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Recursive prediction error methods for online
estimation in nonlinear state-space models
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Several recursive algorithms for online, combined state and parameter estimation in
nonlinear state-space models are discussed in this paper. Well-known algorithms
such as the extended Kalman filter and alternative formulations of the recursive
prediction error method are included, as well as a new method based on a line-search
strategy. A comparison of the algorithms illustrates that they are very similar
although the differences can be important for the online tracking capabilities and
robustness. Simulation experiments on a simple nonlinear process show that the
performance under certain conditions can be improved by including a line-search
strategy.

1. Introduction

Modeling from fundamental physical laws and principles is of growing importance
to the process industry, and the established knowledge has reduced the time needed to
develop a ‘first principles’ model to be used for control purposes. Online estimation in
the resulting model, usually a nonlinear state-space model, is needed when the model is
used in an advanced instrumentation system or when the model is used online in the
controller.

The basic algorithms presented in this paper are the Extended Kalman Filter
(EKF), see for example Anderson and Moore (1979), and a recursive Gauss-Newton
algorithm which computes an approximate of the maximum likelihood estimate (Ljung
and Soderstrdm 1983). The latter algorithm is often referred to as the recursive
prediction error method (RPEM), although the term ‘recursive prediction error
methods’ actually refers to a family of methods. The EKF used for combined state and
parameter estimation will be denoted as the Augmented Kalman Filter (AKF)since the
vector of state variables is augmented to include the unknown parameters. Both the
AKF and the RPEM are widely used and thoroughly discussed in the literature, and
with the exception of higher order methods there exists no recursive algorithm which is
proven generally to have better convergence and robustness properties.

Due to the notational differences, the close relationship between the AKF and the
RPEM is not always apparent. The similarity is to some extent illustrated in Ljung and
Soderstrom (1983) (Appendix 3.C) and Ljung (1979). Moreover, Ljung ((1987), p. 314)
points out that the AKF itself is a recursive prediction error method. The comparison
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given here is based on Ljungquist (1990) where a unifying notation is introduced to
emphasize the similarity.

Line-search techniques are widely used to solve optimization problems and dual
offline estimation problems. A family of online estimation algorithms which may be
denoted as moving-horizon batch methods (see Ljungquist (1990)) makes use of line-
search techniques as well. To the authors’ knowledge, however, line-search techniques
were not used in recursive estimation algorithms until a strategy was proposed by
Ljungquist (1990) to improve the robustness and the transient performance.

First, a problem formulation is given. Then results the of an AKF-RPEM
comparison are summarized together with the RPEM in a unified notation. Next a
recursive line-search method (RLM) is presented. Simulation results from a simple
continuous stirred-tank reactor (CSTR) conclude the paper.

2. Problem formulation

Throughout this paper it is assumed that the system under consideration can be
described by the following model formulation

Xk + 1) = f(x(k), 0k), ulk)+v,(K) 0, ~ N(O, ¥, (k)
W) =gle(k), 0k, ulk)) + w(k) W~ N(O, Wk) (1)
E(v, (kw(l)") = Z(8,y

x vector of state variables, dimension n
k discrete time
f() vector of nonlinear functions, dimension n
u vector of control variables, dimension r
0 vector of time-varying parameters, dimension p
v, vector of process noise, dimension n
y vector of measurements, dimension m
g(.) vector of nonlinear measurement functions, dimension m
w  vector of measurement noise, dimension m

Moreover, v, ~N(0, V}) is a shorthand notation for a normally distributed noise
process with the properties E[v,(k)]=0 and E[v,(kWi(l)]=V,8,, where &, is the
Kronecker delta. Additional notation is given at the end of the paper. The time-varying
parameters are modeled as random walk variables, that is

Ok + 1)=0(k)+v;  v3~N(O, Vy(k)) 2

The nonlinearities of the functions f() and g() are assumed to be such that
approximations of the sensitivities with respect to the states and the parameters can be
computed.

