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A solution to the problem of constructing a state
space model from time series
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The problem of constructing minimal realizations from arbitrary input-output time
series which are only covariance stationary (not necessarily stationary) is con-
sidered. An algorithm which solves this problem for a fairly nonrestrictive class of
exogenous (input) signals is presented. The algorithm is based upon modeling
nonzero exogenous signals by linear models and including these in the total system
model.

1. Introduction

The general solution to the problem of constructing minimal realizations from time
series is of great importance, not only conceptually but also in many estimation
problems, and would be of interest to many who work in the field of system
identification and system theory. One particularly important application is the
estimation of econometric models, see Aoki (1990, 1991), Ostermark and Aoki (1992)
and Henriksen (1985). One particular difficulty with constructing minimal realizations
of economic time series is that it has to be based upon arbitrary time series (not stylized
and simplified ones) which usually cannot be assumed to be stationa ry, only covariance
stationary. The means of all variables involved will generally be nonzero, time varying,
and unknown. In order to construct a minimal stochastic realization in accordance
with Faurre (1976) or Aoki (1990), such mean values or trends have to be removed in
order to compute the autocovariance function of the output.

However, in order to remove these trends in a proper fashion, we need a model of
the underlying system, this model is unknown at that stage. As point of fact, if we had
this model we could remove all trends and solve the stochastic realization problem
which provides us with the said model.

Aoki (1991) and Ostermark and Aoki (1992) solve this problem by assuming all
expected values to be constant. These values are estimated by using the sample means
which enable the removal of all nonzero expectations. However, this approach fails
when the mean values are time varying. Di Ruscio and Ljungquist (1992) solved this
problem by eliminating trends by taking differences of the correlation matrices.
This last method does not work for arbitrary exogenous time series, although it works
excellently when the cross-correlation matrices are constant. A method which is more
general with respect to the type of exogenous time series is presented in Di Ruscio (1992,
1993). This method has restrictions on the order of the underlying system.

In this paper we resolve the problem by including a linear model of the (nonzero)
exogenous variables in our representation. Note that this approach is in accordance
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with the behavioural framework introduced by Willems (1986a,b, 1987), where no
distinction between inputs and outputs is actually made. This approach is definitely
proper in econometric modeling where the entire econometric system of the world can
be considered to be autonomous. There will usually be some kind of feedback from so-
called outputs to so-called inputs in a submodel, and this can be taken care of by
introducing a model of the inputs.

2. Problem definition and preliminaries
Assume that the underlying system can be described by a discrete-time, time
invariant, linear state space model of the form

Xi+1=Ax+ Bu+ Ce; (1)

where i >0 is discrete-time, i.e. an integer, xeR" is the state vector with initial value x,,
yeR™ is the system output, ueR" is the system input, eR™ is an unknown innovations
process of white noise, assumed to be covariance stationary, with zero mean and
E(e;el)=A. A, B, C, D and E are constant matrices of appropriate dimensions, where (D,
A) is an observable pair.

The problem investigated in this paper is to construct a state space representation of
the deterministic part of the system, i.e. the quadruple (4, B, D, E), from known input
output time series u and y. The matrices C and A can be determined when the
deterministic part of the model is known, see Di Ruscio and Ljungquist (1992).

3. Partl

The results in this Section are presented in four steps. They are then compactly put
together as an algorithm which solves the realization problem. The algorithm also
turns out to solve the deterministic realization problem without the need of doing
experiments on the process. The most important result in this section is that we show
that the minimal realization problem can be solved for a non-restrictive class of input
signals. This result is used in §4.

Step 1 (modeling the input signal)
Assume that the input u; can be described by the model

Ci+ 1= AuCi"' B, 4; (3}
u;= D"Ci (4)

where the external input signal &i,, for the sake of convenience, is chosen as an impulse at
time i, a white noise sequence, or a combination of both. u is defined to be exogeneous if
not influenced by the state vector in the process model. Note that the results in this
paper can be extended to the more general case where, u;=D,(;+E,i;.
Step 2 (defining the augmented output)

The process model augmented with the input model is

x| [4 BD,Tx].[07]. . [C
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where I, is the m x m identity matrix. Note that the initial values Xo can be represented
by infinitely fast dynamics and also augmented into the model. This is shown in the
Appendix.

Step 3 (impulse responses for the augmented system)

Define
Kx=E(f:+tﬁD U =E{ﬁi+kﬁ?) z =E(fi+kﬁﬂ 0]
we then find
Ay=DZ, (8)
Av=DAZo+ Y DA-BO, , Vk>1 ©
i=1

If the signal i, which generate u, through the linear model (A,, B, D,), is of the type
described in Step 1, then we have

Zo=E(xal)=0 (10)
and the impulse responses for the augmented system defined by
DA 'B=H,, Vk>1 an
are determined from
~ k—1 -
HpOo=A— ¥ Hy-yUs V=1 (12)
i=1

if the external signal is sufficiently ‘rich’ for the inversion of U,. The next step is to
separate the impulse responses for the quadruple (4, B, D, E) and the triple (4,, B,, D,)
from the impulse responses of the augmented system, Hj;.

