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Ride control of surface effect ships
using distributed control

A. J. SORENSENY and O. EGELAND]}
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A ride control system for active damping of heave and pitch accelerations of Surface
Effect Ships (SES) is presented. It is demonstrated that distributed effects that are
due to a spatially varying pressure in the air cushion result in significant vertical
vibrations in low and moderate sea states. In order to achieve a high quality human
comfort and crew workability it is necessary to reduce these vibrations using a
control system which accounts for distributed eflects due to spatial pressure
variations in the air cushion. A mathematical model of the process is presented, and
collocated sensor and actuator pairs are used. The process stability is ensured using
a controller with appropriate passivity properties. Sensor and actuator location is
also discussed. The performance of the ride control system is shown by power
spectra of the vertical accelerations obtained from full scale experiments with a 35m
SES.

1. Introduction

Surface Effect Ships (SES) are known to offer a high quality ride in heavy sea states
compared to conventional catamarans. However, in low and moderate sea states there
are problems with discomfort due to high frequency vertical accelerations induced by
resonances in the pressurized air cushion. A high performance ride control system is
required in order to achieve satisfactory human comfort and crew workability. To
develop such a ride control system it is essential to use a sufficiently detailed dynamic
model. Previous ride control systems have been based on the coupled equations of
motion in heave and pitch as derived by Kaplan and Davis (1974, 1978), and Kaplan et
al. (1981). Their work was based on the assumption that the major part of the wave
induced loads from the sea was imparted to the craft as dynamic uniform air pressure
acting on the wetdeck, while a minor part of the wave induced loads from the sea was
imparted to the craft as dynamic water pressure acting on the side-hulls. This work was
further extended by Serensen et al. (1992, 1993) and Serensen (1993), who included the
effect of spatial pressure variations in the air cushion. It was found that acoustic
resonances in the air cushion caused by incident sea waves resulted in significant
vertical vibrations. A distributed model was derived from a boundary value problem
formulation where the air flow was represented by a velocity potential subject to
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appropriate boundary conditions on the surfaces enclosing the air cushion volume. A
solution was found using the Helmholtz equation in the air cushion region. In this paper
the mathematical model presented in Serensen et al. (1993) is slightly modified and
adapted to control system design. This mathematical model is then used to derive a new
ride control system. The stability of the control system is analysed using the theory of
passivity as presented in Desoer and Vidyasagar (1975) and in Vidyasagar (1993). It is
demonstrated that under appropriate assumptions the dynamic system to be
controlled is passive, and stability can be achieved using a strictly passive controller.

2. Mathematical modeling

In this section a mathematical model for the heave and pitch motion of SES is
presented. A detailed derivation of the model is found in Serensen (1993). A moving
coordinate frame is defined so that the origin is located in the mean water plane below
the centre of gravity with the x-, y- and z-axes oriented positive forwards, to the port,
and upwards respectively (Fig. 1). Translation along the z-axis is called heave and is
denoted #4(t). The rotation angle around the y-axis is called pitch and is denoted #s(t).
Heave is defined positive upwards, and pitch is defined positive with the bow down.
The craft is assumed to be advancing forward in regular head sea waves. The waves are
assumed to have a small wave slope with circular frequency w,. The circular frequency
of encounter w, is

w,=w, +kU M

where k= 27/} is the wave number, 1 is the sea wave length and U is the craft speed. The
incident surface wave elevation {(x, ) for regular head sea is defined as

Ux, )=, sin(w,t +kx) )

where ¢, is the sca wave elevation amplitude. The beam b and the equilibrium height h,
of the air cushion are assumed to be much less than the length L. Hence, a one-
dimensional ideal and compressible air flow in the x-direction is assumed. The cushion
length is reaching from x= —L/2 at the stern (AP) to x=L/2 at the bow (FP). The
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Figure 1. Surface Effect Ship (SES}—coordinate frame.
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longitudinal position of the centre of air cushion pressure is assumed to coincide with
the origin of the coordinate frame. The air cushion area is given by A_= Lb. The total
pressure variation p/(x,¢), in the air cushion is

