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A direct adaptive generalized predictive controller and some of its
global convergence properties

WEI WANG+ and ROLF HENRIKSEN{
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This paper is concerned with the direct approach of adaptive generalized predictive
control. Optimality of generalized predictive control is analyzed and an implicit
model with control law parameters is developed. A direct adaptive generalized
predictive control algorithm is suggested and some sufficient conditions for its
global convergence are also derived.

1. Introduction

During the last few years long-range predictive control (LRPC) has attracted
increasing interest of several researchers. Many methods have been presented, see e.g.
Ydstie (1984), Clarke et al. (1987), Lelic and Zarrop (1987), and De Keyser et al. (1988),
which depend on the assumed model structure and the choice of cost function,
including adaptive control methods, see Kramer and Unbehauen (1988) for an
overview. Generalized predictive control (GPC) (Clarke et al. 1987; Clarke and
Mohtadi 1989) is one of a new family of LRPC which has been used successfully in
industrial applications, see Clarke (1988).

All LRPC approaches use a receding horizon strategy, i.e., a control sequence is
computed by minimizing a cost function; then only the first element of the control
sequence is applied to the plant and the whole procedure is repeated at the next
sampling instant. It should be noted, however, that the receding horizon strategy does
not ensure minimization of the original cost function. It is, therefore, natural to ask
whether there is some cost function whose minimization with respect to the control
variable will lead to the receding horizon strategy.

Another problem is that almost all the adaptive GPC algorithms appearing in the
literature are in the indirect or explicit form. One disadvantage of the indirect form is
that the computational load may be too heavy for on-line applications, especially in
adaptive GPC algorithms because multi-step predictions are involved. To the best of
the authors’ knowledge, the only adaptive GPC controller in direct form for a
deterministic plant reported in the literature is one where N (N, is the prediction
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horizon) parameter estimators are used at each sampling instant (Ortega and Sanchez,
1989).

In this paper the optimality of the GPC scheme is first established, and it is shown
that the receding horizon control law can be obtained as a natural outcome of
minimizing a cost function of generalized minimum variance type. Second, the work of
Ortega and Sanchez (1989) is extended to the stochastic case, and we propose a direct
adaptive GPC controller which utilizes only one parameter estimator. Finally, global
convergence of the direct adaptive GPC algorithm is analysed under some
assumptions.

2, Generalized predictive control (GPC) scheme
Consider a time-invariant plant described by the following CARIMA model
Az )y(©)= Bz~ u(t— 1)+ C(z™ 1)/ A 0y

where A(z " !), B(z~ ") and C(z~ ') are polynomials in the backward shift operator z~* of
the form

Az D=1+a;z ' +...4+a,z "™
Bz ") =bo+bz ' +...+ b,z "™
Cz )=14cz "+...+c, 2z ™

{u(t)}, {»(1)} and {e(t)} denote the plant input, output and disturbance sequences
respectively. A=1—z"! is the difference operator. Notice that the model (1) has the
advantage that the controller will naturally contain an integrator. The sequence {o)(r)}
is a stochastic process defined on a probability space (©, #, 2) on which we have a
sequence of increasing sigma algebras (%, te /") where &, is generated by the
observations up to and including time ¢. It is assumed that

o) F,.,}=0 as. )
EloP\F,_ ) =0 as. @)

. 1 X
Nlijr:0 SUPF,;IQ’(I)Z{DO as. 4

The following assumptions will be made about the plant (1).
Al. The polynomial degrees n,, n, and n, are known.
A2. C(z ') is a stable polynomial.

The cost function has the following form

Ny Nu
J= é’{jzl(y(l +) =y e+ + lJ_Zl(Au(t +i—DPIF ;} &)
where Au(t+j)=0, j=N,,...,N,, and where {y/{r)} is a known bounded reference
sequence. IV, is the prediction horizon whereas N, is the control horizon. 4 is a
weighting constant. The expectation in (5) is made given data obtained up to and
including time .
Using the following polynomial equations

Cz™Y)=Efz YAz YA+z'F(z™ ") (6)
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Efz )Bz )=Gfz")C(z"

where j=1,2,...,N, and

Efz )=eg+ez ' +...
+fiz "
Glz Y)=go+g,z "+...
Hfz Y)=hi+hiz ' +...