Step 4 (impulse responses for the system (A, B, D, E)

The augmented system matrices 4, B and D can be realized from the Hankel matrix
and the shifted Hankel matrix constructed from the sequence Hj,, Note that the
matrices A and A, are directly determined from an ordered block real Schur
decomposition of the augmented system, ie. 4,=M"AM, B,=M"B and D,=DM,

where
A A
A’ — 511 512 )
=l o A,, (13)

We can chose A=A, A,= A,,, if 4, is sufficiently ordered. The other matrices can
possibly be found by using a procedure similar to the results in Rachid and Hashim
(1992) where the Schur decomposition was used in model reduction. However, D and B
are in general not unique in this case.

We will now show that the impulse responses for the systems (4, B, D, E)and (4,, B,,
D,) arc uniquely extractable from H,,,. We have

ED,B, ’
Hy, _[ D, B,,] (14)
and E is defined if D, B, is invertible. Similarly
~ DBD,,B,,+ED,,A,,B,,]
a.,— 15
" [D"A"B. 1
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gives the impulse responses D,A,B, and DB. Continuing this procedure giv&é
DABD,B,+ DBD,A,B,+ EDA’B,
Hys=| 242 (16)
D“AIIBH
and so one. The above results are presented in Algorithm 3.1 below.

Algorithm 3.1. (Determination of impulse responses)
1. Define the cross correlation matrices for the augmented system

0k= E(i;+ na;r) (17)
Kx =E(Ji441%) (18)
2. Define the impulse responses for the augmented model.
k-1 -
Him=(ﬁk_izl Hﬁm—an) Us' Vk=1 (19)
Define a partitioned form
Hf
ﬁ,ﬁ,:[ﬂ’m] where H,,=D,A: !B, (20)
wiik,
3. The impulse responses for the quadruple (4, B, D, E) are generated recursively as
k=1
Hyw[k—l)=(H;i‘dc_I_ZIHMk—innMH-l))H-Eu} Vk>1 (21)
where
H,o=E and H,=DA*'B Vkxl. (22)
4. PartII

The results herein are presented in three algorithms for the efficient realization of
combined stochastic and deterministic systems. The first is based on cross correlations
of the output y; and the output of the augmented system, E(y;,,¥), in addition to a
realization of the exogenous input. The second is based on the correlations function of
the output of the augmented system, E(3;, 7). The third is used to determine (B, E)
from given (D, A), e.g. from the two first algorithms.

Algorithm 4.1. (System and augmented output cross correlation)
Step 1. Check for dynamics in the exogenous input. Define the correlation matrices

Ui =E(u;44) (23)
which satisfy the autonomous system
Uy=D, A, Zy, where Zy, =E((;, 1) (24)

when E(i7; , ,u;) =0V k >ns. Note that we have chosen ns= 1 for simplicity. Determine a
realization for the triple (D, A,, Zy,,)-

Step 2. Define the correlation matrices for the output, or the cross correlation
matrices between the output and the input, ie.

(25)

T
Aﬁ:E(J"i-I-kJ’?) where At=51/?" 1291 and Z;,, =[E(x“ 1Yi ]

E(; + 1J-’T
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or

S =E(y; . u}) where S,t=£?ilt¢?"_lzjml and Z,,, =[§;"“:.:?] (26)
i+ 1

where D, =[D ED,]. Note that we could have chosen Sy =D, AZq if E(ful)=0.

Step 3. Define the Hankel matrix and the shifted Hankel matrix and determine a
realization for the augmented system (D,, 4, Z;,,) or (D,, 4, Zs,,). Separate A by a
block real Schur decomposition of A4 such that A, is located in the lower right corner.
Determine a block modal form with 4 and A, on the diagonal, if required. Choose the D
matrix as the left block in D,.

Step4. The matrices (D, A, D,, A,) are given from the above. Determine a realization
for (4, B, D, E) and (A,, B,, D,) if required. Note that the realization problem is only
partly solved at this stage, because (B, E, B,) is undefined. See Algorithm 4.3 for the
determination of (B, E).

Note that analysis based on Equation (26) for the determination of (D, A) can give
poor results compared to Equation (25), and is not recommended.

The justification for this statement is explained as follows. Assume that process
noise is present in the system. In this case the correlation matrices of the output reflect
the dynamics better than cross-correlation between outputs and inputs, because the
excitations from the noise in addition to the input excitations are reflected in the
correlation matrices. This is also easily seen in the case when the input sequences are
zero, and the system dynamics is only excited by process noise, In this case the cross-
correlation matrices are zero, but the correlation matrices contain information about
the system dynamics.

