot be eliminated even after all regularity relevant to the problem is taken into
account. Briefly: a mathematical object is random if and only if it is nonunique modulo
all relevant regularities.

Example. A die (a cube).

This is a random object, according to our definition, because the most obvious fact
about a die is that it normally comes to rest on some one of its (six) faces. (Similarly,
a coin is a random object even if we disregard the possibility that it may come to rest
on its (circular) rim.)

The property of nonuniqueness—that it has six faces—is an intrinsic property of
a die. By contrast, the “‘probability” that the die comes to rest on a given one of its six
faces is not an intrinsic property, because (if such a probability exists) it is determined,
indirectly, by the system aspects of the situation. (Is the die made of homogeneous
material? Does it bounce? Is there a little magnet inside? How it is thrown? What kind
of surface does it fall on?) The proper definition of randomness, (ours!), is easy to get
from a description of the physical aspects of the situation, while the determination of
probabilities involves rather more complex considerations and calculations of the
‘system’ type.

This is not to say that the examination of the commonly observed (or believed to
be observed) fact that the probabilities of the die falling on any one face are all equal
(§) is not interesting. We examine this issue in Section 5.
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Example. A roulette wheel.

The discussion of this example is exactly the same as for the die (randomness
involving finitely many alternatives), and again shows that it is best to define
randomness without at the same time worrying about probabilities.

Example. The infinite sequence of decimals in the decimal expansion of V2.

This is a random object in the sense of our new definition. How is this shown?
We note that the only (conceivable?) regularity in this particular case occurs when the
sequence of decimal digits ultimately (that is, after finitely many digits) becomes
periodic. It is known that this is not the case for \/2 because of the theorem, mindlessly
taught in the secondary schools, that the decimal expansion of a real number is
ultimately periodic if and only if the number is rational; and we know, but of course
not by looking at its decimal expansion, that V2 is not rational, i.e., it is irrational®.
Of course, it is not /2 which is a random object in the sense of our new definition but
only the decimal expansion of V2. It is known that the continued fraction expansion
of V2 is a sequence which ultimately consists of 2’s only (clearly not random in any
reasonable sense); this follows from of a theorem of Lagrange that is not taught to
students in the literary culture.

In the preceding example, randomness is obvious but it is quite unclear what kind
of ‘probability’, if any, may be attached to each occurrence of a decimal digit in the
decimal expansion of V2. Let me hasten to assure the perplexed that all digits are
equiprobable (each digit has the probability of 75). See Section 5.

Example. (Rauzy (1976)). Consider the first digit of each of the infinite sequence of
decimally noted integers 2', where t is a positive integer, enumerated as t=1,2,3, ...

We claim that this is a random object, that is, a random sequence (in our
terminology) of the integers 1, ..., 9 (0 does not occur, by definition). That all the digits
1, ..., 9 actually occur is not quite obvious; it takes about 50 terms before 7 and 9 occur.
The claim that the sequence is random is based, at first, on a guess about the
nonexistence of mathematical results about any kind of regularity of the sequence. (For
V2 this question can be settled using only very elementary number theory.) Somewhat
surprisingly we don’t even have to worry about ‘proving’ this guess because, in this
interesting special case, we can go much further and actually calculate the probabilities
(Rauzy (1976), pages 13—14), as we shall indicate in Section 5.

Again, it is not the family {2':r = positive integer} which is a random object, but
the family of first digits in the decimal representation of 2'. If we take the binary
representation of 2/, there is no randomness at all®,

Example. The prime numbers.

‘Since antiquity mathematicians have been fascinated by the sequence of prime
numbers, namely 2,3,5,7, 11, 13, ... Since (again only roughly speaking), no regular-
ities of this sequence have been discovered in mathematics but only the absence of
regularities (for example, it is not possible to generate all the primes by the integers
by means of evaluating a fixed polynomial), it is consistent with our definition to say
that the totality of primes constitute a random object.

From these examples I conclude that it is not credible to bring back into the
discussion the previously examined notion of an (ideal) independent random sequence,
for such a notion says nothing useful about our examples, not to speak of the fact that
assuming probabilities (that they are equal, for example) bypasses the difficult step of
going from a description of randomness to the calculation of probabilities. The hope
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that a revolution will break out by promoting conventional (Kolmogorov) probability
theory as a key scientific explanation of what must happen in our examples is—well,
a bit naive. It is like taking the shape of the electron (which happens to be unknown)
and, by means of powerful axioms dreamt up in a great creative act, telling us all the
properties moving electrons must have. Newton was horrified by the intimation that this
was how he was doing science, which is why he said, with great contempt, hypothesis
non fingo ...