The goal of the estimation algorithm is to adjust the model, state and parameter
vectors in an optimal way. In order to do this, ‘optimality” has to be defined by means of
acriterion. Since different criteria are used to derive the different algorithms discussed
here, it may seem difficult to make a fair comparison. However, the structures of the
algorithms are very similar to each other. The comparison can therefore be based on
the importance of the differences to the transient responses and to the robustness/
convergence properties.
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3. An AKF-RPEM comparison

It is probably not an overstatement to assert that the Kalman filter represents the
most widely applied and demonstrably useful result to emerge from the state variable
approach of ‘modern control theory’ (Introduction in Sorensen (1985)). However, from
the mid 1960s it has been a well-known fact that the behaviour of the Kalman filter in
some cases is sensitive to the a priori statistics assumptions (Soong 1965), and that
divergence may result if the initial state and parameter estimates are not sufficiently
good (Schlee et cl. 1967). Based on averaging theory and weak convergence theory the
asymptotic behaviour of the AKF and the RPEM has been analysed in both discrete
(Ljung 1979) and continuous (DeWolf and Wiberg 1993) time. The result in both cases
is that the AKF fails, with probability one, to converge to the true values of the
parameters of a system whose process noise covariance is unknown while the RPEM,
with probability one, converges to the maximum of the likelihood function. Although
asymptotic convergence is a desired property, the question is how relevant the
underlying assumptions are to practical implementation of an online estimation
scheme:

e The proofs are based on unprojected trajectories, an assumption that is
frequently violated.

e The presence on nonlinearities will, generally, make the maximum likelihood
estimate biased.

e The idealistic noise characteristics on which the proofs are based, are often
violated.

From a practical point of view, the main difference is the choice of tuning-factors, and it
is often difficult to tell beforehand from theoretical considerations which algorithm will
work best. For example, is it important to estimate the process noise covariance or is
the main purpose to obtain reasonably good estimates of the model parameters?
The results of a detailed algorithmic AKF-RPEM comparison are summarized in
Table 1. In the fourth column the most essential quantities of the RPEM are given in
Ljung and Soderstrom’s (1983) notation, while the corresponding quantities are given

AKF RPEM
Traditional  Unifying Unifying Traditional
notation notation notation notation
X, (3] (S} P

X X dx
12 x0 a0
X ¥ dx o dx"’
! do ~ do
v v ] ]
W W & A
K, K, K, K(&)
K, K, K, L
dy dy
J— _T IPT
do do

Table 1. AKF-RPEM comparison.
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in one of many notations used for the AKF in the first column. In the two columns in
the middle a unified notation is summarized. Note that the state-parameter covariance
corresponds to the product of the state sensitivity matrix and the parameter covariance
matrix, and that the state covariance matrix corresponds to the state sensitivity matrix
times the parameter covariance matrix times the transposed state sensitivity matrix. At
first sight the second approximation seems very rough, and asymptotically it is
incorrect since the parameter covariance matrix tends to zero while the state
covariance matrix does not. However, these results have been used in Ljungquist (1990)
to obtain the following approximate expression of the state-updating matrix
~d‘x dx" f dx _dx" -1
~0 10 Dx(DxdG 0~ D,,+é")
The RPEM with the parameterized state-updating matrix replaced by Eqn. (3) and the
forgetting factor A =1, turned out to result in an estimator almost identical to the AKF
with V¥, =V,=0.

According to Table 1 & plays the same role as the measurement noise covariance
matrix W in the AKF. This may seem odd, but it is a natural conscquence of the fact
that the Kalman filter equation can be derived by solving

dJ,(K)
—| =0 @
dX(k) x(k) = %(k)

J (k)= (xtk) — (k)" X~} (k)oxt) — x(k)) + " ()W~ (k)e(k) &)

while the RPEM results from minimizing the criterion

K, 3)

where

]’(k) X sy Troyv o — g + k . !
TR="3 Y TG Gx0) }uc)=(); ﬂ(k,;)) ©)

where f is a scalar data weighting factor, by a recursive Gauss-Newton algorithm.
The fact that & can be estimated in a natural way makes the RPEM more flexible
than the AKF and this may improve the convergence. A frequently used estimate is

E=E(k—1)+ofec” — E(k—1)) (7

where ais a tuning factor often chosen in accordance with A. Then «= 1/N corresponds
to A=(N —1)/N and a=1/k corresponds to i=1-0 (no forgetting).

Another difference which becomes evident from the comparison is that the
sensitivity matrix of the state-updating matrix with respect to the parameters is not
included in the AKF. This has been known for a long time, and Ljung (1979) showed
that this is the reason why the AKF fails to converge. Ljung also suggested a modified
Kalman filter to cope with the problem and proved convergence of the resulting
algorithm. The RPEM on which the comparison in Table 1 is based, is derived from an
innovations state-space system representation. This means that in principle, the
algorithm 1s based on the assumption that the state-updating matrix, K, is constant at
least asymptotically. For nonlinear systems, K, will vary rapidly as the inputs and the
operational point change, and the RPE algorithm will not compute the K, which
minimizes the variance of the states. On the other hand, simulation results show that
the state-updating matrix which minimizes the variances of the states, makes it harder
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to detect parameter changes. Hence, the algorithm which gives the most ‘optimal’ K, is
not necessarily the best choice for solving a given problem. This is especially so when
good tracking capabilities and long-range predictive capabilities are important.