Flz =fo+fiz7 ' +..

D+z'Hyz ")

+ej _lz-]+1

+gj—lz_j+1

+hpz ™

25

Q)

®

©

where n=max (n,,n.—j)and m=max (n,— 1, n,— 1), the plant (2.1) can be written in the

form

y(t+j)=GjAu{i+j—1)+?y(t)

+}éfAu(t—l)+EJa){t+j)

where j=1,...,N,.

(10)

The future output value y(t+j) consists of future input signals, current input and
output, and future noise signals. The term E w(t + j) is uncorrelated with all other terms
on the right-hand side of (10) if it is assumed that w(t),...,u(t+N,—1) are %

measurable.

Equation (10) can be written in vector form as

F H
y=Gu+ Cy(t)+EAu(t— 1)+E

where

Y =[t+1)...p(t+N,)]
u" = [Au(t). . Au(t+ N,—1)]

FT=[F,...Fy,]
HT=[H1.. .HNI]

E'=[E,w(t+1)..

Ey,oft+N,)]

and where G is the N, x N, lower-triangular matrix

" Yo
g1 Yo

gn.-1 9n.-2

| Ini—1 Yn, -2

Define

Jo

gNl—NuJ

Yo =[y(e+1).. p(t+N)]

(11

(12)
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From the definition of y, y, and u the cost function (5) can be written as
J=&{y—y) (y—y) +'ulF } (13)

Substituting (11) into (13) and minimizing J with respect to u results in the control law

u=(G'G + ll)“GT[y,—g y(t)—%Au(t— 1)] (14)
Writing the first row of (GTG+AI) 'G" as
Pl= [ps---Pnid 15)
we define
Pz " Y)=py,+pPy,-12 ... +piz MY (16)

Then, from (14) and the receding horizon strategy (Clarke et al. 1987) the control
difference Au(t) is given by

F _H
&u{t)=PT[y,— éy(t)—EAu(t—l)]
=Pz ")y {t+N)— 1) (17

where [(t) satisfies

Clz™Yty=alz" y(t)+Blz” HAu(t—1)

Furthermore
Ny
ae )= Y piFfe) (18)

e )= Yopfe) (19)

where the degrees of a(z ') and f(z ") are n and m respectively.
Substituting (17) into (1) gives the closed-loop system

Ty(t)=z"'BCPy(t+N)+(C+z ' p)Cat) (20)

where
TE H=Az " YACEz " Y+z 'z " N+z "Bz Ydz™ )
Using (6) and (7), the closed-loop characteristic polynomial T(z ") can be written as
Tz )=Clz" YAz~ YA+ 2z~ ljglszj{ﬂ(z NGz~ HA(z"HA))
Hence, the closed-loop system has poles corresponding to the roots of C(z ') and of
T(z Y=Az" 1)ﬂ+z“j§lz"p,(3{z' —Gfz HA(z~)A)

It should be noted from the above derivation that the control law (17) does not ensure
minimization of J since a receding horizon strategy has been used.
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3. Optimality of GPC scheme

It should be pointed out that the relationship between GPC and Linear Quadratic
Gaussian (LQG) control has been established (Bitmead, Gevers and Wertz 1990) by
using a state-space model and a Riccati difference equation, where the GPC control law
is subsumed within the LQG framework as a receding horizon LQ tracking controller
with specific choices for the cost function weighting matrices. In this section we will
derive the receding horizon control law (17) in a different way. It will be shown that the
receding horizon control law (17) can be obtained as a natural outcome of minimizing
another cost function J |, where J, has a similar structure as the general cost function of
generalized minimum variance (GMV) control.