It is perhaps for such reasons that mathematicians do not, as a rule, regard
probability as an effective research tool for mathematical puzzles. The usual prejudices
are well expressed by the late Russian mathematician Pontryagin by saying
‘mathematicians do not believe in probability theory®’.

We shall have to comment further on this particular use of the word ‘theory’.

3. The evidence for randomness
In the last half of the 20th century the evidence for our manifesto,

Distinguish the concept of randomness from that of probability!

has become overwhelming.

Indeed the discovery of chaos, a collective effort of many®, has now evolved into
a veritable new paradigm of science, without so to say toppling any other paradigm.
Certainly not probability theory (which was never a scientific paradigm anyway)
because, by definition, chaos is the study of random (or random-looking) phenomena
which are understood to have classical or even quantum-mechanical deterministic
causes. The research on chaos, which focuses on randomness in the sense of our
definition of the word, never felt a need for grabbing at probabilistic arguments or
technigues. Thus, roughly speaking

chaos = randomness without probability.

The very issue of determinism vs. indeterminism might as well be left to die. It is
less frightening to try to get used to the idea that Nature (at least in some practical,
macroscopic sense) does not always prefer uniqueness but can be comfortable with
randomness, i.e., nonunigueness.

A particularly surprising view of randomness, held before the discovery of chaos,
may be found in the Nobel lecture of Born (1954). He uses expressions like ‘when
determinacy lapses into indeterminacy’ without any logical, mathematical, empirical,
let alone physical, argumentation to back up such bizarre imagery. Even more
shockingly, there are rumors about a current investigation (by physicists?) of the
trajectory of a die, between the point where it is tossed out of the point where it comes
to rest, the aim being to determine where, along the trajectory, determinacy has lapsed
into indeterminacy. Since the randomness of the die, according to our new definition,
is obvious and physically trivial, while probabilities arise in a complicated way, our
position is that there is no meaning, operational, physical or philosophical, to be
attached to ‘when determinacy lapses into indeterminacy.’

One wonders how contemporary physicists can hope to avoid the great Newton’s
wrath, who thundered, referring to such and many other funny ways of doing (?) physics,
that these ways ‘prejudicia sunt et scientiam non pariunt.’®.




146 R. E. Kalman

4. 1Is econometrics a paradigm for probability?

Let us hope that potential damage inflicted on the world of physics by Born and his
(younger ?) disciple has been minimized already by the cruel device of denying tenure
to the latter. But the situation in econometrics is not quite so simple,

Although loud and opposing voices were raised, especially by Frisch (1934), to the
gradually prevailing dogma of imposing probability and then statistics on the treatment
of noisy data—we may call this, roughly speaking, the Fisherian paradigm of sampling
and estimation (Fisher: ‘the world is a parametrized family of probability distribu-
tions’)}—somehow the addictiveness of the idea of probability resulted in weeding out
the scientists from among the econometricians. Is the damage only temporary?

Typical commentary, in this context, may be found in Hendry and Morgan (1989).
They respectfully recall Frisch’s ideas (undoubtedly rough and sketchy), emphasize
Frisch’s independence of the orthodoxy of Fisher (a historical fact), but then rather
high-handedly transcribe Frisch’s attempts into the language of Fisher and so arrive at
showing, easily, that Frisch did not know what he was doing. See Kalman (1994) for
comments on this critique.

The Fisher-Haavelmo paradigm in econometrics developed after 1940 (see Morgan
(1990) for accurate historical background but sterilized of scientific critique) postulates
that data in econometrics must be explained by means of a probabilistic model. (So this
paradigm started life as religion and not as science.) Frisch, working about a decade
earlier, was consciously attempting to avoid this prejudice, and tried to concentrate on
the direct scientific (or, as [ would say today, system-theoretic) problem of identifying
(a model of) economic relations from economic data. Even by hindsight Hendry and
Morgan are rather skeptical about this enterprise'’, because Frisch—who constructed
a simulation experiment to generate data ( ‘constructed data’) according to the rules of
a Fisherian sampling model—refused to analyze the data he so obtained according to
the prejudices of Fisher (the probabilistic dogma), which is why Frisch succeeded fairly
well with his independent identification method.