PAX 1) = pa+ Pult) + PyylX, 1) 3

where p, is the atmospheric pressure, p,(t) is the dynamic uniform excess pressure and
Ps(x, t) is the spatially varying pressure. The dynamic air cushion pressure is excited by
incoming sea waves. In the absence of sea waves, the stationary excess pressure in the
air cushion is equal to the equilibrium excess pressure p,. The nondimensional uniform
pressure variations y,(f) and the nondimensional spatial pressure variations p,(x, ) are
defined according to

=p.,(t}—p.,, e, ) _Psx, 1)

o o

#lt) @
The volumetric air flow into the air cushion is given by a linearization of the fan
characteristics about the craft equilibrium operating point according to

0
wa..(t)=pm‘);(Qm- +P, %IN{MtH#W(xFa, t))) 5)

It is assumed that ¢ fans with constant RPM are feeding the cushion where fan i is
located at the longitudinal position xg;. Q,; is the equilibrium air flow rate of fan i when
pAt)=p,, ., is the density of the air at p, and (¢Q/dp)|,, is the corresponding linear fan
slope about the craft equilibrium operating point Q,; and p,. The volumetric air flow
out of the air cushion is proportional to the leakage area A,(t), which is defined as

Ag()=A,+ A1) 6

where A®S(1) is the controlled variable leakage area, and A,= A2’ + A2* is the
equilibrium leakage arca with A2 defined as the stern equilibrium leakage area at x =
—L/2 and A%* defined as the bow equilibrium leakage area at x = L/2. The controlled
leakage area A®(t) is written

ARt = _i(Ai‘.-CS+M K0 1)) ™

where r is the number of louvers, AX® is defined as the mean operating value or bias of
the leakage area of louver i which is located at the longitudinal position x=x,;.
AARCS(x;, 1) is defined as the commanded variable leakage area of louver i. A louver is a
variable vent valve which changes the area of opening in the wetdeck for the purpose of
leakage control. Pressure sensors located at the longitudinal position x=x,;, are used
to measure the pressure variations in the air cushion.

2.1. Equations of motion

In this section the coupled equations of motion in heave and pitch and the dynamic
cushion pressure are presented. The dynamic uniform pressure equation is derived
from a global continuity equation for the air flow into and out of the air cushion. The
spatially varying pressure equation is derived in the time domain from a boundary
value problem formulation by solving the wave equation in the air cushion region
subject to appropriate boundary conditions on the surfaces enclosing the air cushion
volume.
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1. Uniform pressure equation:

K0+ K i)+ o0 =K 3. S50+ 0oVl ®

where the constants K,, K, and K, are defined according to
PeottoAe

= AL K;= 20 a”z
TRy MR e L

K 3= Pcoii (Q;i - po%%ioi)

where p, is the air density at the atmospheric pressure p,, y is the ratio of specific heat for
air and ¢, =0-61 is the orifice coefficient. The time derivative of V,(¢) is the wave volume
pumping of the dynamic uniform pressure and is found to be

b [Y? sin(kL/2)
Vo()=b I_mt,’(x, tdx=AL,w, kL2 St (10)
2. Spatially varying pressure equation:

HeplX, -‘-)=J{Z1 pAOr {x) (11
wherer(x) is the eigenfunction or the mode shape function of mode j, which is found to
be

—cos (x4 L _LL
rj{x)—cosL(x+2), xe[ >’ 2] (12)

The time derivatives of p(t} is the modal amplitude function for mode j. The odd modes
around the centre of pressure for j=1,3,5,... is written

BA+ 28 j0;p 1)+ @F (O)pf1) = —c2;1s(t)

r ; L
+ cl z OOS%(JCU + E)AAE‘CS(X“, t) + pt'o Vj(t} ( 13}
i=1

where
2K 2C 2 4pml_£ 2
C 1= > Cz ;=———-_—2
PoVeo Poholim)
¢ is the speed of sound in air. The wave volume pumping of the odd acoustic modes is

o 4c¢® kcos(kL/2) .
V)= " ohol GlL) w{,sinw,t (15)

The even modes around the centre of pressure j=2,4,6,... is

(14)