Another fact is that the correlation and the cross-correlation matrices give the same
information of system dynamics in the deterministic case, i.e. when no process noise is
present. However, the cross-correlation matrices between the input and output time
series give important information about the input matrix B.

The next algorithm is more general than the previous algorithm and turns out to
have remarkable numerical properties. Step 1 and 2 in Algorithm 4.1 turn out to be
special cases. So we proceed directly, without completing the above, at this stage.
However, Step 1 in Algorithm 4.1 should usually be determined prior to the next
Algorithm 4.2,

Algorithm 4.2 (Augmented output corrglation)
Step 1. Define the augmented system output from given time series yand u, ie.

~ Vi
yi—[ul] @7

and compute the correlation matrices
A=E@i,Jd0 VYk=1,...,2K (28)
which satisfy
K*=ﬁ,?|1'lzﬁ‘ (29)
ﬁ—[D ED»] ;1-_[*4 BD.;:I Z _'I:E(xH R e 1“;‘()]
0 D, 0 4, 1 Eis ) Eivqud) |
Step 2. Define the Hankel matrix A eRX0"+*Km+n and the shifted Hankel matrix
A RKIXKMED, from A, Vk=1,...,2K and determine a realization for the triple

(D, 4, Zs,), say (D®, A", Z,,). Reorder A° by a block real Schur decomposition such
that A is located in the upper left corner, if required.
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Step 3. The matrices (D, A, D,, A,) are determined directly from Step 2. Determine a
realization for (4, B, D, E) and (A4,, B,, D,) if required. (B, E) is determined from
Algorithm 4.3. A

Note that the lower right block in D will always be zero when u is not influenced by the
state vector x, i.e. when u is exogenous.

It is not trivial to determine equations that define the (B, F) matrices. One approach
is to compare submatrices in the estimated realization (5%, 4%, Z3;,) with those of (b, 4,
Z;;,). However, this approach is generally not unique.

Several methods for the determination of the (B, E) matrices are possible when the
pair (D, A) are known. We will in what follows present one fairly general method, and
then discuss some special cases of this method.

The matrices B and E satisfy

Zyv=Az,+BU, (30)

S,=DZ,+ EU, (31)

where Z, = E(x,  qul) and U, = E(u;, su). When (D, A) is an observable pair, and (D, 4,
Z,) are given, we can solve these equations with respect to (B, E).

The following iterative procedure, Algorithm 4.3, turns out to be quite effective in
solving this problem. A least squares approach directly on S, =E(y; ) Vk=0,...,L
is sufficient in the single input case. This will be discussed after the presentation of the
general algorithm.

Algorithm 4.3 (Determination of (B, E) from given (D, A))

Step 1. Specify (D, A) and an initial matrix Z§ from the previous algorithms. Set p:=0,
where p is the index of iteration.

Step 2. Solve the following equations with respect to E” and B”.

E?=(S,—DZ8)U, ! (32)
k—1

Ht=(3t—DAkZS—E"Uk— Z H&_IU‘-) Ual Vk=l,...,L (33)
i=1

B*=(0"0) '0"H, (34)

where Hy=[HTH}... H]} and OeR"™*" is the observability matrix for the pair (D, A).
U,=E(uu]) is assumed to be non-singular.

Step 3. Simulate the system (D, A4, B, E?) with specified initial values (usually x,=0)
and generate new values y?, xf. Update Z, and S, from

Z5*' =E(xtuf)  SPT'=E(Fa)Vk=0,...,L (35)
Step 4. Check for convergence. If the norm of the matrix
— 1 - +1
Jm g X S (36)
is greater than a specified ¢, then set p:=p+ 1 and return to Step 2, else, terminate.
A

Simulation experiments have shown that, when A4 is stable, we have convergence in the
sense that J, is minimized, i.e. J.—0. We have also experienced that we can arrive at a
solution that is different from the underlying (B, E) matrices, even when J,—0. This
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indicates that the matrices (B, E) are generally not unique. The Algorithm 4.3 is found to
work for systems which have nonminimum phase behaviour from the input to the
output. Algorithms 4.1, 4.2 and 4.3 are in combination the solution to the problem of
constructing a realization of the deterministic part of the system, i.e. the quadruple
(4, B, D, E).

The general Algorithm 4.3 is based in iterations. Therefore, it will be of interest to
discuss some special cases, for the determination of (B, E) from given (D, A4), where
iterations are not necessary.

Two cases are of particular interest. The first is the case where the number of states n
is equal to the number of outputs m. A simple least squares algorithm for the
determination of the quadruple (4, B, D, E) is discussed in Di Ruscio (1993). This
approach can easily be modified to a procedurc for the determination of (B, E) from
given (D, A).