A drawback with the RPEM for an innovations model is that the parameterization
of K, results in an estimation problem with many parameters. The RPE algorithm for
the general state-space model (Appendix 3.B in Ljung and Soderstrém (1983)) can be
applied to reduce this number. The main drawback of this algorithm, as well as of the
modified Kalman filter, is that computation of the sensitivities of K, with respect to the
parameters increases the computational requirements significantly compared to the
AKF and the RPEM based on an innovations model.

The third main difference between the AKF and the RPEM is the way of avoiding
the parameter covariance matrix tending to zero, which is an important tuning factor in
online estimation. Simulation results indicate that a scalar forgetting factor should
never be used for online estimation in state-space models except, perhaps, in very simple
cases. The reasons are that when insufficient information enters into the system, the
forgetting factor results in exponentially increasing elements of the parameter
covariance matrix, and that all the elements are increased by the same percentage. The
latter problem can be reduced by using a vector forgetting factor. However, the RPEM
with additive parameter noise given in Table 2 has increased tuning flexibility.
Moreover, it is more robust than the RPEM with a forgetting factor since usually only
the diagonal elements of the covariances matrix are updated and since the covariance
matrix increases only linearly when insufficient information enters into the system.
Note that in Table 2 W is used instead of the estimate in Eqn. (7). The main reason is
that simulation experience indicates that the robustness is reduced considerably
without a corresponding improvement of the transient response when the estimate in
Eqn. (7) is used.

xtk+1)= f(%,0,u)
Ok+1)=0
Xok+)=F.Xo+F,
Ok+1)=60+V,
y=g(x,0,u)
e=y—y
Yn=5xxo+be
S=Y,0Y]+W
K,=K,()
Ky=06Y,5!
X=x+K,¢
0=0+Kq
O =(I,— KoY ,,— K, Yo + KoWK]
dK,

fﬂz(’u_Kxﬁxj‘YO"'_dG_E

Table 2. RPEM with additive parameter noise.
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From the above discussion it is obvious that the algorithms can be modified to
become almost identical to each other (a more detailed discussion is given in Ljungquist
(1992)). The main difference is the choice of tuning factors. Which of these algorithms
should be used to solve a specific problem depends on the application as well as the
available a priori information.

4. A recursive line-search method

Alternative recursive line-search algorithms in both discrete and continuous-
discrete mode have been presented by Ljungquist (1990,1992). Here an algorithm
which is very close to the RPEM given in Table 2 will be discussed. In this algorithm the
optimal parameter-updating step is computed by minimizing the one-sample criterion

J(R)=EK)E ~e/(k)+ 14670 (k) A6’ (8)
where
A0F = 0¥(ky—b(k—1)
@ is a symmetric positive definite matrix, dimension p x p

The scalar tuning factor y will be discussed below. During the line search, a new
parameter vector is computed according to

0/(k) = 0(k — 1) + ocl(k)L(k) ©)

Assume that the search direction L(k) is computed. Different stepsizes will then result in
different parameters and different prediction errors. Since a one-sample criterion is
used, the criterion can easily be computed for each stepsize, and the criterion is a
function of the stepsize alone. A one-dimensional optimization algorithm, a line-search
algorithm, can then be used to compute the optimal stepsize. In this way errors in the
generated search direction are detected, and stepsizes which are too long or too short
are avoided. The main problem is to establish a good one-sample criterion since it tends
to be sensitive to measurement noise. The problem is solved by weighting the
parameter change in the criterion. Note the close relationship between the criterion in
Eqn. (8) and the criterion in Eqn. (5) which may be used to derive the Kalman filter. The
idea can be extended to include more samples, but more than five is not recommended.
In this case the more general concept of moving-horizon batch methods should be used.