. . - ] L :
PAN+2Ewpft)+oipft)=c, Y, co.‘sJ%r (x,__,— + 5)AA FS(xgp )+ peVA)  (16)
i=1
where the wave volume pumping of the even acoustic modes is

4c? ksin(kL/
ksin(kL/2) L. cosat (17

0= L k2L ©
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The relative damping ratio ¢; for the odd and even modes is

¢ (K, K; &  res.. o7 L 4 30 LT L
cj_j?[hob( Ao+ oni cos L xu+2 _pmizap'loicos L xf-3+2

2po " 2p,i=h =
(18)
and the corresponding eigenfrequency w; for the odd and even modes is found to be
wj=c’%, j=1,2,3,.... (19)

3. Heave equation:
(m+ A43)i5(t) + Bastis(t) + C33n3(t) — Apopn(t) = F5(0) (20)

where m is the craft mass.
4. Pitch equation:

L 2
(Iss + Ass)is(t) + Bsstis(t) + Cssﬂs(f}*zpabj: 123. (};) plt)=F5(t) (21)

where I 55 is the moment of inertia around the y-axis. For simplicity, and without loss of
generality, hydrodynamic and hydrostatic coupling like A4;;-, B;- and C;-terms, and the
coupling between the dynamic uniform pressure and the spatially varying pressure is
assumed to be negligible and hence is set equal to zero in the model. The hydrostatic
C;;- terms are found in the standard way by integration over the water plane area of the
side-hulls. The hydrodynamic added-mass coefficients A;, the water wave radiation
damping coefficients B;;, and the hydrodynamic excitation force in heave F5(t) and
moment in pitch F¢(t), are derived from hydrodynamic loads on the side-hulls (Salvesen
1993). Since the main focus in this paper is on the high frequency range, we have used a
simplified strip theory based on Salvesen et al. (1970) for calculation of the
hydrodynamic loads.

2.2. Discussion of the mathematical model

1t is evident from (20) and (21) that the heave and pitch to motions are coupled to the
dynamic excess pressure in the air cushion region. This is to be expected since the major
part of the SES mass is supported by the air cushion excess pressure. The relative damping
ratio &; given by (18) is an important parameter. As expected the leakage terms and the
fan inflow term contribute to increased damping. One should notice that the fan slope
(8Q/dp)l,,» is negative. The longitudinal location of the fan and the louver systems
strongly affects the relative damping ratio. In the case of a single fan system and a single
louver system, it may seem natural to locate the fan and the louver in the middle of the
air cushion, that is x = x; =0. However, from (18) we observe that the relative damping
ratio for the odd modes will be reduced significantly if x, and x; are equal to 0.
Maximum damping of both the odd and even acoustic resonance modes is obtained for
xgand x, equal to —L/2 or L/2. The relative damping ratio of the first odd acoustic
mode on a 35 m SES with the ride control system off, will increase from about 0-05to 0-2
by locating the lift fan system at one of the ends of the air cushion instead in the middle.
This gives a significant improvement in ride quality even when the ride control system
is turned off. In the same manner, the active damping due to the ride control system is
maximized by locating the louver system at one of the ends of the air cushion. In the
following we will use a finite number of k acoustic modes in the mathematical model.
The effect of higher order modes is assumed to be negligible.
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3. Robust dissipative controller design

In this section a ride control system based on the mathematical model derived in the
previous section is developed. The objective of the control system is to damp out
pressure fluctuations around the equilibrium pressure p, in the presence of sea wave
disturbances. This can be formulated in terms of the desired value of the nondimen-
sional dynamic uniform pressure p(t)=0 and the nondimensional spatially varying
pressure p;'P(x, t)=0, where the superscript d denotes the desired value. The number of
modes to be damped depends on the requirements related to established criteria for
human comfort and working conditions for crew. The mathematical model of the craft
dynamics is of high order as it contains a high number of acoustic modes. A practically
implementable controller has to be of reduced order. When designing a controller
based on a reduced order model, it may happen that the truncated or residual modes
result in degradation of the performance, and even instability of the closed loop system.
This is analogous with the so-called spillover effect in active damping of vibrations in
mechanical structures (Balas, 1978). This problem was also discussed by Gevarter
(1970) in connection with the control of flexible vehicles. The controller must be robust
with respect to modeling errors and parametric and non-parametric uncertaintics,
nonlinearities in sensors and actuators; and component failure. The use of collocated
compatible actuator and sensor pairs provides a design technique for circumventing
these problems. In this case a passive model description can be obtained, and robust
stability can be achieved by using a controller with appropriate passivity properties.