Let us denote the first row of (GG + A1) ! by

QT=[G'1~--QN..] (21)

and define
0z Y=gy, +qn, 12 "+...+qz" ! (22)
Theorem 1. The receding horizon control law (17) minimizes the cost function
Ji=&{(PE™ Yyt + N )—yt+ N)+ 20z NAu(t+ N, — 1)*# ) (23)

where the polynomials P(z™') and Q(z ') are given by (16) and (22) respectively.
Moreover, the minimum possible value of the quadratic cost function (23) is

2_ 2”1 No—ij . 2
P2=62)Y | ¥ pivje (24)
=1\ i<o

Proof: For the first part, multiplying by G and adding Alu on both sides of equation
(11) we obtain

Gy +Alu=GTGu+llu+GT(—gy(t)+lg—Au(t— l)+E) (25)
which results in
T 1| T F H .
u=(G'G+iDh" ' G (y—E—Cy(t)—CTAu(t—l})+Alu (26)

Using (16), (18), (19) and (22) the first row of vector equation (26) can be written as
Au(t)= Pz~ ")yt + N ) +20(z " YAult + N, — 1) —w(t + N ;) — K1) (27)

where
Ny
Wt+N)) =j)=:lp,-Ej(z “HeAt+)) (28)
and where Efz ') is given in (8). Define
Ple+Ny)=Pz" Yyt +N,)+ 20 Ault+N,—1) 29)
Then (27) can be written as
e+ Ny —v(t+N) =)+ Ault) (30)
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We note that ¢(t+N,)—wt+ N,) is # -measurable. It is obvious that ¢(t+N,)—
Wt + N,) is the optimal linear prediction of ¢(t+ N,) given F , iLe.
%t +N,)=d(t+N,)—vt+N)=L)+Ault) (€2)]
Now, note that
Pt+N)=¢t+N)+vt+N,y) (32)

Substituting (29), (31) and (32) into (23) we obtain after some manipulations
Jy =E{UM)+Ault)— Pyt + NV} + 6t +N VIF 3 260+ NIF S (33)

The first term on the right-hand side of (33) is greater or equal to zero and is brought to
zero by the control action given in (17). This completes the first part.
From (28) we finally obtain

Ny - 2
EMt+N)IF )= J{(lep;_geﬂ)(t +j— !')) |& :}

Ny /Ni—Jj 2
=3 (S re) = 2
=i\ i=o
VvV

Comparing the cost function J, given above with the cost function used in GMV
control (Clarke and Gawthrop 1975, 1979), we see that there are future control signals
in J . Thisis the reason for adding AQAu(t + N,— 1) to ¢(2) in (29). If we take N, = 1, then
Q(z"")=4q, and

Jy=E{(P" Yot + N )~y (t+ N )+ X Au(t) |7}

where A’ = Ag,. In this case J is just a special form of the cost function in GMV control.
It is clear that in GPC the polynomials P and Q cannot be chosen arbitrarily; they will
depend on the plant parameters g; and b,, the prediction and control horizons N, and
N,, and the weighting constant . For a given plant the stability of the closed-loop
system will thercfore depend on the choices of N;, N, and 1.

In the following section we will see that an implicit model for direct GPC control
can be derived by the use of ¢(¢) in (29).

4. Direct adaptive GPC controller

The direct adaptive GPC controller and the global convergence analysis given in
the sequel are based on the following assumptions in addition to assumptions Al and
A2.

A3. The closed-loop system’s characteristic polynomial

T Y=z A+z 'S ZpfBla )~ Gz YA HA) (33)
=1

is stable, i.e., T"(g)+0 for |g| < 1.

A4. The first N, terms of the plant’s step response, .. gg, §15- - -» g, — 1, ar€ known.
A5. C(z~Y)—a/2 is strictly positive real for some positive a.



Direct adaptive generalized predictive controller 29

Remark 1: The assumption A3 means that when the plant’s parameters are known, the
receding horizon control law (17) with suitable choices of N, N, and 1 stabilizes the
plant.