Different stepsize selection procedures can be used (Ljungquist (1990)). Here the
simplest alternative will be applied. Let the optimal stepsize «° be defined as the stepsize
which results in the smallest criterion J¢ for a given search direction L. This optimal
value can be computed by a conventional line-search strategy. The stepsize is then
chosen according to Table 3. In Table 3 J denotes the estimation activation threshold.
A value J >0 is used to increase the robustness of online estimation schemes at the cost
of a slower convergence. A discrete recursive line-search method based on the RPEM in
Table 2 is summarized in Table 4. In Table 4 superscript © denotes initial values, which
corresponding to a stepsize « = 0. R is a counter which counts the number of successive
times the optimal stepsize is equal to zero or equal to the predefined upper limit, o™ If

If J(@=0)<J then a=00
If J (@=0)>J then o=max {0-0,min (o™}

Table 3. The stepsize selection procedure.
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0 XK= f(E(k—1),00—1),u(k—1))
Bik)=0(k—1)
X30)=FAk—1)Xk—1)+Fk—1)
Bk)=Otk— 1)+ V,
(i) %)= p(k)— g(xK), B{K), u(k))
Yo(k)=DAK)X 3(k)+ D3(k)
(iii) Compute J (k) according to Eqn. (8).
KQ(k) =Bk Y (YSRIOUKNY )T (R) + & (k— 1)) !
(iv) L{k)= K (k)" (k)
) I J{<J, set 6°%k)=0B(k) and go to (xi)
(vi) Set j=1. Choose an initial stepsize a'(k).
(vii)  O(k)=8(k)+ H(k)L(K)
A0 = 0%(k)—B(k)
(viili) %k —1)=x(k— 1)+ K (0/(K))e(k — 1)
X(K)= f(#(k— 1), 0°(k), u(k— 1))
(ix) &l(k) = y(k)— g(xI(k), 6 1(K), u(k))
Compute Ji(k) according to Eqgn. (8).

(x) j=j+ L. Adjust the stepsize a/(k) according to a line-search strategy and repeat steps (vii)
through (ix) until the stepsize satisfies the conditions in Table 3.

(xi) If «®(k)=0 or o®(k)=oa™ set R=R+1. Else set R=0
(xii) If R=R, set Xyk—1)=0 and &(k)=6(0).
(xiii) O(k) = B(k) + o °(k)L(k)
Rk—1)=x(k— 1)+ K (0(Kk))e(k — 1)

dK’{k— e(k—1)

X(k—1y=(I,— K 0(k)D (k— )X ok — 1)+ 20

(xiv) x(k)= f(%(k—1),0(k), u(k — 1))
Xok)=F (k—1)X ok — 1)+ Fo(k—1)
#(K) = y(k) — g(x(k). O(k), (k)
Ek)=Ek— 1)+;- (e(k)eT(k)— & (k— 1))
Yi(k) =D (k)X (k) + Dylk)
K (k) =K Y} Yo k)O(K) Y3 (k) + (k) !

Ok)=(I,— Kok Yy KNO(KNI ,— Ko k) Yok)" + K(KIE(R)KG(K)
(xv) k)= x(k)+ K O(k)elk)

dk,
(K)e(k)

X W) =(1,— KOKND (kDX o(k) + 0

(xv1) Set k=k+1 and go to (i).

Table 4. A recursive line-search method.
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Ry is chosen equal to one, the sensitivity matrix and the search direction will be reset
each time it is impossible either to obtain improvement in the computed search
direction or the stepsize attains its upper limit. In the presence of large measurement
noise, the algorithm will tend to be reset too often so that the estimate of the parameter
covariance matrix, which corresponds to the inverse Hessian matrix, will be poor. The
result is an algorithm with approximately first order convergence properties. On the
other hand, a large Ry means that it will take a long time to detect errors in the
computed search direction. A reasonable tradeoff is to choose Ry€e{1,2,3}. The
estimate of the innovations covariance matrix & can be replaced by a constant matrix.

The tuning parameter y is used to control the computed stepsize and reflects the
confidence in the computed parameter covariance matrix compared to the prediction
error covariance matrix. An increased y will result in a reduced stepsize. Note that the
same effect can be obtained by reducing the elements of the V, matrix. However, by
changing y instead of V,, problems such as © tending to zeros or blow-up of © during
periods when little new information is available, are reduced. Usually y is chosen so that
ye[0-1,10:0].

In the above RLM both the search direction and the @-matrix used in the criterion
(Eqgn. (8)) are computed according to the same equations as the RPEM in Table 2. Note
that a constant matrix can be used instead of the recursively computed matrix, or a
constant matrix can be added to the ®@-matrix before entering it into the criterion. The
result is a regularized estimation problem and a more robust algorithm. The transient
response, however, will tend to be worse.