3.1. State space model

The dynamic system given by (8)+21) is of third order as opposed to similar
vibration damping problems of large flexible space structures that can be written as
equivalent second order mass, damper and spring system, see e.g. Joshi (1989). In this
paper the theory of passivity as presented in Desoer and Vidyasagar (1975) and
Vidyasagar (1993) is used to analyse stability. The dynamic system given by the (8}+21)
is written in standard state space form

x=Ax+ Bu+Ev
y=Cx (22)

where the n dimensional state vector x{t) is

x=[N3, U5, 113, 15, bop P1>--->Pso P1s--->Pi]" (23)

where 715(t), 715(2), pt), p1(t), p2(1), - . ., p(t) are defined as in Section 2.1. k is the number
of acoustic modes. ¥(t) is the 3+ k dimensional disturbance vector defined as

) =[F, FS, Vo, Vi, Ti" (24)

where F§(t) and F§(t) are defined as in Salvesen (1993). The time derivatives of Vy(t),
Vi(®), ..., Vi(t) are defined in the (10), (15) and (17). it is the r dimensional control input
vector, and r is the number of louvers. The elements of i(t) are fori=1, 2,. .., rdefined as

uft)=AAFN(xg; 1) (25)

where AAFS (x,;,t) is defined in (7). The louver and sensor pairs may be distributed
along the air cushion, preferentially in the longitudinal direction. y(t) is the m
dimensional measurement vector and m is the number of pressure sensors. The
symbolic expressions for the nxn system matrix A, nxr control input matrix B,
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n x (3 + k) disturbance matrix F and m x n measurement matrix C can be derived in a
standard manner from the equations of motion presented in Section 2.1. Consider the
case where the sensors and actuators are ideal, that is linear and instantaneous with no
noise. It is assumed that the control input matrix B can be chosen such that

C=B"P (26)

where P, which is given in (34), is a n x n diagonal positive definite matrix providing
correct scaling of the BT matrix to the C matrix. This is referred to the case when there is
perfect collocation between the sensors and the louvers, i.e. x;;=x, for all iand r=m.
We can derive linear time-invariant operators between the inputs and the outputs of
the dynamic system given by (22). Let s be the differential operator. It can be shown that
the pair (4, B) is controllable and the pair (A, C) is observable. Hence, the dynamic
system given by (22) can be represented by

Ns)=H (s)us)+ H {s¥(s) = y.(s) + ¥,(s) 27
where the transfer matrices H(s) and H (s) are given by

H(s)=C(sl,—A) 'B
(28)
H/s)=C(sI,—A) 'E

and I, is the n x n identity matrix.

3.2. Stability properties of the control system

In this section a strictly passive controller with finite gain is proposed. Employing
the definitions of passivity as presented in Desoer and Vidyasagar (1975), and in
Vidyasagar (1993), on an interconnected system consisting of two subsystems in a
standard feedback configuration (Fig. 2), the robust stability of the feedback system can
be shown for certain input-output properties of the subsystems. The following lemma
showing that the n x n system matrix A is Hurwitz will then be utilized.

Lemma 1
The eigenvalues of n x n systemn matrix A given in (22) have negative real parts.