This comedy of errors came to anend on July 20, 1983 at Sophia Antipolis (France).
In effect, this was also the end of the ‘probabilistic revolution™ (if it ever existed) in
econometrics. The event is precisely datable. In the course of computing experiments
conducted by the writer on real economic data (taken from the textbook of Malinvaud
(1978), which was composed in the spirit of the orthodox Fisher—Haavelmo paradigm)
a major discovery was made. The experiments were intended to check the
nonprobabilistic theory of identification of Frisch. This theory was immediately refuted
by the results of the experiments, and, by luck, the computations showed much
more—indeed an experimental discovery!

What killed Haavelmo’s hope that econometric models musr be based on
probability? Simply the confrontation with data. Computations in July 1983 have shown
(and since 1983 repeatedly confirmed) that the fundamental axiom of the probability
approach to econometrics—that noise is probabilistic—is not compatible with the data;
certain events whose probability should be negligible are nonetheless frequently
observed. In the terminology of Popper, this falsifies the probabilistic paradigm.
The net results is that identification is more difficult than if probability were the true
basis of econometrics, but this does not necessary mean that economic data is so noisy
that it cannot be used for accurate identification.

If (mainstream) econometrics had died already in 1983, how do we explain the orgy
of self-congratulation and celebration (probabilistic revolution) still going on today?
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The human mind is infinitely fascinated by and protective of the products of its own
imagination. In the sciences, this is known as ‘artifacts’; sadly, even scientific
paradigms seem to be destined to decay because they tend to forget the problems that
engendered them while continuing to study the artifacts created within the paradigm
by the paradigm itself. It is sobering to recall Fliess’s remark about his friend Freud:
‘Der Gedankenleser liest in den Anderen nur seine eigenen Gedanken’ (“The mind
reader reads in the minds of others only his own thoughts’.).

So it is really very interesting that the arguments in Haavelmo (1944) in favor of
probability appear to be unimpeachable when they are reinterpreted as being in favor
of randomness (as 1 have defined it here). But the jump—made unconsciously by
Haavelmo—from randomness to probability was a gigantic non sequitur,

Is this excusable? I think, yes, for Haavelmo, but not for competent historians of
science. All working scientists know about such things. To the average research worker,
it is the ‘not invented here’ syndrome. Or: ‘if I haven’t thought of it, it does not exist.’

Historically speaking, the same mistake occurred at the beginning of the 19th
century when it was taken for granted that Euclid’s geometry has to be the correct
geometry for the physical world, simply because it was then the only known geometry.
With the discovery of the noneuclidean geometries, this argument for the inevitability
of Euclidean geometry in the real world became a nonissue. And this is not really
excusable. After all, a hundred years before (1713) Newton was already on record
against prejudice. Was there any argument for

Euclidean geometry = Nature’s geometry

other than a prejudice?
Today, there is a lot of evidence that there may well be many different kind of
probabilities (Accardi (1994)). Haavelmo’s error that

randomness = (conventional) probability

is just another example of scientific prejudice. Historians of science know, of course,
that Copernicus’s great contribution—the creative act that engendered a Western
science independent of as well as superior to the Greeks—was to point out, by
implacable logic, that the classical evidence in favor of the geocentric view did not
consist of scientific facts, after all, but only of scientific prejudices.

5. The origin of probabilities

The (noncontroversial) remark is often heard that the ‘theory of probabilities’, as
known and taught at the end of the 20th Century, is not a theory since it deals with
probabilities as given and does not comment on how these probabilities are explained,
measured, induced from other information, etc. It would be less confusing if the
old-fashioned terminology ‘calculus of probabilities’ were brought back into current
usage.

We pause briefly to look at the real theoretical question of how probabilities arise,
to further illuminate the sharp conceptual distinction—that we insist on—between
randomness and probabilities.

Here is perhaps the oldest problem on which definite results are available.

Consider the unit interval [0, 1) on the real line. Its points are real numbers. Since,
according to contemporary mathematics, nothing more can be said, we regard [0, 1) a
random object in strict accordance with our new definition of randomness.
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The question arises, is there a probability distribution to be ‘naturally’ attached to
this random object? For example, naive statistics or fuzzy thinking would say that (i)
the distribution might as well be assumed to be uniform (height 1); (ii) if we take points
‘randomly’ from the real line we are sampling just this distribution.