A second special case is the single input case, which will be presented below. In this
case U, is a scalar, and we have

5, DA DU,
S DA?* DAU,+DU VA

I [" (37
: P B

S, DA* DA* 'U,+DA* *U,+...+DU,_,

where §;=8;—S,U, 'U;and DA’=DA'— DUy 'U Mj=1,...,k, which definc Z, and B
from a least squares solution, and E=(S,—DZ,)Ug"' (provided U, is invertible).
Note that the above also can be written as

S, DA DU, U, 5

S DA* DAUy+DU U o

.2 _ . ) 0 1 ) 2 B i (38)
: . : : E

S, DA* DA* 'Ug+DA* U, +...+DU,_, U,

However, Eqn. (37) and E=(S,—DZ)U, ! is usually better numerically condition for
the determination of (Z,, B, E) than the latter expression.

Note that when E is known to be zero, then the above equations should be modified
to take this into consideration. In this case, E should also be set to zero in Algorithm 4.3.
This is because small deviations in E from zero can lead to large errors in transmission
zeroes, and wrong conclusions can be drawn with respect to phase behaviour. Even
more important, the determination of E in addition to (Z,, B) requires that the input
signal u is more ‘rich’ compared to the determination of only (Z,, B). When E =0, (37)
should be modified by substituting S; with S; and DA’ with DA’. Note also that the
solution Z, from this least squares method can be used as initial value to the Algorithm
4.3 to refine the solution further.

5. A numerical example
We will illustrate the method on the same example as in Di Ruscio and Ljungquist

(1992).
15 10 20 05
Az[-(}? 0] B:[—lﬁ] C:[l-s]' (39)

D=[1 0] E=0 (40)
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Table 1. Simulation results with N =4000 samples and L= 10.

System Alg. Realization
u A SN K MA) H{) P, J, dimA,
u, 0 o0 15 0-750+j0-371 349 0651 0005 2
Uy 1 030 15 0-738 +;0-381 3-47 0613 0005 2
u, 0 o 15 0-750+j0-371 349 0651 0004 10
u, 1 0-30 15 0-7624j0-365 369 0700 0092 10
True system 0:750+j0-371 35 0-65 0

Algorithm 4.2 is used to estimate (D, A) and Algorithm 4.3 is used to estimate B. The
following input sequences were tried out in the simulations.

uy(i)=sin (i) 1)

u,(i) =(}2(sin (25)+ sin ( 1 0)+ sin ( ) + sm(i)) (42)

The white noise innovation process e was generated with the MATLAB function rand.
A normal distribution with seed zero was chosen as input to rand.

The cross correlation matrices between two finite time series y and u, for time lag k,

was computed according to the unbiased estimate, viz.

N—-k—1
N—_II; X .-Zo Yirsti k=0 43)
where N is the number of samples in the time series.

The results are shown in Table 1, where the following notations are used: The
eigenvalues of a square matrix A are denoted A(A). The transfer function from u to y is
H fz)=D(zI — A)" ' + E. The steady state gain and the zeroes of H (z) are denoted H (1)
and p,, respectively. S/N is the signal-to-noise ratio.

The Table shows that the results from the algorithms in this work are significantly
improved compared to the results presented in Example 1 in Di Ruscio and Ljungquist
(1992), for these types of input signals. We will argue that the algorithms in Ostermark
and Aoki (1992) and Di Ruscio and Ljungquist (1992), do not work for this type of input
signals, Eqns. (41) and (42).

E(y;+ )=

6. Conclusions

The algorithms presented in this paper are from numerous examples found to
have remarkable numerical properties for the minimal realization of the quadruple
(A, B, D, E) from time series.

Animportant observation is that the correlations E(y; 4 137, E(y; +xu) and E(y; . 4y7)
contain dynamics of the system that generated the exogenous inputs u; in addition to
the dynamics from u to y. The dynamics of the exogenous variables can be identified
from correlation analysis of E(u;,,u). The latter observation must be taken into
consideration in order for the system dynamics to be properly identified. This fact
seems to be neglected in algorithms reported in the literature.
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APPENDIX

(Inclusion of initial values in the augmented model)
The process model augmented with the input model and the initial values is

Xis 1 A BD, A X; 0 0 i [CT
G| =10 A, 0 G|l+!B, 0O [T] +10 |g
Yiv1 0 0 0 Xi 0 Ax, Y L0
I D ED, D Xi 0 Dx, 7 1)

. [u] - [0 D, 0} i * [0 0 ] [v] Tlo]

where %, =0 and #; is an impulse at time instant i= 0. Another possibility is simply to
remove the state y. We have

-6 2T B B e[
L) (2] Bl
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