Proof:
Consider the autonomous system of (22) with u(t) =v(t)=0. Define the Lyapunov
function candidate

Mx)=3x"Px>0 (29)

where the n x n diagonal positive definite matrix P is given in (34), V(x) is positive
definite.
The time derivative of V(x) along system trajectories is

V(x)=ix(ATP+ PA)x= —1x"Ox<0 (30)
The n x n diagonal positive semidefinite matrix Q is

Q=diag[02xz,Qfaxs-,kaszkxu] (1)
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The 3 x 3 diagonal positive definite Q1 , ; matrix is

Q15 ;=diag[g;],i=3,4,5

2B 2B 2K 2
=P_ 33 , ___P___SS__ — 3
q33 3m+A_,,3 Qaa 4.’55+A55’ gss=Ps K,
The k x k diagonal positive definite Q2, ., matrix is
02, . =diag[g;], i=5+k+1,5+k+2,...,5+2k o
) 3)
qts+k+jus+hn=P(s+x I-j)(5+k+j,4éja)j’.;: 1,2,3,...,k
The n x n diagonal positive definite matrix P is found from (30) to be
P=diag[P;], i=1,23,...,n, j=1,2,3,...,k
Cis Css PeoM+ As;3)
P,=P,- ., Py=P,— , Py=Po~— ==
U i mt Ay, P s+ 4ss T Kp
91 K, 1
P4=—dlcl; P5=;"‘;k‘;= P5+j=w;gP5+k+j’ Ps+:;+j=c_l (34)
where ¢, is defined in (14), From (22) and (30) it is seen that
V(x)=0 (35)
|
x=xo=[q3’ns:ososospppzv-tspk,O.O‘.-..OJT
However, from (22)
fa=fs=p,=py=pr=...=p=0 (36)
which implies
Na=ns=py=py=...=p=0 (37
Hence, by the invariant set theorem (Vidyasagar, 1993) the equilibrium point x,=0 is
asymptotically stable and the resuit of Lemma 1 follows. O

Define the linear time-invariant operators H: L7, — L%, (r=m) and assume that H

L3"*« L2, such that y,eL3** whenever veL3*¥ Notice that L,, is the extended space of
L, (Desoer and Vidyasagar, 1975). In the following lemma it is shown that the process
operator H, is passive. This allows for the design of robust, stable output feedback
controllers for ride control of SES.

Lemma 2
The process operator H,, is passive.

Proof
Set v(t) =0 in (22) and use the Lyapunov function candidate as given in (29). V(x) is
positive definite. The time derivative of V(x) along the system trajectories is

(x)=1x"(A"P + PA)x+ x"PBu (38)
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The n x n diagonal positive semidefinite matrix Q is given in (31). If we assume perfect
collocation between the sensor and actuator pairs, that is C=BTP, (38) becomes

V(x)=x"CTu—1x"Ox

= Ylu—1x"0x »
Integrating (39) from t=0 to t= T we obtain
(Yo )= lf’{t=T)—V(r=0)+£jT x"Qxdt (40)
Since Q>0 and Wt ="T)>0. (40) can be written ’
(Yo )= — V(=02 (41)
and the result of Lemma 2 follows O

Remark 1
It is evident from (22} that if the initial conditions are equal to zero that is x(t=0)
=0, then = —3x"(t=0)Px(t=0)=0.

Remark 2

The transfer matrix H (s) of the linear time-invariant operator H, as defined by (28)
is strictly proper and all the poles have negative real parts according to Lemma 1.
Hence, if veL3**, then y=H vel3nL™".

Let the controller be defined as the linear time-invariant operator H, between the
input y=y,+y, and the output . Connecting the H, operator with the H, and H,
operators, we obtain the feedback system illustrated in Fig. 2. The transfer matrix of H,
is denoted H (s).

Proportional control law
A strictly passive proportional pressure feedback controller of dimension r x r with
finite gain is proposed according to

us)=H{s)y(s)

H(s)=G,
where G, =diag[g,;] >0isa constant diagonal feedback gain matrix of dimensionr x r.
This control law provides enhanced damping of the pressure variations around the

resonance frequencies.
The main result of this section is contained in the following theorem.