This is much too vague. However, there is a well known (and completely precise)
mathematical theory relevant to the situation, which evolved around 1909-1916,
culminating in the famous

Gleichverteilungssatz of Weyl (1916). Consider the family of numbers
{armod 1:1=1,2,3,...,T}.

The elements of this family are uniformly distributed on [0,1) (in the sense that
if JC [0, 1) is any subinterval, the number of elements falling into J is given by the
number (Iength J).T in the limit as T— o) if and only if o = irrational.

This is a most remarkable mathematical result because it connects the pure
mathematical notion of an irrational number to something related to probability, about
which we have already speculated'.

Indeed, if we call the number at mod 1 (where o = fixed) the ‘t-th sample taken from
the unit interval’ the theorem can be viewed as describing a scheme for sampling a
uniform distribution over the unit interval. But caution: the ‘distribution’ is a
gedanken-object; it is created simply by the claim and reinterpretation of the theorem,
it does not exist in any natural sense over [0, 1). We could assume it to exist, by fiat,
but then we leave mathematics and enter probability theory. The number 7 can be
interpreted as ‘sample size’. (Many results, found since 1916, describe the *sampling
distribution’ of the family for finite 7, not just in the limit 7— ©.)

So we might be tempted to think of Weyl's theorem as a theoretical basis for
statistics and hence for econometrics. This is, perhaps unfortunately, not so, because

(i) the sampling process described by {or mod 1, « = fixed irrational} is not
independent in ¢ (obviously), but classical statistical sampling theory is.
Statistical sampling theory can be justified by assumption (prejudice) but not
by Weyl’s theorem.

The word ‘independent sampling’ removes classical statistical sampling theory
from any strict logical relation with mathematics and mathematical physics, at least as
far as the latter subjects are developed today, because

(ii) no mathematical results are known that would generalize Weyl’s theorem in
the direction of independent sampling.

Sampling, however, is just one interpretation of Weyl’s theorem. We can also look
at it as providing a machinery for calculating probabilities of certain random objects,
where ‘probability’ is to be thought of in the frequentist interpretation, namely the
number of events (say, the value of a digit) relative to the total sample size 7.
An interesting application is Rauzy’s example. In the limit as 7— o the probability
(frequency) of the first decimal digit &, of 2 is given by the exact formula

logio(k+ 1) —logwk *k=1,...,9)

(see Rauzy [1976, page 13]). Note that the sum over k is 1. This is not a uniform
distribution and it is quite nonobvious without calculations. Yet these probabilities
are logically impeccable as a rigorous consequence of a hard mathematical result.
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(The reader might check and verify excellent agreement with the formula for sample
sizes of one hundred or more.)

If it were possible to extend Weyl’s theorem to the special sequence {10’ V2 mod
1} we would be sure that the digits in the decimal expansion of V2 are uniformly
distributed. (They certainly are, at least on the evidence of the first 50000 digits.)
But this has turned out to be an extremely difficult technical mathematical problem
which is still unsolved today.

A further (successful) mathematical extension of Weyl’s theorem leads to showing,
quite generally, that in finite situations (for example, finite number of distinct events)
it is natural to define probabilities as uniform. Thus, at least in the special case of both
the die and the roulette wheel, the traditional assumption of equal probabilities can
be bolstered by considerable mathematical evidence (nothing being said about
independence).

Both the die and the roulette wheel are successfully ‘explained’ in the old theory
(probability is an axiom) and in the new theory (randomness exists irrespective of
probability). If the issue were axiomatic probability (and not randomness), and if
probability were taken as a research problem in modern physics, there would be a mad
rush to detect, identify, measure, distill, purify, synthesize, etc. little roulette wheels,
dice, and whatnot in the constituents of matter, protons, electrons, quarks, whatever.
In this sense, probability could do for physics what genetics (DNA) did for biology.
It speaks well for the common-sense of experimental physics that such a mad rush has
not (yet?) materialized. In any event, no roulette wheels have been found inside the
atom. Hence extrapolating roulette-wheel probability at Nature is a highly dubious
proposition; it is better to look at randomness with a non-roulette-wheel-bound mind.
This, for me, provides adequate evidence to be in comfortable agreement with Einstein
that ‘God does not play dice.’