Remark 2: The assumption A4 used here is similar to the one used by Ortega and
Sanchez (1989), where knowledge of the first N, terms of the plant’s impulse response
are required because a CARIMA model is used. In our adaptive GPC algorithm and
the convergence analysis following hereafter we take (30) to be an equation which is
estimated on-line, which implies that ¢(t) will be available at time t. We know from
equations (6) and (7) that the coefficients of G{z '), i.¢., o, 915 - -, Gn, -1 are simply the
first N, terms of the plant’s step response. If g, g4, ..., gy, -, are known and 1 is given,
then the coefficients of P(z~') and Q(z~') can be computed off-line.
Note that (30) can be written as

Ciz" NPt + N)—w(t+N,)
— oz Yy(O)+ Bz~ YAut— 1)+ Cz~ YAute)
=a(z YO+ Bz” HAu(t — 1)+ Au(t) (36)
where
Bz HY=Ppz"Y)+z2Cz")-1)
Subtracting C(z™")P(z~)y,(t + N,) from both sides of (36) we have
C(@t+Ny)—Py(t+Ny)—vt+Ny)
=ay(t)+ f'Au(t— 1)— CPyt+ N )+ Au(t)
=X )"0+ Au(t)— Pyt + N,) (37
where
X0 =[y1),-. ., yt—n), Au(t—1),..., Au(t —m—1)
—Pylt+N,—1),...,— Pyt + N, —n)]
0" =[0tgs 01518y B e s Py C15--5Cn ]

When the parameter vector 6 is unknown we have to use an estimate ((f) instead of 0 at
time ¢. For estimation of § we use the estimation algorithm given by Goodwin et al.
(1980), viz.

elt)=p(t)— Au(t— N )— X(t—N )"0t —N,) (38)
o

O(ty= 0t — N')+r(t——N_l)_X(t" N )el?) 39)

rt—Ny)=rt—=N;— 1)+ X({—N)"'X(t—Ny) (40)

where a>0 and r(0)=1.
All this yields the following direct adaptive GPC algorithm.

Data: Given the prediction horizon N,, the control horizon N, the weighting
constant 4 and the first N, terms of the plant’s step response, i.. 0,1, 9n, —1-

Step 1: Compute ¢(t) from
Ht) =Pz Y(0)+ A0z HAult—N, +N,—1) @1
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Step 2: Compute #(t) from (38)-(40).
Step 3: Compute the control u(t) from

u(t)=u(t— 1)+ Pz ")ydt+N,)— X(© ) (42)
Step 4: Increase ¢t by one and return to the step 1.

Note that the estimation scheme (a stochastic approximation) used in this algorithm is
arbitrary; it is chosen simply to illustrate the proof technique in the following analysis.
Other estimation schemes, €.g., projection or least squares schemes, can of course also
be used in the above algorithm.

5. Convergence analysis

We start with an asymptotic property possessed by the estimation aigorithm (38)-
(40). Define

Key=6(r)—6 (43)
e(t)=d(e)— P(z™ ")yAt) (44
2(t— N ) =e(t) —Wt) (45)
Ve)=0ie)" () (46)
From (37), (42), (44) and (45) we have
Cz Yzt —N,)= —X(t—N )"0t —N,) (47)

Lemma 1: Subject to assumptions A1-AS5, the estimation algorithm (38)40) has the
following property:

lim N
N-'mr(N) N!

Proof: See Goodwin et al. (1980).

le(t)z —0 as. (48)

Theorem 2. Subject to assumptions A1-A5, if the adaptive GPC algorithm given in the
above section is applied to the plant (1), one has, as.,

1
S1) Ilm supN Z W) <o
=

N
S2) lim sup-1 Y (Au(t))* < o0
N+ Nl=1

S3) lim Z E{(PE MO~y +(AQE AUl — Ny + N, — DPIF,y,} =7

—’a;\ =Ny

Proof: From (36), (44) and (45) we have
Oz Nzt)=clz WO +H(Cz™ ) +z7 " flz” NAu(t) - Clz” )Pz "y lt+N,)  (49)
Multiplying (49) by AA(z~!) and using (1), (6) and (7) lead to
T'(z” YAult)=AA(z " At} + AA(z )Pz )yt + Ny —alz” Dolt) (50)
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Muitiplying (49) by B(z™!) and using (1), (6) and (7) result in

Tz )t+1)=Bz")z(t)+ Bz~ WPz~ )y (t+ N ) +(Clz~ ) +2 "~ 'Blz~Noolt + 1)
(51)