42)

Theorem 1
Consider the following feedback system (see, Fig. 2)
Y.=Hu
=Hav
=My @3)
y=x.t¥

U= —u= _Hc.y

where H , H.: L5, — L5, Assume that H;: L3 " *—~ L5, so that y L5 whenever veL; **. H,
is strictly passive with finite gain and H, is passive. Hence, the feedback system defined
in (43) is L7 stable and since the feedback system given by H,, H, and H_ is linear, L7
stability is equivalent to L7 (BIBO) stability.
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Proof

Set »(t)=01n (22) and use the Lyapunov function candidate as given in (29). V(x) is
positive definite. If we assume perfect collocation between the sensor and actuator
pairs, that is C=B"P. The time derivative of V(x) along the closed loop system
trajectory becomes

V(x)= —yiG,y,—3X'0x
=—x"(C" G,C+ 10)x

where the nxn diagonal positive semidefinite matrix Q is given in (31). It can be
demonstrated by inspection that

(44)

C"G,C+30=0 (45)

since the first term in (45) is on quadratic form for diagonal G,> 0 and hence positive
semidefinite. The time derivative of W x)is negative semidefinite. Using the invariant set
theorem (Vidyasagar, 1993) the equilibrium point of the closed loop system is
asymptotically stable and the result follows. O

L7 and L7, stability of the closed-loop system using collocated sensor and actuator
pairs is maintained regardless of the number of modes, and regardless of the inaccuracy
in the knowledge of the parameters. Thus the spillover problem is eliminated and the
parameters do not have to be known in advance for stability to be obtained. Notice that
there are no restrictions on the location of the collocated sensor and actuator pairs with
respect to stability. However, for optimizing the performance, the longitudinal location
of the sensor actuator pairs is crucial, as seen in (18). Robustness with respect to
unmodeled dynamics and sector nonlinearities in the actuators are shown in Serensen
(1993). It is further shown by Serensen (1993) that some imprecision in the collocated
sensor and actuator pairs can be accepted without violating the stability properties of
the closed-loop system.

4. Simulation and full scale results

In this section numerical simulations and results from full scale trials with a 35m
SES advancing at high speed in head sea waves are presented. The effect of collocation
and noncollocation of the sensor and actuator pairs for the 35m SES is investigated.
The SES is equipped with one single fan and louver system. Main dimensions and data
of the SES craft are given in Appendix A. The number of acoustic modes considered in
the simulation model is four, i.e. k=4.

Hp

Uc i Yy

Figure 2. Feedback system.
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4.1. Numerical simulations

Fig. 3 shows the Bode plot of H (iw,) between the pressure sensor y,(s) and the
louver u(s) when the pressure sensor and actuator pair is fully collocated. The sensor
and louver pair is located at the fore end of the air cushion. When the frequency of
encounter goes to zero, the dynamic pressure tends to be a static value proportional to
K,/K,. This indicates that the equilibrium pressure p, will decrease when the
equilibrium leakage area increases and vice versa. Around 0-1 Hz the response is close
to zero. This is related to the structural mass forces acting on the SES and the
hydrodynamic forces acting on the side-hulls. The high value around 2 Hz is due to the
resonance of the dynamic uniform pressure. The high values around 6 Hz, 12 He, 18 Hz
and 24 Hz are related to the four acoustic resonance modes. From the phase plot we
observe that the phase varies between 90° to —90° in the whole frequency range. This is
to be expected when using collocated sensor and actuator pairs.

Fig. 4 shows the Bode plots of H (iw,) when the pressure sensor is located at the fore
end of the air cushion while the louver is located at the aft end of the air cushion. From
the phase plot we observe that from 6 Hz and upwards the sensed pressure signal at the
fore end is more than 180° out of phase compared to the pressure signal at the aft end
where the louver is located. This is to be expected with noncollocated sensor and louver
pairs. Noncollocated sensor and actuator pairs introduce negative phase and leads to
instability.

4.2, Full scale results

The prototype ride control system used in the full scale experiments was based on
the passive controller as presented in Section 3. The control algorithms in the ride
control system were partly implemented on a personal computer (PC). Analogue
hardware devices were also used. An outer feedback loop was implemented on the PC,
while a faster inner feedback loop around the electro-hydraulic louver system was
implemented by means of analogue hardware devices. The louver system consisted of
two vent valves located side by side at the same longitudinal position x, =8 m. The two
vent valves were operated in parallel in the outer feedback loop. Two pressure sensors
located at x,; =10m and x,,=—10m were used to measure the excess pressure
variations in the air cushion. One accelerometer located about Sm aft of the centre of
gravity was used to measure the vertical accelerations. The inner analogue controller
loop around the louver system provided the necessary opening and closing actions of
the vent valves. The experimental arrangement is illustrated in Fig. 5.