6. Summary

Randomness is a fact of the real world and thus of scientific interest, as are all facts
which are not self-evident. Probability is an intellectual construct. It does not exist in
the real world. It is not something quantifiable, measurable, concrete. It is not of
scientific concern today because it exists only in the self-interest of gamblers or the
imagination of statisticians or the mind-reading of philosophers.

There was and is no such thing as a probabilistic revolution in science although there
does seem to be something going on. I hope it is not a social Alzheimer’s. It is the
ultimate hypotheses fingo. Obnoxious as nerds undoubtedly are, should we not put up
with a nerd (even a geek?) like Newton and adopt his motto, hypotheses NON fingo?
He got closer to the truth that way and I think that we will, some day, too.

Notes

1. This opinion of Bertrand Russell was kindly communicated to me by Dr. Hassan
Mortazavian together with a tape recording of an interview where Russell himself can be
heard to utter these words. The quotation was intended to be heading for Mortazavian's
paper in Machlup and Mansfield (1988, p. 517-545), but it was deleted by fiat of a dictatorial
editor. the late Fritz Machlup.

2. Kalman filtering was first publicly presented (to somewhat more than polite applause) on
April 1, 1959. Twenty-five years later it was estimated that about 100 000 papers, technical
reports, books, expository articles, summer courses, etc. etc. have appeared concerned with
applications of Kalman filtering theory. At present a rough estimate might be 200000.
But please note: Kalman filtering is not a triumph of appiied probability; the theory has only
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aslight inheritance from probability theory while it has become an important pillar of system
theory.

3. This is well known as the sixth labor of Hercules. It is also well known that the person who
suggested the problem to Hercules was not happy with the latter’s chosen method of
solution, and that this disagreement had serious consequences for the former. We see here
(attention scientists) the almost magical relevance of Greek literary culture to the sociology
of our own times.

4. Until recent times, the question of who is the father could not be scientifically assessed and
one tried to rely on indirect evidence. To the best of my knowledge probability theory was
never applied in such cases to reconstruct the missing or uncertain information.

5. The Greeks thought that something regular is ‘rational” and that the opposite is ‘irrational’.
These words have somehow found their way into contemporary mathematical terminology.
From our point of view it would be quite logical to define ‘random’ as ‘nonrational’.
However, this would be giving a bit too much credit to the Greeks who did not explore the
proposition random = nonrational, did not explore this idea, did not develop probability
theory etc. Yet it is amazing how many of the difficult unsolved problems of modern
mathematics (primes, Riemann hypothesis, Fermat's last theorem, etc.) are somehow tied
up with the random, that is, the nonrational, that is, something that is not readily accessible
to the rational thinking that mathematicians are proud of.

6. The insight that randomness is related to the special ways in which objects (integers, a
language) are coded into mathematical format is perhaps the main contribution of Shannon
to what is called since then information theory; sadly, this is not the point of view that the
historians of the ‘probabilistic revolution’ have focused on.

7. Quoted in Kalman (1985, page 29).

8. The phenomenon of chaos was independently discovered (the word was not then current)
in the course of the writer’s Master of Science dissertation (Kalman (1954)), as a by-product
of the study of certain examples of nonlinear difference equations. This was elaborated on
in a later paper (Kalman (1956)), but without consciously formulating the basic problem,
namely, that probability theory cannot be (probably?) combined with other mathematical
structures since the axioms of probability are so to say incommensurate with anything else.
Hence the dilemma of describing random phenomena resulting from deterministic
mathematical structures—which is what gave rise to chaos research. Interestingly, similar
observations and investigations were made by many at the time; for example, joint work
(unpublished) by J. von Neumann and S. Ulam around 1950.

9. Although there exist (at least) two autographs from Newton concerning this phrase (without
corrections, unusual for him), these were not published until recently. The phrase was
created around 1713 by Newton in the course of the stylistic exercise of composing the
concluding Scholium Generale for the second edition of the Principia. He ended up by
overcondensing some sentences, including the quoted one, into just three words, hypotheses
no—fingo. See Cohen (1978, page 243).

10. They write (Hendry and Morgan (1989, p. 39, middle)) that ‘model selection (under Frisch’s
ground rules) looks hopeless’.
11. See note 5.
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