It is pointed out in Ljungquist (1990, 1992) that it is usually easier to take into
account boundaries in the parameters in recursive line-search methods than in
ordinary recursive methods. For the RLM presented here, however, this is not the case.

The RLM given in Table 4 can be simplified by not recomputing the sensitivity
matrix with the most recent parameter estimates in Steps (xiii) to (xiv). As a result the
computational cost is reduced by approximately 20 per cent.

The main advantages of recursive line-search methods compared to ordinary
recursive methods are that the robustness is increased and that the transient response is
improved in some cases. The stepsize selection procedure can easily be modified in such
a way that the RLM obtains the same asymptotic convergence properties as the
RPEM. Loosely speaking, the stepsize must in average tend asymptotically to zero like
1/k, where k is the discrete time. The RLM gives results very close to the RPEM in
Table 2 when the model is linear, the noise assumptions are satisfied, and the parameter
identifiability is low. The RLM will show better transient response when the parameter
identifiability is high and the nonlinearities predominant as illustrated by the
simulation example below. Results presented in Ljungquist (1990) indicate that
nonlinearities in the measurement equations make the RLM preferable. The robust-
ness is higher for the RLM since overlong updating steps during transients are avoided,
and since it can more easily be tuned to obtain good tracking capabilities without lack
of robustness. In summary, the drawbacks of the RLM are the increased complexity
and the increased computational costs compared to ordinary recursive algorithms.

5. Simulation examples

In this section some of the above conclusions are illustrated by simulation
experiments on a simple model of a continuous stirred tank reactor (CSTR). A simple
model of a CSTR is summarized in Eqn. (10). The feed consists of an unknown
concentration of component A and has a given temperature. Component A reacts
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endothermically in the reactor A—» B, and the heat required for the reaction is supplied
through a heater. Assuming constant volume of the contents of the reactor, the
following equations result from elementary mass and energy balances:

ac, gq 1 1\E
_df£=V{C"‘r_CA)_r’ l‘=k‘,Cﬂexp(—(?———)—)

T./R
(10)
dT g 1
= (T.— - (—
dt V( I n+€pmcul"[{ 4H )rvV+Q]
The following notation is used
C, concentration of component A in the reactor (O-3[mol/1])
C,, concentration of component A in the feed (6,[mol/1],07=1-0)
T temperature in the reactor (0-414-10°[K])
T, temperature in the feed (0-350-10°[K])
Q cenergy supply (3-1- 108[J/mol/min])
AH, heat of reaction (0, - 10°[J/mol], 8 =0-671)
E activation energy (ﬁ =0,-10*[K],05= 1-0)
R universal gas constant
¢,m heat capacity of A and B (3-35- 10*[J/K /mol])
k. reaction rate constant (0,-10" [min~'],09=1-515)
1. reference temperature 400[K])
V  volume of the reactor (3:0-10%[1])
q feedrate (%:0'152[111111— 1])

The model was discretized with a stepsize equal to 1/3 min and scaled to be numerically
more robust. All the estimation algorithms under consideration were tuned in the same
way. The four parameters 0, to 6, were estimated, and identifiability examination
verified that all four parameters can be estimated simultaneously provided that the
energy supply is an approximate pseudo-random binary signal with minimum value
248 - 10%, maximum value 3-72-10%, minimum switching interval 1 min and maximum
switching interval 25 mins (sufficient condition). However, the parameter identifiability
was low, so the parameter convergence was rather slow even for well-tuned algorithms.
Process and measurement noise was added to the simulated process, and the signal to
noise ratio was approximately 10. Further details can be found in Appendix A in
Ljungquist (1992).

In Fig. 1 the estimated parameters for an RPEM with a scalar forgetting factor and
the RPEM in Table 2 are compared. Parameter number 3, 6, was increased by 1 after
50 samples, and ¢, was increased by 0-4 after 200 samples. Both algorithms converged
to the true parameters, but the transient responses were slower when a scalar forgetting
factor was used. The parameter variances corresponding to the different forgetting
strategies in Fig. 1 (not included) showed that the forgetting factor used (1=098) was
too low for online implementation since the variances increased exponentially. The
RPEM in Table 2 was tuned so that the parameter variances reached a constant level
with an average value 2-10 times their absolute values after approximately 300
samples. It is clear that a forgetting based on additive parameter noise (Eqn. (2)) is
superior to a scalar forgetting factor.
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Parameter number 1 Parameter number 3

1.5 25
- -
1 15
1
L i ! 0-5 1 1 L
035 100 200 300 100 200 300
Time[samples] Time[samples]
25 Parameter number 2 Parameter number 4
2t o I
15 A
1t _ 0.5 " .
0.5 - * - : - !
100 200 300 100 200 300
Time[samples] Time[samples]

Figure 1. A comparison of the RPEM w/4A =098 and the RPEM w/¥,. Solid lines-- parameters
estimated by the RPEM w/2=098, dashdotted (--) lines—parameters estimated by the
RPEM w/V;, dashed (--) lines—process parameters.