The full scale measurements were carried out in sea states with significant wave
heights estimated to vary between 0-3-0-6m. The power spectra of the vertical
accelerations with and without the ride control system are presented.

U e

AV
re 5.

Figu Experiment arrangement.
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Figure 6. Full scale power spectra of the vertical accelerations at x= —5m of a 35m SES with
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Figure 7. Full scale power spectra of the vertical accelerations at x= —5m of a 35 m SES with
ride control system on and off, p,=430 mmWec.

Fig. 6 shows the full scale power spectra of the vertical accelerations 5 m aft of the
centre of gravity with and without the ride control system activated. With the ride
control system turned off, we observed significant response around 2 Hz, 5 Hzand 8 Hz.
The response around 2 Hz is related to the resonance of the dynamic uniform pressure,
while the response around 5 Hz and 8 Hz is related to the first odd and even resonance
modes. When activating the ride control system, the response around 5Hz was
significantly amplified, while the response around 2 Hz was only slightly reduced. In
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this case the pressure signal at x,, = —10m was used in the feedback loop. Hence, the
actuator and sensor pair was completely noncollocated since the louver was located at
x; =8 m. This means that for the first odd mode, the noncollocation resulted in positive
feedback for this particular mode because the pressure at the sensor location was 180'

out of phase compared to the pressure at the actuator location in the frequency range
dominated by the first odd acoustic resonance mode. The results around 8 Hz was more
or less unchanged. Both time series were recorded when the craft was advancing with
the speed U =45knots in head sea waves with significant wave height estimated to be
H,=03m.

Fig. 7 shows the full scale power spectra of the vertical accelerations 5 m aft of the
centre of gravity with and without the ride control system activated. In this case the
pressure signal at x;, = 10m was used in the feedback loop. Hence, the louvers and
sensors were almost’ collocated since the louvers were located at x; =8 m. With the ride
control system turned off, we observed responses around 2Hz, SHz and 8 Hz.
Activating the ride control system, the response around all three resonance frequencies
was significantly reduced. These time series were recorded when the craft was
advancing with the speed U =44 knots in head sca waves with significant wave height
estimated to be H,=0-6m. As seen from fig. 6 and 7 the first and second acoustic
resonances appeared at 5Hz and 8Hz in the full scale experiments. From the
mathematical model they were assumed to be 6 Hz and 12 Hz respectively. The reason
for this reduction of resonance frequencies is the flexibility of the aft seal system, Steen
(1993). Flexible seals at the fore and after end of the air cushion mean that the effective
air cushion length increases compared to a SES equipped with rigid seals. Hence, from
(19) it is seen that the resonance frequency decreases.

5. Conclusions

The pressure variations in the pressurized air cushion of a SES have two
fundamental characteristics; a dynamic uniform and a spatially varying pressure term.
It has been demonstrated that the resonances of the dynamic uniform pressure and the
spatially varying pressure cause excessive vertical accelerations when the craft is
advancing in sea states which contain energy in the frequency domains corresponding
to the resonance frequencies. In order to achieve high human comfort and crew
workability, it is necessary to reduce these accelerations using a ride control system. A
distributed ride control system has been developed based on the theory of passive
systems, and a proportional pressure feedback controller has been proposed. Full scale
experiments of a prototype ride control system showed significant improvement in ride
quality when using a ride control system which provided dissipation of energy around
the resonance frequencies. The full scale experiments also showed the importance of
using collocated sensor and actuator pairs in the acoustic dominated frequency range.
Spillover effects such as unwanted excitation of residual modes were avoided,
regardless of the number of modes considered and the parameter values, through the
use of collocated sensor and actuator pairs.
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APPENDIX A. SES main dimensions.

Length overall 35m
Equilibrium fan flow rate 150m3/s
Linear fan slope —140m?/s
Cushion length 28m
Nom. cushion pressure 500mmWc
Cushion beam 8m
Cushion height 2m
Weight 150 ton
Max speed 50knots
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