Since T'(z™) is stable and y,(t) is bounded, it is clear from (4), (50) and (51) that there
exists a N’ such that, for N> N,

K N
-A;I:thﬂdt))’s- N‘-’;z(t)z +K, (52)
and
l N
E;Z{V(t-'- l)2<- > Zz(t)2+K4 (53)
From the definition of X(t) and H1) there exists a N” such that, for N> N”,
N
'(N) Z e+ 12458 Zl(Au(t))z+K7 (54)
Using (52)-(54) we have
N
<, (55)

for N> N where N=max(N’, N").
Now from (48) and (55) we conclude that

Zz(rF
lim c N5 =0 as. (56)
N—owhlg 2
Nl;z(t) +C,
and hence
lim L % Zz(t)’ 0 as. (57

N—+aw =1

The results S1) and S2) now follow from (57), (52) and (53).
From (45) and (57) we obtain

lim — ): (el)—w1)?=0 as. (58)
N—w Nl

But from (28), (45) and (47) we know that v(r) is a moving average of w(t),...,
oft—N+1), and e(t)— (1) is F,_ y -measurable, whence

ELPIF ,_y,} = E{(el)) YO +YOPIF, ) as.

=(et)- ) +EMIF, y,} as. (59)

From (34), (58) and (59]
:im _z E{et|F, n ) =EMONF _n )= as. (60)
The result S3) follows from (29), (44) and (60) which completes the proof. ]
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6. Conclusion

In this paper a direct adaptive GPC controller has been proposed, and global
convergence of the algorithm has been proved by using standard analysis techniques
under the main assumption that the first N coefficients of the plant’ s step response are
known. The motivation for this assumption is primarily that it allows us to analyse the
convergence and stability properties of this type of adaptive controller. When the first
N, coefficients of the plant’s step response are imprecisely known, our direct adaptive
GPC controller can be considered as an adaptive controller with unmodeled dynamics,
and the convergence analysis can be carried out by using a dead zone and
normalization techniques in the estimation scheme. This research is currently going on.

REFERENCES

Brimeap, R. R., GEvers, M. and WErTZ, V. (1990). Adaptive optimal control, the thinking man’s
GPC. (Prentice Hall, Englewood Cliffs, NJ).

CLARKE, D. W. and GAWTHROP, P. J. (1975). Self-tuning controller. Proc. 1 EE-D, 122, 929-934.

CLARKE, D. W. and GawTtHrop, P. J. (1979). Self-tuning control. Proc. [EE-D, 126, 633--640.

CLARKE, D. W., Montapl, C. and Turrs, P. S. (1987). Generalized predictive control—Part I and
II. Automatica, 23, 137-160.

CLARKE, D. W, (1988). Application of generalized predictive control. Proc. IFAC Adaptive
Control of Chemical Processes, Copenhagen, pp. 1-8.

CLARKE, D. W.and MouTabi, C. (1989). Properties of generalized predictive control. Automatica,
25, 859-875.

pE KEevser, R. M. C,, VAN DE VELDE, Ph. G. A. and DUMORTIER, F. A. G. (1988). A comparative
study of self-adaptive long-range predictive control methods. Automatica, 24, 149-163.

Goopwin, G. C,, SN, K. S., and SaLuia, K. K. (1980). Stochastic adaptive control and prediction:
the general delay-colored noise case. IEEE Trans., AC-25, 946-950.

KrAMER, K. and Unesenauen, H. (1988). Survey to adaptive long-range predictive control. Proc.
12th IMACS World Congress on Scientific Computation, Paris, pp. 358-362.

LELIC, M. A. and ZArRrOP, M. B. (1987. Generalized pole-placement self-tuning controller—Part
I and 1. Int. J. Control, 46, 548-568.

ORTEGA, R. and SANCHEZ (1989). Globally convergent multistep receding horizon adaptive
controller. Int. J. Control, 49, 1655-1664.

Yostie, B, E. (1984). Extended horizon adaptive control. Proc. IFAC 9th World Congress,
Budapest, VII. pp. 133-137.