15 Pa.ramcter nt_:mber 1 25 Pa‘rameter ngmber 3 _
2t e e
1z 15F Tr‘ -
1 i
03 100 200 300 03 100 200 300
Time[samples] Timefsamples]

Figure 2. A comparison of the RLM and the RPEM in Table 2. Solid lines—RLM estimates
dashdotted (--) lines—RPEM estimates, dashed (- -) lines—process parameters.
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Time[samples] Time[samples]

Figure 3. The stepsize and the number of iterations for the RLM
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When four parameters werc estimated simultaneously, both the AKF and the RLM
in Table 4 gave responses very similar to those of the RPEM with additive parameter
noise. The parameterized state-updating matrix computed by the RPEM, however,
behaved quite differently from the ‘optimal’ K, computed by the AKF. The optimality
of K, is consequently not always an important issue.

When the parameter identifiability was increased by reducing the parameter set to
include only 0,, 6, and the parameterized state-updating matrix, the RLM with y=0-5
and constant & resulted in better transient response than the RPEM as illustrated in
Fig. 2. When V, was increased by a factor of two in the RPEM, the responses became
closer to that of the RLM. The robustness of the RPEM, however, was then clearly
reduced due to the increasing parameter covariance matrix.

The computed stepsize and the number of iterations performed in the RLM are
shown in Fig. 3. The average stepsize increases for some time after the parameter
changes. The number of iterations used in this simulation was 12 on average. This
number can be reduced to about 8 by using the line-search algorithm described in
Wolfe (1978) instead of the Matlab function finin used in the simulations presented here.

The simulation experiments carried out in this section were very idealistic since the
simulated process and the model were identical except for the noise added to the
process, the measurement equations were linear, no parameter constraints were
present, and the number of samples was low. The fact that the RLM was never reset (R
was never > R, =2, see Table 4)illustrates that the simulation experiments did not fully
exploit the advantages which result from the increased robustness of the RLM.

6. Conclusions

Simulations have shown that the algorithms under consideration here can be tuned
to give very similar results and an algorithmic comparison shows that the main
difference lies in the choice of tuning factors. It is consequently impossible to state that
one algorithm is always preferable to another. The degree of the nonlinearities and the
available a priori information are very important in order to select the best method for
a given application and to tune the algorithm as well as possible. On the other hand, it is
very difficult to construct examples for which the AKF or the RPEM outperform the
RLM. The increased robustness of the RLM is especially important when the
estimation scheme is to be applied online to real data due to the built-in detection of
errors in the computed updating direction and the estimation activation threshold. In
summary, the only drawback of the RLM is that the computational requirement is
increased by a factor of three compared to the RPEM.

NOTATION

The notation used in addition to the problem formulation and the symbols in the
simulation example are summarized below:

_%
T ox
_%
a0

¢ prediction error/model—system measurement mismatch
E(.) the expected value of (.)

D,

D,
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Lo
Cdx
_of
o0
I, identity matrix of dimension nxn
K, state update matrix
K, parameter update matrix
X =cov(x)
X o=E(X0™)  where X is the state estimate error

Fy

Fo

@ is the parameter estimate error
dx
de
_dy
~do
O =cov(B)

X,n=

Y

In addition, the bar ‘* and the hat * are used to distinguish between a priori and
a posteriori estimates:

x(k)y=x(klk—1)
5(k) = x(klK)
X(k)=E((x—x)(x—%)")
(k)= E((x— %) x—%)T)
A similar notation is also used for the other matrices above. This means that

dg(x, 8,u)

ox x = x(k)
0= fitk)

D k)=

The following vector notation is used in the above definitions

x=[x,%5...%,]" where x; are scalars

dx, dx, dx,
0, d0, " do,
b [B o
) do, do, do, where 6, are scalars
dx, dx, dx,,
de, d6, T de,
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